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Abstract—Cloud application security initiates with the analysis
of security requirements in DevOps. This involves gathering,
managing, and tracking requirements within integrated issue-
tracking systems found in repositories like GitHub. DevOps
offers advantages in cloud app development, such as accelerated
deployment, improved collaboration, and enhanced reliability. In
DevOps, while many security verification tools are automated,
security requirements analysis often relies on manual procedures.
User feedback plays a pivotal role in shaping cloud application
requirements, and the industry actively seeks automation solu-
tions to expedite development. Prior research has demonstrated
the limited performance of conventional NLP models trained
on established datasets, such as PROMISE, when employed in
the context of GitHub Issues. Recent studies have explored the
integration of deep learning, particularly leveraging modern large
language models and transfer learning architectures, to address
requirements engineering challenges. However, a significant issue
persists - the transferability of these models. While these models
excel when applied to datasets similar to those they were trained
on, their performance often drastically falls when dealing with
external domains.

In our paper, we introduce an automated method for classi-
fying requirements within issue trackers. This method utilizes
a novel dataset comprising 12,000 security and non-security
issues collected from open GitHub repositories. We employed a
SmallBERT-based model for training and conducted a series of
experiments. Our research reaffirms the challenge related to the
transferability of NLP models. Simultaneously, our model yields
highly promising results when applied to GitHub Issues, even
in challenging scenarios involving issues from projects that were
not part of the training dataset and structured requirements
texts from the PROMISE dataset. In summary, our approach
significantly contributes to enhancing DevOps practices within
cloud applications by automating security requirements analysis.

Index Terms—Security requirements, GitHub Issues, NLP,
Classification, Dataset, Machine Learning, Deep learning, BERT

I. INTRODUCTION

Requirements analysis is a cornerstone of the software
development lifecycle, particularly when addressing security
properties [1]. It provides the foundation for design, develop-
ment, and validation by defining a product’s scope, character-
istics, and functionality. Neglecting requirements engineering
can lead to project failures, with incomplete requirements
contributing to about 44% of such failures.

In recent years, the adoption of DevSecOps, especially in
Cloud-based applications, has surged [2]. DevSecOps relies
on automated platforms such as GitHub [3] to facilitate

continuous integration, deployment, and monitoring, expe-
diting requirement fulfilment and issue resolution. However,
analysing requirements and issues often remains a manual task,
despite the many automation aspects within DevSecOps. This
highlights the importance of leveraging automated solutions,
such as Natural Language Processing (NLP) and machine
learning (ML), to analyze and classify requirements, partic-
ularly within user feedback and issue-related content [4], [5].
In this paper, we present an approach that harvests a dataset
of security-related GitHub issues and utilizes an NLP model
for classification, demonstrating promising precision and recall
results. In future work, we aim to integrate these mechanisms
into GitHub Actions to enhance DevOps practices in Cloud
applications.

II. RELATED WORK

The field of Natural Language Processing for Requirements
Engineering (NLP4RE) tackles various challenges through
machine learning (ML) and NLP techniques. These encompass
requirements classification, named entity recognition, user
story generation, and user feedback analysis.

Identifying requirement texts within specification docu-
ments is vital in requirements engineering. Research has
focused on extracting and classifying requirements from spec-
ifications, with studies such as [6]–[9] addressing the classifi-
cation of text segments.

Classifying functional and non-functional requirements is
a common challenge in NLP4RE. This involves binary clas-
sification, often using traditional machine-learning models.
Research has explored classifying requirements from software
specifications, as exemplified by works such as [10]–[13].
Security, a critical non-functional requirement, is crucial for
application integrity and was examined in classification tasks
by [14]–[16]. Additionally, user feedback, exemplified in [17],
is a valuable source for identifying security requirements,
including safety aspects, though showing the general difficulty
in identifying quality attributes. It is worth noting the scarcity
of literature dedicated to the classification of requirements
within issue trackers, exemplified by platforms like GitHub.

A. Machine Learning Models for Requirements Classification

Researchers are actively exploring diverse methods to auto-
mate requirements classification. For example, Pérez-Verdejo,



in their study [17], compared the performance of four con-
ventional machine learning models in classifying GitHub user
issues based on quality attributes, including security. The mod-
els included random forest, support vector machines (SVM),
decision tree, and Naive Bayes, with SVM demonstrating the
highest performance, achieving a geometric mean of up to
0.82.

Furthermore, Gang Li and Chengpeng Zheng explored mul-
tiple approaches for classifying functional and non-functional
requirements, with the combination of Generative Adversarial
Network (GAN) and BERT demonstrating the best perfor-
mance, achieving an impressive F1 score of 0.91 [13]. Gouri
Deshpande’s study [18] compared the performance of two
models, BERT and Random Forest, for classifying dependent
requirements. BERT achieved an outstanding F1 score of
0.93, highlighting the superiority of deep learning models,
which excel in capturing the semantic aspects of text often
overlooked by traditional methods.

B. Datasets

A fundamental component in training and evaluating clas-
sification models involves labeled datasets containing require-
ments. PROMISE [19], a widely employed dataset, encom-
passes 625 requirement statements, including 255 functional
and 370 non-functional requirements. It has been utilized
in numerous studies, e.g., [11]–[13], [17], [20], with further
categorization performed in [17] based on quality attributes.

Another prominent dataset is PURE [21], featuring 34,268
requirement sentences extracted from 79 openly accessible
requirements documents. Various researchers have employed
PURE in studies such as [22], [23], with the unique aspect
that the requirements in PURE were manually labeled. No-
tably, PURE offers a substantially larger dataset compared to
PROMISE, facilitating more extensive research and analysis.

User stories, often capturing system behavior informally,
have been curated into a dataset of 1680 user stories by
Fabiano Dalpiaz [24], primarily for ambiguity detection [25].
Additionally, user reviews, containing valuable requirements,
bug reports, and software requests, were gathered by Eduard
C. Groe, comprising 132,194 user reviews for various appli-
cations [26].

III. APPROACH

In this study, we opted to employ Bidirectional Encoder
Representations from Transformers (BERT) as our chosen
model for experimentation [27]. BERT is a neural network
built upon the transformers architecture, pre-trained on a
substantial corpus of data sourced from Wikipedia. Leverag-
ing the transformers architecture, BERT excels in capturing
intricate textual relationships and contextual information. It
accepts word tokens as input and can be trained on raw
text. Furthermore, it is noteworthy that, in classification tasks
with limited dataset sizes, the BERT model has demonstrated
superior performance compared to other machine learning
models.

To expedite training, we utilized a streamlined variant of
BERT known as SmallBERT [28]. SmallBERT is a family
of extremely small BERT models [29] trained using a mixed-
vocabulary distillation method. This method allows the models
to be compressed to a fraction of the size of the original BERT
models, while still maintaining good performance on a variety
of natural language processing tasks. SmallBERT boasts fewer
parameters, thus enhancing its learning efficiency.

We observed that NLP models trained on structured docu-
ments often exhibit relatively modest performance on GitHub
issues, as evident in an F1 score of approximately 0.5 in
[17]. Consequently, we undertook the task of assembling our
dataset. To accomplish this, we collected a dataset of user
issues from GitHub to facilitate model training. Specifically,
we harvested user issues from the top 1,000 repositories,
amassing around 3,419,446 user issues, each annotated with
different labels. After harvesting user issues from GitHub,
we applied filtering to isolate issues labelled as ”security,”
resulting in 6,068 records out of the initial 3,000,000 issues.
To optimize the performance of our models, we sought to
balance the GitHub dataset. Thus, we selected 6,068 samples
from non-security user issues with labels ”bug,” ”feature,”
and ”support.” In addition, for the non-security dataset, we
removed sentences containing the words from the cyber-
security glossary [30]. Totally, our GitHub dataset comprised
12,136 user issues and may be accessed at Zenodo [31]. The
examples of security and non-security related GitHub Issues
are demonstrated in Table I.

TABLE I
EXAMPLES OF USER ISSUES LABELED AS ”SECURITY” AND

”NON-SECURITY”

Label Issue
Sec Security: 4 Electron (react-devtools dep) security advisories
Sec Discussion: vulnerabilities in Oh My Zsh (2021-11-12)

Non-Sec Debugging yeoman generator doesn’t launch on Windows
Non-Sec Rest API needs to be consistent across all multi-bucket aggs

Dataset splitting is the process of dividing a dataset into
training and testing subsets. The proportions in which the
dataset is split can vary depending on the specific task and the
size of the dataset. In this study, we used a relatively small
dataset compared to other machine learning datasets.

Within the scope of related work, it is evident that a
common practice in numerous studies is the utilization of
an 80% training and 20% testing data split for requirements
classification tasks. Consequently, our study adhered to this
standard approach, partitioning the dataset into an 80% portion
designated for training and a 20% segment allocated for
testing.

In the realm of machine learning, a diverse array of metrics
is available to assess model performance. Among these met-
rics, recall, precision, and F1 score [32] are the most widely
employed for evaluating the efficacy of machine learning mod-
els in classification tasks. In this paper, we utilize the F1 score
to gauge model performance. The F1 score is computed as



TABLE II
SMALLBERT MODEL PERFORMANCE ON SECURITY REQUIREMENTS

CLASSIFICATION TASK FOR VARIOUS COMBINATIONS OF TRAINING AND
TESTING DATASETS

Training / testing dataset F1-score
1. PROMISE-PROMISE 0.95
2. PROMISE-GitHub 0.63
3. GitHub-GitHub 0.93
4. GitHub - external GitHub 0.82
5. GitHub-PROMISE 0.71

the harmonic mean of precision and recall, amalgamating the
strengths of these two metrics for a comprehensive evaluation.

Our study encompassed a series of experiments designed
to assess the performance of the SmallBERT model in the
context of security requirements classification. We aimed to
subject the model to diverse training and testing conditions,
including the following scenarios:

1) Employing PROMISE as both the training and testing
dataset.

2) Implementing cross-validation by training a model on
PROMISE dataset and evaluating it on GitHub issue
titles similarly to [17].

3) Utilizing GitHub issue titles as the training and testing
dataset.

4) Conducting external validation by training the GitHub
titles model and testing it on GitHub issues from projects
not included in the training set.

5) Performing further external validation by training the
GitHub titles model and assessing its performance
on structured security requirements extracted from
PROMISE.

IV. RESULTS

Our study involved a series of experiments encompassing
different models and various combinations of training and test
datasets. Detailed descriptions and the corresponding code for
these experiments are accessible at [33]. Table II presents
the performance of the SmallBERT model in the context
of security requirements classification, considering various
combinations of training and testing datasets.

SmallBERT demonstrated remarkable performance in con-
ventional training and testing setups, particularly when the
training and testing datasets belonged to the same domain. No-
tably, when we applied the model to the PROMISE dataset, we
achieved an F1-score of 0.95. This achievement is noteworthy
and aligns with previous studies that have leveraged transfer
learning models for security requirements classification.

Conversely, the performance of the PROMISE-trained
model, when applied to GitHub issues, yielded a more modest
result, with an F1-score of 0.63. This discrepancy can be
attributed to the relatively unstructured nature of GitHub
issues compared to the more formally structured requirements
statements within the PROMISE dataset. It serves to cross-
validate the performance evaluation observed in a prior study
[17].

In the traditional training and testing dataset configuration
using GitHub user issues, SmallBERT once again exhibited
remarkable performance, achieving an F1-score of 0.93. These
results affirm our initial assumptions regarding the efficacy of
transfer learning in classification tasks involving highly un-
structured requirements statements. Notably, these results were
obtained by testing the model on user issues not encountered
during training but originating from the same projects used in
the training dataset.

To assess the generalization capabilities of our trained
model, we conducted an external validation. In this eval-
uation, the trained model was specifically tested on issues
from GitHub projects that were not included in the training
dataset. In this context, our model achieved a commendable
F1-score of 0.82. This outcome holds significant relevance as
it underscores the applicability of our model for the general
classification of GitHub user issues, extending beyond the
specific projects involved in the training dataset.

In our final assessment, we tested our model, which was
trained on GitHub issues, on the PROMISE dataset. The
achieved F1-score of 0.71, though towards the lower end of the
acceptability spectrum, highlights that our model can provide
practical utility even when applied to more structured and
formal requirements statements.

V. CONCLUSION

This paper discusses our exploration of natural language
processing (NLP) models for the classification of require-
ments, with a particular emphasis on identifying security-
related user issues within code repositories, such as GitHub.
Our primary objective was to address the limitation of models
trained exclusively on requirements specification documents
when tasked with issue classification. To overcome this chal-
lenge, we meticulously compiled a tailored dataset by ex-
tracting security-labeled issues from open projects on GitHub.
Following a rigorous data cleaning process, we conducted
a series of experiments using different training and testing
dataset combinations to assess the broad applicability of our
SmallBERT-based model in classifying GitHub user issues.

Our experiments affirmed the consistently high performance
of BERT-like models in requirements classification tasks
in accordance with prior research. Additionally, we cross-
validated the subpar performance of the PROMISE-trained
model on GitHub Issues, which further validated our approach
of creating a specialized dataset for this specific task.

Moreover, the outcomes showcased a significant contrast
in performance when deploying the trained models on issues
within the same domain, meaning those from projects included
in the training dataset, compared to those from external
domains. These external domain issues were associated with
projects entirely new and absent from the training dataset. This
distinction underscores the critical consideration of a model’s
generalisability and transferability, ensuring dependable per-
formance in real-world situations involving unencountered
projects.



Our plans for further improvement are to experiment with
more types of transfer learning models, preferably trained on
the cyber-security texts. Moreover, in the training, we would
like to consider the description texts of GitHub user issues,
which can further improve classification. Finally, we plan to
integrate our model as a plugin to GitHub Actions to integrate
the security issues classification in Continuous Integration
practices.

We consider our findings to have substantial relevance for
the broader community. The knowledge acquired from our
study offers valuable insights for tackling the issue classifi-
cation challenge. In the future, we are dedicated to continued
exploration of this problem, particularly within the framework
of our ongoing project focused on automating requirements
engineering in DevSecOps environments.

In the context of cloud applications, where scalability
and agility are paramount, the ability to quickly and accu-
rately classify user issues and security-related requirements
is crucial. Our findings offer a pathway to achieving this by
demonstrating the effectiveness of advanced NLP models in
automating these processes. By doing so, cloud application
developers can maintain a competitive edge, delivering high-
quality software with minimal delay. This not only aligns
with the principles of DevOps but also ensures the robustness
and security of cloud applications, a critical consideration in
today’s digital landscape.
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