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Figure 1: An editing session showing the result of the inversion of a draft sketch as input, and then some editing is done to turn the canyon
into a valley. Finally, the user changed the style of the right part of the scene to emphasise the mountain range.

Abstract

Various terrain modelling methods have been proposed for the past decades, providing efficient and often interactive authoring
tools. However, they seldom include any notion of style, which is critical for designers in the entertainment industry. We intro-
duce a new generative network method that bridges the gap between automatic terrain synthesis and authoring, providing a
versatile set of authoring tools allowing spatialised style. We build upon the StyleGAN2 architecture and extend it with author-
ing tools. Given an input sketch or existing elevation map, our method generates a terrain with features that can be authored,
enhanced, and augmented using interactive brushes and style manipulation tools. The strength of our approach lies in the ver-
satility and interoperability of the different tools. We validate our method quantitatively with drainage calculation against other
previous techniques and qualitatively by asking users to follow a prompt or freely create a terrain.

CCS Concepts
• Computing methodologies → Shape inference; Shape modeling;

1. Introduction

Realistic and controllable terrain models are necessary for creat-

ing virtual worlds. Existing approaches encompass a variety of

methods, including procedural generation, physically-based ero-

sion simulations, and example-based synthesis. Some of the pro-

posed methods provide a varying level of control, allowing the user

to generate, edit, or modify synthetic terrains, but do not incorpo-

rate the concept of style. Conversely, existing methods accounting

for style offer limited control to the designer: they cannot apply dif-

ferent styles to the same terrain at selected locations (see Section 2).

Both control and style are critical demands from designers in the

entertainment industry. In our approach, we spatialise the style and

propose a collection of tools to help artists in their creative process.

We define style as related to the user perception of the overall

quality and common properties of a terrain or a specific category

with similar elevation and landmark characteristics. A key observa-

tion is that style has a tremendous impact on the perception of ter-

rains: a highly irregular mountainous landscape from the Karako-

ram looks radically different from smooth hills in the Appalachians.

Style affects all ranges of scales from large-scale geographic struc-

tures of hundreds of kilometres, as demonstrated in the orometry-

based method proposed in [AGP∗19], to landforms of a few me-

ters. This diversity is the consequence of complex natural processes

acting over varying temporal and spatial scales, including tectonics,

stratification, aeolian, and hydraulic erosion processes. Modelling

such complex phenomena is complicated and comes at the price

of computationally intensive, involved, and hard-to-control simu-

lations. Most erosion algorithms focus on restricted temporal and

spatial scales: they only account for a limited category of phenom-

ena and simple extrapolation of bedrock and sediment materials

properties, thus effectively simulating a limited range of landforms.

Another crucial observation is that artists often prefer interac-
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tive editing when authoring terrains and therefore favour techniques

that allow control at a varying level of spatial scales. While methods

exist for interactive modifications of landforms or local style trans-

fer for virtual worlds, little research has been dedicated to com-

bining the concept of style with an interactive edition framework

for rapid modelling and enhancement of large-scale complex land-

scapes. We address these limitations by proposing a novel approach

that presents versatile interactive tools for editing terrains, includ-

ing sketching, copy-and-paste sequence, and details enhancement

while providing ways for the designer to define or impose a given

style at different levels (Figure 1).

Our method is based on a generative approach trained from

real-world examples. From this learning phase, the model is ca-

pable of extracting the notion of terrain style out of the exam-

ples. An inversion process (called encoder) consisting of finding

the latent representation of a given terrain or sketch is later used

to generate and edit terrains that match a given style. More pre-

cisely, the contributions are: 1) a novel terrain model employ-

ing an improved StyleGAN2 architecture [KLA19] that describes

and generates high-quality digital elevation models; 2) a variety

of tools crucial for terrain authoring and adapted to the model;

3) the introduction of style at different scales and at different lo-

cations, which allows for rich context-aware content generation.

We demonstrate that our approach can be seamlessly integrated

in a production environment with a complete implementation of

the model, along with datasets, into a Blender addon that demon-

strates interactive editing (see accompanying video). The code and

data are available at https://simonperche.github.io/
authoring_terrains_with_spatialised_style.

2. Related work

Terrain generation methods in Computer Graphics can be classi-

fied as procedural generation, physically-based (erosion) simula-

tion, and synthesis from exemplars, which includes deep-learning

algorithms (see the review [GGP∗19]). Given the identified goal

of control, style, and synthesis from real digital elevation models,

we briefly review and focus on authoring frameworks that evidence

interactivity.

Procedural terrain modelling generally relies on procedural

noises, often combined with river network carving, to algorith-

mically reproduce the self-similarity across scales. The elevation

results from summing scaled noise functions [MKM89] or as-

sembling procedurally defined and compactly supported primi-

tives [GGP∗15]. They are generally computationally efficient and

lend themselves to parallel implementation on graphics hardware.

Control typically takes the form of applying noise with brushes

[dCB09] or matching curve and point constraints using warp-

ing [GMS09] or using diffusion curves [HGA∗10]. Another strat-

egy consists in controlling generation by constraining landforms

to conform to prescribed low-resolution elevation maps and river

networks [GGG∗13]. Recently, [GPM∗22] introduced gradient-

domain editing for terrain modelling, demonstrating its effective-

ness for seamless blending of patches, copy-and-paste operations,

and generation from control feature points and curves. Unfortu-

nately, these approaches do not consider style and require careful

editing and parameter tuning to achieve user intent.

Erosion simulation methods, broadly classified into surface ero-

sion algorithms and geology-based simulations, are in essence

difficult to control and provide limited interactive feedback (see

[GGP∗19] for a complete overview). Recent works attempt to

bridge the gap between physically-based simulation and author-

ing. Event-based surface erosion [CGG∗17] simulate material de-

tachment, transport, and deposition, accounting for the presence of

vegetation and event scenario and enhancing relief with convinc-

ing details such as gorges and ravines as long as the initial input

terrain is sufficiently realistic and supplies large-scale landmarks.

In contrast, controlled geology-based simulations attempt to repro-

duce large-scale landforms by prescribing the uplift of the bedrock

balanced by different types of erosion, most often the Stream Power

erosion [SPF∗23] or glacier erosion [CJP∗23] forming hanging

valleys and quarries. However, those methods often provide lim-

ited and indirect control to accord to the underlying erosion equa-

tions governing the erosion phenomenon and are computationally

intensive, which deters them from interactive authoring.

Example-based methods tackle the realism by combining patches

extracted from real-world digital elevation models. Their control

is often achieved by structure-sensitive warping to match sketched

silhouettes [TEC∗14]. Parallel texture-based synthesis [GMM15]

modifies the matching process to support style painting, region-

based copy-and-paste, and curve and point manipulators. The as-

sembly of patches, even locally geomorphologically correct, is

not sufficient for generating globally consistent landscapes. Sparse

modelling is another efficient way to generate high-resolution ter-

rains from sketches [GDGP16] guided by exemplars. Recently,

Scott et al. [SD21] proposed a breaching algorithm interlaced in

multi-resolution example-based terrain synthesis to improve hydro-

logical consistency. In contrast, our method encodes hydrological

consistency at different scales in the latent space.

Deep-learning algorithms are a specific case of example-based

approaches. Guérin et al. [GDG∗17] first demonstrated the effec-

tiveness of Conditional Generative Adversarial Networks (cGAN)

for learning the correspondence between terrains and the sketch

maps corollaries containing ridge and river lines and feature points.

Zang et al. [ZLZ∗22] used a modified version of a GAN with low-

resolution maps, global style information, and local style maps as

input, and discriminators capable of classifying different types of

terrains. The generator is based on UNet architecture, and patch-

based discriminators allow local style control. Another approach,

specialised in style embedding, was proposed in [ZLB∗19]. By us-

ing a CGAN to insert the embed theme into the generation pro-

cess, the method can amplify a low-resolution input terrain into

a high resolution with style variation. While producing compelling

results in terms of style transfer, this approach does not provide any

editing mechanisms. Recently, [NJSR] trained a Variational Auto

Encoder [KW13] combined with a GAN to generate a heightmap

from a low-resolution map coupled to a sketch. Recently, some

other works have also shown the possibility to generate textures

[ABGT20, KHWM17] and heighmap [PC20] at the same time us-

ing GANs.

While providing authoring tools such as sketching and interpo-

lation, existing techniques generate terrain lacking details. We pro-

pose a novel method that addresses the blind spot of previous ap-
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Figure 2: The input heightfield I (a high or a low-resolution ter-
rain, or even a sketch) is injected into the encoding process to
produce a latent vector representation in W+, with features maps
f ∈ F . The generator uses f as input and one or multiple w ∈W+

vectors to synthesise a new terrain T . The user may modify the la-
tent space to control the generation process, or directly edit T and
inject it again in the generator.

proaches by developing a framework for simultaneous style manip-

ulation and editing.

3. Model

We introduce a deep neural model based on the StyleGAN2 ar-

chitecture [KLA19] applied to Digital Elevation Models (DEMs),

which are terrains represented as discrete heightfields denoted as T .

StyleGAN2 takes a large set of input images and encodes their style

into latent space. Inspired by this approach, we use latent space as

the primary way to represent and manipulate digital terrains.

The framework consists of two main parts depicted in Figure 2.

The StyleGAN2 itself is a generator trained on a carefully selected

and designed data set of DEMs. The generator synthesises a high-

resolution terrain T = G(w) from its latent representation w. Con-

versely, an inverter [XZY∗] called encoder reverts the process by

producing a latent vector w = E(I) that matches the input I. In

some cases, applying the generator again to the inferred latent vec-

tor may not reproduce exactly the initial I, which is part of the

authoring process, especially when I was a sketch and not a real

terrain, formally: G(E(I)) �= I. Latent space is central in the repre-

sentation of the style but fails at localising features, which is crucial

in our application. Therefore, we extend the encoder capabilities by

adding a direct inference of the inner representation of the Style-

GAN2 called feature maps. The user can interact at multiple stages

of the pipeline, from user inputs to direct latent space modification.

At every step, the output is directly rendered for preview or, when

the result is satisfactory, streamed to the rendering pipeline.

Generator The generation step incrementally builds on the

Generative Adversarial Network (GAN) architecture introduced

in [GPAM∗14]. The generator denoted as G creates a high-

resolution terrain. During the training process, we couple G with

another neural network, called the discriminator D, that attempts

to detect whether the generated terrain is real or not. Therefore,

the generator and the discriminator compete against each other:

the generator tries to fool the discriminator by generating images

resembling the ones found in the training database, whereas the

discriminator tries to distinguish between images generated by the
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Figure 3: StyleGAN2 architecture. A vector from the latent space
Z is projected into a second latent space w ∈W by using a map-
ping network that disentangles latent directions. w is then streamed
to the generator at various levels of resolution, and the output is
sent to a discriminator, which seeks to separate real and fake im-
ages. The generator and the discriminator are trained together in a
zero-sum game. The results are utilised during the backward prop-
agation phase. The toDEM component corresponds to the toRGB

layer in the original StyleGAN2 which has been modified to handle
a single channel image.

generator from those in the training dataset. This architecture al-

lows the unsupervised training of the network and does not require

explicit specification of a loss function.

The introduction of the StyleGAN2 architecture [KLA19] sig-

nificantly improved the GAN model and demonstrated its perfor-

mance by being the first to create photorealistic images while main-

taining user control by taking advantage of its latent space W . Here

we extend the scope of StyleGAN2 to digital terrains. One partic-

ularity is the progressive growth of the output image performed by

generators at increasing resolutions that take the previous layers as

input, driven by the latent representation in W . The process starts at

an initial low resolution (generally 4×4). Every step increases the

resolution of the features maps by a factor of two, and the generator

employs the latent vector w ∈W to add details. Another layer, de-

noted as toDEM, is specialised to project these features maps into

images combined with the previous layers . Figure 3 illustrates our

particular architecture.

Unfortunately, as demonstrated in [AQW19], W cannot repre-

sent every real image. Therefore, W+ vectors were introduced to

express the necessary variability across models. The StyleGAN2

generator defines W+ as a concatenation of 18 different 512-

dimensional W vectors for each layer. The components in W+

control the generation of every layer in the hierarchical process.

Encoder The StyleGAN2 architecture has a great synthesis power

but lacks a so-called inversion process: what is the representation

of an existing terrain in the latent space? Two major categories of

inversion methods exist. Optimisation-based approaches compute

the loss between the generated and target terrain. Starting from

an initial random vector in W+ and using an optimiser and back-

propagation, the system performs an optimisation over W+. De-

spite its high-quality results, this method is computationally inten-

sive, up to several minutes per image, which is prohibitive for an

interactive application. We prefer the encoder-based approach for

inverting a terrain, which implements another neural network, de-
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noted as E , encoding an image into latent-spaces. It necessitates

preliminary training and thus operates on pairs of terrain model

and latent representations. We refer the reader to a review of GAN

inversion from [XZY∗] for more details. The efficient encoder op-

tion lends itself to the interactive generation. Moreover, it allows

for generalisation as it can invert various inputs, including high or

low-resolution DEMs or sketches. This property is essential and

allows for various use cases adapted to authoring.

We incrementally build upon the pSp (pixel2style2pixel) archi-

tecture proposed in [RAP∗] that allows the StyleGAN2 to produce

an output image based on an input image using the latent interme-

diate representation w ∈W+. In our experiments, we used L2 and

LPIPS losses for the encoder, which provided the best results.

I T

Figure 4: The encoder inverts an input terrain (left) into latent
space, before the generator synthesises an approximation (right)
using the latent vector representation.

Encoding the feature maps. While producing approximations of

the input terrain, the W+ latent space fails at localising the features

correctly. Contrary to the common usage of StyleGAN2 (faces,

cars, building), landforms such as crests or rivers can be placed

anywhere onto the domain. This constraint demonstrates the cru-

cial need for localisation, which is difficult to represent as a one-

dimensional latent vector. Therefore, we introduce the feature maps

F space, a richer representation used to transmit information be-

tween blocks of various resolutions in StyleGAN2 (see Figure 3).

We developed a novel network for encoding the feature maps.

The network is fully convolutional since the desired output is com-

posed of 2D feature maps. The network has multiple branches,

one for each resolution of the features maps. During the infer-

ence process, the user selects a resolution x, and the input im-

age I is streamed to the network to encode it into feature maps

(w, fx) = E(I). Conversely, we enrich the generator with the capac-

ity to generate a terrain by bypassing the lower part of the generator

and using the feature maps directly:

T = G(w, fx)

We train the network by picking one resolution randomly for one

step, and the backward pass optimises this branch. Over time, we

train all branches with the same number of steps. The inversion into

features maps is crucial to retrieve accurately the features from the

input. While the vector w has a small dimension, feature maps are

considerably richer and represented by 2D tensors with many chan-

nels. Increasing the dimensions allows the spatialisation of features

into the latent space and a better recovery of the features of the in-

put (see Figure 4). Both latent representations are complementary:

w ∈ W+ is adapted for style modification and f ∈ F for features

conservation and localisation.

4. Terrain authoring with style

We developed and studied a variety of authoring tools that benefit

from both latent space representations and the generalisation pos-

sibilities of the encoder. Since the information given to the encoder

uses the same format as the generator output, it intrinsically allows

the interactive edition of the output terrain T and iteration through

the process.

4.1. Versatility

We trained the encoder (Section 5) using real DEMs as input,

w ∈ W+ latent vector and f ∈ F features maps as outputs. Ev-

ery vector w encodes a high-resolution topography in the high-

dimensional latent space of the generator and thus embeds a consis-

tent representation of geomorphological properties. The inference

capabilities enable us to feed it with new inputs that have never

been seen during the training phase. This generalisation allows the

user to sketch low-resolution maps and edit existing DEMs while

keeping consistency and generating necessary details. The encod-

ing can be seen as a projection of the input into the latent space

of the generator. To target different terrain scales and offer more

flexibility to the user, we trained two different generators and en-

coders: at 5 meters per pixel (5km terrain) and 30 meters per pixel

(30km terrain). This is complemented by the tiling approach that

further extends the scale possibilities by stitching multiple terrains

together (section 4.3).

Copy paste

Low resolution

Figure 5: Different categories of input terrains (left) and their cor-
responding topographies produced by the full encoder and gener-
ator process (right): synthesised models exhibit more small-scale
details and landforms while maintaining a global consistency.

Figures 1, 4, 5, and 6 demonstrate the variety of inputs handled

by the model: a DEM from a real terrain, a copy-and-paste editing,

a user-defined sketch, or a low-resolution DEM.

A frequently used authoring paradigm is to select elements from

a first map and paste them onto another map. This process produces

seams that previous works usually fix using blending zones. Unless

performed in the gradient domain as in [GPM∗22], this results in

a smooth interpolation of elevations [GGP∗15] that blurs the land-

forms. In contrast, our method produces patterns that conform to

the essence of the pasted elements.

In addition to the semantic representation in W+ space, we add

an F space output in the encoder that provides a better reconstruc-

tion by encoding spatial information, but that can sometimes fail
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at representing geomorphological consistency. Using the F space

also allows reconstructing more accurately features from input.

One potential drawback occurs when a seam is intended not to

be reproduced: the user may want to add geomorphological details

at the seam location while preserving the input terrain elsewhere.

Therefore, we introduce a way to mix up latent, taking inspiration

from [PLL∗22], by using a mask to merge different feature maps.

The entire w ∈ W+ is retrieved and injected into the first layers

of the generator. At a given resolution determined by the user, we

merge the feature maps and the current image using linear interpo-

lation with a user-defined mask to better reconstruct geomorpho-

logical details while maintaining crucial landforms.

Low resolution

SR with custom styles

Super-resolution

Figure 6: Our encoder accepts low-resolution terrains as input
and allows for super-resolution. Here, the initial resolution was
64× 64 (top), illustrating a ×16 amplification factor (middle). We
further control the super-resolution amplification process by a style
exemplar (bottom).

4.2. Style mixing

In essence, the style mixing proceeds as follows (Figure 7). Two

latent vectors u and v ∈ W are computed using the encoder with

an additional f ∈F to keep terrain I1 structure. Two generators are

then run in parallel and input with f. Vectors u and v are then fed

into each generator. At every level, the features are merged before

being streamed to the toDEM layer.

The generator inherits from the StyleGAN2 architecture and is

structured in 18 layers controlled by the latent vector w. While the

same latent vector controls the different layers during the training

phase, extending the latent space to 18×512 elements allows to se-

lect different ones. This is particularly true when using the encoder

that produces an extended latent vector w ∈W+ to increase the ex-

pressivity (see Section 3). Furthermore, the additional latent space

F better reproduces the structure and delivers style mixing capac-

ities: the large-scale structure and landmarks of one terrain can be

mixed with the details of another one. The structure is represented
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Figure 7: Synthetic overview of the style mixing architecture.

in the F space as well as the upper layers of the latent vector f,
whereas details are connected to the lower ones.

Style mixing

Input

Localised style mixing 

Terrain style

Figure 8: To modify the style over a region Ω, we run two versions
of the generator in parallel, one with f ∈F extracted from the input
and the other from the style. Before invoking the toDEM layer, we
blend the feature maps using a user-defined mask derived from Ω.

We designed a tool that combines the global structure from an

input terrain with the details extracted from another one (Figure 8).

The network’s first layers (low-resolution) contain large-scale fea-

tures, and the scale of the features decreases with the successive

layers [KLA19], a consequence of the growth of the characteristics

of the generator. Therefore, the latent vector w at a given resolution

controls the style at the corresponding scale. Here, it corresponds

to decreasing spatial features from large-scale landforms, such as

mountains and valleys that define the global geomorphology, to

small-scale details, such as ravines erosion landmarks.

To retrieve the structure of the original terrain, we employ the la-

tent space F that corresponds to the feature maps of the generator.

Features maps are conditioned using the latent space W and then

projected into pixel space using a toDEM layer. We stream the out-

put of the feature maps encoder directly to the generator. We then

run two generators in parallel, the first with the u and the second

with v. Before being transferred to the toDEM layer, which outputs

the difference of the image for this resolution, we blend feature

maps spatially using a user-defined mask, which allows for main-

taining a global structural coherence since the input is the same for

each generator while differentiating the style spatially. This pro-
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Terrain Structure Less creative ( × )
Input Feature maps

Neutral ( × ) Accurate ( × )Creative ( × )

Figure 9: Influence of the feature maps insertion at the i-th level: the user can adjust the creativity or prefer adherence to the input. If they
prefers reproducing the terrain as accurately as possible, they can employ the fourth level. In contrast, if they wants to draw a draft, they may
use a low-level feature map.

cedure can be easily extended to multiple styles in one terrain by

running multiple generators.

The intrisic style embedding allows quick prototyping by chang-

ing details according to an input style, potentially resulting in a

completely different visual perception of the initial terrain. The

user selects the number of layers needed to apply the desired ef-

fect, the level of features maps (independently for the input terrain

and styles), and the mask for styles, which allows for a balance be-

tween global and local control. Figure 9 shows the impact of spatial

style and the level of details. The generator is fast enough to per-

form those operations interactively.

4.3. Tiling

Modelling large-scale landscape at a high resolution is crucial, but

computationally intensive and time consuming for designers. Aug-

menting the resolution automatically saves a lot of time for artists

and allows them to focus on the prominent structures and patterns

such as ridge lines, river networks or plateaus. We exploit the gen-

eralisation capabilities of our decoder and particularly the way our

method synthesises details with a low-resolution input. In the cur-

rent implementation, we can handle two different output resolu-

tions based on the trained models: 30 and 5 meters resolution.

33

23

32

22

Figure 10: Patch de-
composition.

Because the model has a fixed res-

olution of 1,024 × 1,024, generated

terrains have a size of about s ≈ 30

and s ≈ 5 kilometres respectively. To

overcome this limitation, we handle

larger resolutions and sizes by divid-

ing them into patches of a size s (see

Figure 11). We decompose input ter-

rains T of arbitrary resolution, i.e.,
larger than the 1,024× 1,024 resolu-

tion required by the networks, into a

grid of k2 patches. Detailed patches

produced by the encoder have a nor-

malised elevation range. Therefore, we need to adapt each patch

elevation to the original patch using a histogram matching, which

guarantees the recovery of the original elevation range and distri-

bution. This strategy still produces discontinuities at the borders of

the independently-generated patches. Therefore, we use a half-size

s/2 overlapping and blending. We compute intermediate patches

covering the boundaries as illustrated in Figure 10 and combine

the three layers of intermediate patches with offset vectors (s/2)x,

(s/2)y and (s/2)(x+y) respectively. The process yields (2k−1)2

patches. We finally stitch them together using the minimum error

boundary cut from [EF01].
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Figure 11: The input terrain is divided into n×n patches to adapt
the size of the trained model. After processing by the networks, we
adapt the heights of the (normalised) high-resolution patches and
finally blend patches together.

Figure 12 illustrates the combinations of the two terrains and

tiling. The same input sketch can produce terrains of sizes ranging

from 5km to 180km. Terrains of 5km and 30km use model trained

with the corresponding resolution while terrains of 90km, 180km

or larger are composed using the proposed tiling method.

5. Results and discussion

The source used for creating datasets is composed of publicly avail-

able raster images of Digital Elevation Models (DEMs). We trained

two networks at 5 and 30 meters resolutions and built the datasets

accordingly. Training multiple models at different resolution allow

a larger range of usage since features of 5×5 kilometres terrains are
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5 km 30 km 90 km 180 km

Figure 12: Our framework can adapt to any terrain size by using one tile of the two models trained natively at 5km or 30km. It is also
possible to use the 30km model combined with the tiling process detailed in section 4.3 to compose larger terrains, 90km and 180km,
respectively with 3×3 and 6×6 tiles, that correspond to 3,072×3,072 and 6,144×6,144 pixels.

sensibly different than 30×30 kilometres terrains, where mountain

chains are clearly visible. In particular, we used the IGN RGE ALTI

database composed of 5× 5 kilometres patches with a five-meter

precision and a spatial resolution of 1,000×1,000. We resampled

the tiles to 1,024×1,024 resolution using bi-cubic interpolation to

adapt to the network requirements, as the generator produces im-

ages with a power-of-two resolution. We downloaded 5,600 DEMs

covering western Europe and performed a selection based on their

dynamic range so that flat terrains should not be over-represented

and over-generated. We created elevation histograms and selected

the same number of representatives for each class to avoid bias.

More precisely, we classified every tile according to its elevation

range rounded to the nearest ten meters. We then randomly selected

≈ 20 terrains to maintain the balance between classes, resulting in

1,760 patches.

The second dataset for the 30× 30m resolution, uses data from

NASA SRTM consisting of 344 DEMs covering parts of Europe,

cut into 3,096 patches at 30 meters precision. We applied the same

process to handle the dynamic range and produced 1,902 patches.

We modified the StyleGAN2 to support a 16-bit grey-scale pre-

cision format for terrain images, which were normalised to unit in-

tervals for training purposes. The generator G was trained on four

Nvidia V100 GPUs with 16 GB of memory during 35 hours for the

five meters precision and 40 hours for 30 meters precision, using

the 5 meters as pretraining. After completing the generator-training

process, we generated 20,000 synthetic terrains to train the encoder

using randomly selected latent vectors, divided into 16,000 images

for training and 4,000 for testing. The second training was per-

formed on a single NVidia V100 GPU with 16 GB of memory over

12 hours. We released the source code and the trained model to-

gether with the training data.

5.1. Implementation and performance

The scripts for generating the data sets were coded in Python, and

we used PyTorch for machine learning. StyleGAN2 [KLA∗20] and

the encoder pSp [RAP∗] were adapted from the author’s imple-

mentation. The generator and the pSp encoder were first trained

as presented and then frozen to train the additional network. Re-

call that the encoder has multiple branches, one for each feature

maps spatial resolution, built with layers of convolutions and skip

connections. Each layer reduces the spatial resolution by two and

increases depth by two until the target resolution and channels are

reached. We use a Parametric Rectified Linear Unit (PReLu) as an

activation function and batch normalisation. We used the same data

set for the encoder. The encoding and generation process run at

≈ 48 ms on the same Nvidia GPU hardware (see Table 1), thus pro-

viding interactive feedback to the user. The implementation of the

Blender add-on (see accompanying video) inherently adds a pro-

cessing overhead to this raw computation time (900 ms for data

preparation, 250 ms for postprocessing, and 900 ms for UI dis-

placement update).

Tool RTX3090 #G #E

Generator 15 ms 1 0

Encoder 32 ms 0 1

Generator + Encoder 48 ms 1 1

Style mixing 99 ms 1 2

Tiling 3×3 6.7 s 25 25

Tiling 6×6 17.7 s 121 121

Table 1: Performance comparison for different operations: the last
two columns report the number of passes of the generator G and
the encoder E . Tiling includes other processes such as blending or
retargeting, which count towards the overhead.

All the terrains presented in this work were rendered using Mit-

suba with cartographic shading and generated at 30 meters per pixel

(unless stated otherwise) using the corresponding model. Textures

are created automatically with a mix of detection of rivers, hypso-

metric colours, and Laplacian contrast enhancement. This render-

ing emphasises landforms, improving visual inspection of topogra-

phy and avoiding aesthetic shading.

5.2. Control

We developed a plugin for the open-source modelling software

Blender that grants accessibility to our algorithms to unfamiliar

users. It integrates all the functionalities and interactive tools de-

scribed in Section 4 and can be used in all environments: mod-

elling, shaders and render engine (see the accompanying video for

examples of the user interaction).

Figure 13 shows the impact of the feature maps encoding on the

resulting DEM. The user can reproduce the terrain faithfully by

choosing an accurate level ( f32x32), or let the model generate new
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Terrain Structure Neutral ( ) Accurate ( )Creative ( )

Figure 13: Effect of the fidelity vs. expressiveness control parameter on three different input terrains.

Figure 14: Landscapes obtained by non-artist users during the
qualitative testing process, using sketching tools only.

details with the creative level ( f4x4) respecting the underlying ter-

rain. Our method allows the combination of multiple level accord-

ing to the user intent. A terrain can be faithfully reproduced using

the accurate level then edited partially with the creative level.

We conducted a qualitative study with three untrained non-artist

users who were asked to evaluate the modelling tools and comment

on their effectiveness. Figure 14 displays results obtained after a

≈ 5 minutes editing session only, starting from scratch. All users

reported that they managed to compose realistic terrains following

their intent with different styles. In addition, we performed a small-

scale user study where users were asked to reproduce a prompt de-

scribing a terrain. Figure 15 shows four examples of terrains ob-

tained in this experiment.

5.3. Comparison

Our approach lends itself to terrain authoring and amplification

and compares favourably to state-of-the-art methods with similar

Gentle hills Island with a central peak

Mountain range with a peak Y-shaped canyon

Figure 15: Samples from a small-scale study where users are asked
to reproduce a given prompt.

goals. The Generative Adversarial Terrain Amplification (GATA)

[ZLB∗19], a GAN architecture for style embedding and amplifica-

tion, is considered the state-of-the-art method for terrain amplifi-

cation. While producing high-quality results by amplifying a low-

resolution terrain with a specific input style, it does not include in-

teractive editing. In contrast, our pipeline offers style transfer and

super-resolution and proposes multiple authoring tools assembled

into a unified framework for building new reliefs or modifying ex-

isting ones. Moreover, the latent vector representation allows for

transfer style at any scale.

Sparse modelling is an alternative strategy to learning for am-

plification and authoring explored by [GDGP16] and [AAC∗17].

However, the sparse reconstruction process does not provide gener-

alisation since patches selected among exemplars are not modified.

Defining terrain style could be achievable by carefully selecting the

set exemplars. Combining different styles would be possible at the

expense of a database with a considerable number of examplars,
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Figure 16: Demonstration of the diversity of the StyleGAN2 generation: we can generation different types of terrain such as plains with
smooth hills, high mountains with dendritic river and ridge networks, and canyon lands.

which intrinsically limits the performance of the selection in the

dictionary. Eventually, [GDGP16] may introduce repetition arte-

facts on planar sketch surfaces, particularly on flat input parts such

as plains and plateaus, whereas our method manages to generate a

palette of consistent landforms, as can be seen in Figure 17.

[GDGP16] Exemplar 1

[ZLZ*22]Ours

[GDG*17] 32 x 32 [GDG∗17] 16 x 16

[GDGP16] Exemplar 2

Figure 17: Comparison of our method (top left) with style transfer,
sparse modelling and cGAN.

A recent technique [ZLZ∗22] implemented a style transfer ap-

proach using GAN to encode global and local styles independently.

The GAN takes a level set as input and generates a terrain by com-

bining two levels of details producing variants of different styles.

The main limitation comes from the limited number of available

styles learned from specific hand-made datasets with evident gen-

eralisation limitations. In contrast, our method produces a large

variability by automatically detecting the characteristics of relief,

which were never provided during training.

We compared results with the vork of Guerin et al. [GDG∗17],

which was, to the best of our knowledge, the first technique propos-

ing a deep-learning framework to terrain generation, adopting a

conditional GAN architecture and providing sketches of ridges

and rivers networks, and generating high-resolution heightfields.

This method does not accept low-resolution elevation maps as in-

put, therefore we had to adapt the pipeline for a fair compari-

son. We trained a cGAN using the code provided in [GDG∗17]

on our dataset based on low-resolution terrain inputs (16× 16 and

32×32). We observed that while the cGAN models synthesise con-

sistent results with the test dataset, they fail at generalising with

real user sketches. In contrast, our method offers a versatile ap-

proach for authoring terrains, accepting a variety of input types

and including generalisation capabilities coupled with style pos-

sibilities in a single framework. Figure 17 presents the comparison

with sparse modelling [GDGP16], cGAN [GDG∗17], and the re-

cent style transfer approach [ZLZ∗22]. Contrary to other methods

that may show repetition artifacts, our model adds consistent de-

tails and features while keeping consistency and respecting the user

sketch.

One crucial facet of our method is the versatility of tools. A sin-

gle pipeline, with one training, offers extensive possibilities to the

artists, as demonstrated in Table 2 that lists available features in pre-

vious works. We did not include erosion-simulation-based methods

that are not relevant in this comparison.

5.4. Validation

Hydrological consistency is an important criterion for determining

not only the geological but also the perceptual realism of a syn-

thetic terrain. One form of evaluation is to compute and visualise

the drainage of a terrain. Recall that the upstream drainage area a
of a point p is the amount of water that flows through p, and is pro-

portional to the area of the surface where every downstream route

passes through p.

Figure 18 provides a visual comparison of the drainage for vari-

ous existing terrain generation techniques whose topographies were

obtained from the online repository of [GGP∗19]. Shading varies

from blue to red, corresponding to small and high drainage area

values respectively. Unwanted endorheic pits and bumps blocking

the water flow result in an inconsistent drainage. They appear in the

form of many white and red streamlines blocked without reaching

the border of the domain.

Figure 18 also reports the average breaching volume b̄ for each

case. It is defined as the volume of material removed by the
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Figure 18: Drainage area and breaching volume b̄ for various
terrain generation techniques and Real DEMs; a lower breaching
volume, b̄, is better.

minimal breaching required to ensure free drainage of the ter-

rain [BLM14] divided by terrain area. Our method performs bet-

ter than standard ridged noise and other example-based methods

[ZSTR07,GDGP16,GMM15] except for [GDG∗17] that integrates

post-processing on the generated DEM (a river has been carved

manually). The authoring method by Tasse et al. [TEC∗14] re-

lies on manual editing of Real DEMs which explains the con-

sistent drainage and low average breaching volume b̄. Simula-

tions [ŠBBK08, CGG∗17] perform better than learning-based ap-

proaches as they implicitly embed drainage consistency.

Since our method relies on learned DEMs, we also compared

the average breaching volume b̄ for a collection of 50 real terrains

against 50 generated terrains. The mean score for real DEMs is 2.77

whereas our method gives a 13.3 mean: not as good as real terrains

as one could expect, but often better than several other generation

techniques.

The training of the StyleGAN2 network is the first step in the

training of our model and its generation capacity is a key compo-

nent. Figure 16 shows a large variety of terrains structures that can

be created with the generator. We choose an encoder approach to

retrieve the latent vector w and f inside the StyleGAN2 latent space.

An alternative method consists in iteratively optimising random la-

tent vectors to match the input data using a standard loss based on

the difference between input and the produced terrain.

Theoretically, this method converts a real terrain into a vector

in the latent space W more precisely and therefore lends itself

for style mixing with high-resolution models. In the case of low-

resolution inputs or sketches, the optimisation faithfully reproduces

the input without introducing any learned landforms. By default, it

uses a perceptual loss based on the mean squared error on VGG16

features. Adding an L2 loss directly on images yields better results

since the loss is evaluating individual pixels. This loss places land-

forms such as mountains more faithfully and removes some noise.

To compare both optimiser and encoder, we added the optimisation

of a f ∈ F latent space in addition to the w vector.

Figure 19 shows a comparison between encoder and optimiser-

based methods. The optimiser delivers good results using real ter-

rains and tends to be more accurate. The encoder is a competitor

adapted to using sketches and performs better in this configuration

by generating features according to the prescribed inputs.

Optimiser

Encoder Encoder

Optimiser

Sketch SRTM

Figure 19: Comparison between encoder and optimiser-based
methods for a sketch input (left) with f ∈ F8 and a SRTM DEM
(right) with f ∈ F16.

In contrast, the encoder trained with heightfields allows for a

broader range of applications, as exemplified in Section 4.1. The

optimiser takes ≈ 60s to converge to a solution, which is to be

compared to ≈ 48ms using the encoder. Only the latter is compati-

ble with interactive feedback.

We also performed an ablation study to evaluate the importance

of the feature maps inversion. Figure 20 shows that even if W+ la-

tent space generates details, large structures might be altered while

the features space F preserves spatialisation and allows adding de-

tails by using masks.

5.5. Limitations

Our approach has several limitations. The first one comes from the

specific size of landforms used to train the generator: it needs train-

ing a specific encoder and generator for every resolution, which

requires intensive learning and an increasing amount of exem-

plars. This limitation might be compensated by utilising the tiling

method.

The second limitation comes from the encoder: the user selects

between a creative tool and an accurate encoding process, depend-

ing on the target application. In practice, the lowest level (f4) is cre-

ative and innovative, therefore adapted to low-resolution sketches.

In that case, the encoder generates various landforms. In contrast, if
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Figure 20: An ablation study on the importance of the features maps: when using feature maps (bottom), large structures of the terrain are
faithfully reconstructed while keeping details where the user edited using a mask and a combination of multiple levels of features maps.

the input is considered accurate, we observed that choosing a level

of f32 reproduces the input with high fidelity. Intermediate levels

proved very effective for modelling phases, particularly when com-

bined with style-mixing features.

6. Conclusion

We introduced a versatile deep neural model for authoring terrain

that allows designers to perform numerous editing tasks in the la-

tent space while conforming to the overall style of the terrain. From

sketch-based authoring to style transfer, by way of interpolation

and super-resolution, the model comprises a description of terrains

that inherently encompasses its geomorphological characteristics

and guarantees consistency during generation. We present a novel

encoding performed in the feature maps domain that yields better

accuracy and spatialisation in the inversion process. Combined to-

gether, these two latent representations bring a complete toolset for

terrain authoring. Experiments and a small-scale user study demon-

strate its effectiveness as well as its advantages toward previous

methods, including machine learning ones.

Future work in AI-supported terrain modelling should focus on

combining local and global changes into a single framework. The

user should be able to define the scope of the changes, and the

model would operate in the given domain while providing a seam-

less connection with the rest. Also, AI models often require large

sets of terrains to be trained. Having a single-shot model that would

not require demanding training and would allow for generalisation

and the creation of novel terrains with the same style would be

valuable. Finally, a textual form similar to stable diffusion models

could replace the traditional sketch-based control.
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[ZLZ∗22] • • • • • / •

[ZLB∗19] • • • • /

[GDG∗17] • • • • / •

[GDGP16] • • • • • /

[GMM15] • • • • • / -
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[GPM∗22] • • • • • / -

[GBG∗19] • • / -

[GGP∗15] • • /

[AGP∗19] • • • • • / •

[GMS09] • / -

[TEC∗14] • • / -

[dCB09] • / -

[GGG∗13] • • / -

[ZSTR07] • / -

Table 2: Comparison of tools available in different terrain synthe-
sis models. Dataset release and trained models are only compatible
for machine learning methods, ’-’ stands for not applicable.
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