
HAL Id: hal-04323111
https://hal.science/hal-04323111

Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of an ATMS for handling conflicting desires
Leila Amgoud, Claudette Cayrol

To cite this version:
Leila Amgoud, Claudette Cayrol. On the use of an ATMS for handling conflicting desires. 9th
International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), Jun
2004, Whistler, Canada. pp.194–201. �hal-04323111�

https://hal.science/hal-04323111
https://hal.archives-ouvertes.fr

On the use of an ATMS for handling conflicting desires

Leila Amgoud and Claudette Cayrol

Institut de Recherche en Informatique de Toulouse
118, route de Narbonne
31062 Toulouse, France
{amgoud, ccayrol}@irit.fr

Abstract

This paper presents a revised version of a framework
proposed in (Amgoud 2003) which computes consistent
sets of intentions from a conflicting set ofdesiresand
a set ofbeliefs. That framework enables us to restate
the problem of computing intentions in the context of
argumentation theory. Indeed, interacting arguments are
interpreted as competing plans for achieving some desire,
or conflicting plans for achieving different desires.
Another important contribution of this paper is to
present an ATMS-based proof theory for that fram-
work. Indeed, we show that the different concepts
defined and used in (Amgoud 2003) can be restated
taking advantage of the well-known Assumption-
based Truth Maintenance System (de Kleer 1986a;
1986b).

Keywords: Autonomous agents, BDI, ATMS.

Introduction
An increasing number of software applications are being
conceived, designed, and implemented using the notion of
autonomous agents. These applications vary from email
filtering, through electronic commerce, to large industrial
applications. In all of these disparate cases, however, the
notion of autonomy is used to denote the fact that the
software has the ability to decide for itself which goals it
should adopt and how these goals should be achieved.
Different architectures have emerged as candidates for
studying these agent-based systems (Bratman 1987;
Bratman, Israel, & Pollack 1988; Cohen & Levesque
1990a; Doyle 1992; Rao & Georgeff 1991; 1992;
1995). One of these architectures regards the system as
a rational agent adopting certainmental attitudes: the
beliefs (B), the desires (D) and the intentions (I) (the BDI
architecture). An agent can have contradictory desires.
However, its intentions are a coherent subset of desires,
which the agent is committed to achieve.
In (Cohen & Levesque 1990b), Cohen and Levesque
explored principles governing rational balance among

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

an agent’s beliefs, goals, actions and intentions. In
(Rao & Georgeff 1991), Rao and Georgeff showed how
different rational agents can be modeled by imposing
certain conditions on the persistence of an agent’s beliefs,
desires or intentions. In decision theory, Pearl (Pearl
1993) illustrated how planning agents are provided with
goals – defined as desires together with commitments –
and charged with the task of discovering (or performing)
some sequence of actions to achieve those goals.
Most of formalizations are sophisticated enough to handle
many aspects of BDI agents. However, they do not show
how agent’s intentions are calculated from the whole set
of its desires. In other words, it is not clear how an agent
chooses a subset of its possibly contradictory desires.
In (Amgoud 2003), Amgoud has presented a framework
for handling contradictory desires. That framework
computes consistent sets ofintentionsfrom a conflicting
set ofdesiresand a set ofbeliefs. Another novelty of that
framework is that it restates the problem of computing
intentions in the context of argumentation theory. Indeed,
interacting arguments are interpreted as competing
plans for achieving some desire, or conflicting plans for
achieving different desires.

The aim of this paper is to propose a slightly re-
vised version of the above framework and to present
an ATMS-based proof theory for the obtained frame-
work. Indeed, we show that the different concepts
defined and used in (Amgoud 2003) can be restated
taking advantage of the well-known Assumption-
based Truth Maintenance System (de Kleer 1986a;
1986b). In fact, restating argument computation as an
ATMS allows one to use existing ATMS algorithms to
build a framework for generating intentions from desires.

This paper is organized as follows: We start by pre-
senting an illustrative example of an agent having two
desires which are apparently not simultaneously achiev-
able. In the next two sections, we describe the revised
formal framework previously introduced in (Amgoud
2003). We then introduce the basic concepts of an
Assumption-based Truth Maintenance System (ATMS).

In the next section, we show how to encode the problem
of computing the set of intentions as a one of computing
labels, nogoods and contexts. The last section is devoted
to some concluding remarks and some perspectives.

Example
Let us consider an agent who has the two following de-
sires:

1. To go on a journey to central Africa. (jca)

2. To finish a publication before going on a journey. (fp)

In addition to the desires, the agent is supposed to have
beliefs on the way of achieving a given desire:

t ∧ vac → jca
w → fp
ag → t
fr → t
hop → vac
dr → vac

with: t = “to get the tickets”, vac = “to be vacci-
nated”, w = “to work”, ag = “to go to the agency”, fr =
“to have a friend who may bring the tickets”, hop = “to
go to the hospital”, dr = “to go to a doctor”.

For example, the rulet ∧ vac → jca means that the
agent believes that if he gets tickets and he is vaccinated
then he will be able to go on a journey in central Africa.
The rulew → fp expresses that the agent believes that if
he works then he will be able to finish his paper. To get
tickets, the agent can either visit an agency or ask a friend
of him to get them. Similarly, to be vaccinated, the agent
has the choice betweengoing to a doctoror going to the
hospital. In these two last cases, the agent has two ways
to achieve the same desire.
An agent may have also another kind of beliefs represent-
ing integrity constraints. In our example, we have:{

w → ¬ag
w → ¬dr

These two rules mean that the agent believes that if he
works, he can neither visit an agency nor go to a doctor.
Obviously, in this example, some ways of achieving the
initial desires are conflicting.

Of course, it would be ideal if all the desires can be-
come intentions. As our example illustrates, this may not
always be the case. In this paper we will answer the fol-
lowing questions: which desires will become theinten-
tionsof the agent and withwhich plans?

Basic definitions
In this section, we present the framework previously in-
troduced by Amgoud in (Amgoud 2003) for handling con-
flicting desires.

Logical language
Let L be a propositional language.̀ denotes classical
inference and≡ denotes logical equivalence. An agent
is supposed to be equipped with a baseD of desires, a
belief baseΣ containing the plans to carry out in order
to achieve the desires (we are not interested in the way in
which these plans are generated), and finally a baseC of
integrity constraints.

• D contains literals ofL. The elements ofD represent
the initial desires of the agent. For example, an agent
may have the following desires:to finish a publication,
to go to a dentist, etc... Note that the setD may be
inconsistent. This means that an agent is allowed to
have contradictory desires.

• Σ contains rules having the formϕ1 ∧ . . . ∧ ϕn → h
whereϕ1, . . ., ϕn, h are literals ofL. Such a formula
means that the agent believes that if he realizesϕ1, . . .,
ϕn then he will be able to achieveh.

• C contains formulas ofL. They represent a kind of in-
tegrity constraints.

Example 1 The agent who wants to go on a journey to
Central Africa has the following bases:

D = {jca, fp}, Σ =

t ∧ vac → jca
w → fp
ag → t
fr → t
hop → vac
dr → vac

andC =

{
w → ¬ag
w → ¬dr

The notion of desire/sub-desire
A desire is any element ofD. A desireh may have sub-
desires. In example 1, the desire of going on a journey to
central Africa has two sub-desires which are: ”getting the
tickets” and ”being vaccinated”. The sub-desire ”getting
the tickets” has itself the two following sub-desires:
”having a friend who may bring the tickets” and ”visiting
an agency”.

Definition 1 (Desire/Sub-desire)Let us consider an
agent equipped with the bases<D, Σ, C>.

1. D is the set of thedesiresof the agent.

2. SubD is the set of thesub-desiresof the agent: A literal
h′ ∈ SubD iff there exists a ruleϕ1 ∧ h′ . . . ∧ ϕn →
h ∈ Σ with h ∈ D or h ∈ SubD. In that case,h′ is a
sub-desire ofh.

The notion of partial plan
As noted above, an agent may have one or several ways to
achieve a given desire. We bring the two notions together
in a new notion ofpartial plan.

Definition 2 (Partial plan) A partial planis a pair a =
<h,H> such that:

• h is a desire or a sub-desire.

• H = {ϕ1, . . . , ϕn} if there exists a ruleϕ1∧. . .∧ϕn →
h ∈ Σ, H = ∅ otherwise.

The functionDesire(a) = h returns the desire or sub-
desire of a partial plana and the functionSupport(a) =
H returns the support of the partial plan.ℵ will gather
all the partial plans that can be built from<D, Σ, C>.

Remark 1 A desire may have several partial plans.

Remark 2 Let a = < h,H > be a partial plan. Each
element of the supportH is a sub-desire ofh.

Definition 3 A partial plana = < h, H > is elementary
iff H = ∅.
Remark 3 If there exists an elementary partial plan for
a desireh, it means that the agent knows how to achieve
directlyh.

Example 2 In example 1, we have several partial plans.
For example:a1 = <jca, {t, vac}>, a11a = <t, {ag}>,
a11b = <t, {fr}>, a12a = <vac, {dr}>, a12b = <vac,
{hop}>, a2 = <fp, {w}> anda21 = <w, ∅ >.

The notion of complete plan
A partial plan shows the actions that should be per-
formed in order to achieve the corresponding desire (or
sub-desire). However, the elements of the support of a
given partial plan are considered as sub-desires that must
be achieved at their turn by another partial plan. The
whole way to achieve a given desire is called acomplete
plan. A complete planfor a given desired is an AND
tree. Its nodes are partial plans and its arcs represent the
sub-desire relationship. The root of the tree is a partial
plan for the desired. It is an AND tree because all the
sub-desires ofd must be considered. When for the same
desire, there are several partial plans to carry it out, only
one is considered in a tree. Formally:

Definition 4 (Complete plan) A complete plang for a
desireh is a finite tree such that:

• h ∈ D.

• The root of the tree is a partial plan<h, H> .

• A node<h’, {ϕ1, . . ., ϕn}> has exactlyn children
<ϕ1,H

′
1>, . . ., <ϕn, H ′

n> where<ϕi,H
′
i> is a par-

tial plan for ϕi.

• The leaves of the tree are elementary partial plans.

The functionRoot(g) = h returns the desire of the root.
The functionNodes(g) returns the set of all the partial
plans of the treeg. G denotes the set of all the complete
plans that can be built from the triple<D, Σ, C>. The
functionLeaves(g) returns the set of the leaves of the tree
g.

Example 3 In example 1, the desirejca has four com-
plete plans (g1, g2, g3, g4) g1 = {<jca, {t, vac}>, <t,
{ag}>, <ag, ∅>, <vac, {hop}>, <hop, ∅>}, g2 =
{<jca, {t, vac}>, <t, {ag}>, <ag, ∅>, <vac, {dr}>,
<dr, ∅>}, g3 = {<jca, {t, vac}>, <t, {fr}>, <fr, ∅>,
<vac,{dr}>, <dr, ∅>} andg4 = {<jca, {t, vac}>, <t,
{fr}>, <fr, ∅>, <vac,{hop}>, <hop,∅>}. whereas the
desirefp has only one complete plang5 with g5 = {<jca,
{w}>, <w, ∅>}.

The notion of Conflicts
In (Amgoud 2003), it has been shown that partial plans
may be conflicting for several reasons.These different
kinds of conflicts are brought together in a unique relation
of conflictdefined as follows:

Definition 5 (Conflict) Let a1 and a2 be two partial
plans of ℵ. a1 conflicts with a2 iff: {Desire(a1),
Desire(a2)} ∪ Support(a1) ∪ Support(a2) ∪ C ∪ Σ
` ⊥.

Example 4 In example 1,a11a = <t, {ag}> conflicts
with a2 = <fp, {w}>. Indeed, Support(a11a) ∪ C `
{¬w} and Support(a2) = {w}.

More generally, a set of partial plans may be conflicting.

Definition 6 Let S ⊆ ℵ. S is conflicting iff
⋃

a∈S

({Desire(a)} ∪ Support(a)) ∪ C ∪ Σ ` ⊥.

Since partial plans may be conflicting, two complete
plans may be conflicting too.

Definition 7 (Attack) Let g1, g2 ∈ G. g1 attacksg2 iff
∃a1 ∈ Nodes(g1) and ∃a2 ∈ Nodes(g2) such thata1

conflicts witha2.

Note that a complete plan may attack itself. In this case,
the corresponding desire is not achievable.
More generally we are interested in sets of complete
plans such that there is no conflict between their nodes.
Formally:

Definition 8 (Conflict-free) LetS ⊆ G. S isconflict-free
iff

⋃
g∈S [

⋃
a∈ Nodes(g) (Support(a) ∪ {Desire(a)})] ∪

C ∪ Σ 6 ` ⊥.
If S = {g}, then we say that the complete plang is
conflict-free.

We can show easily that any conflict-free set of complete
plans does not contain two conflicting (in the sense of the
relation Attack) elements. Formally:

Proposition 1 Let S ⊆ G. If S is conflict-free then@ g1

andg2 in S such thatg1 attacksg2.

Proof This result follows directly from Definition 5, Def-
inition 7 and Definition 8.

The converse is generally false as shown by the following
example:

Example 5 X is an agent equipped with the following
bases: D = {a, b, c}, C = {b′ ∧ c′ → ¬a} and Σ ={

a′ → a
b′ → b
c′ → c

There are three complete plans (g1, g2, g3) one for each
desireg1 = {<a, {a′}>, <a’, ∅>}, g2 = {<b, {b′}>,
<b’, ∅>} andg3 = {<c, {c′}>, <c’, ∅>}. It is easy to
check that@ i, j such thatgi attacksgj . However, the
constraint given inC implies that the setS = {g1, g2, g3}
is not conflict-free.

From the definition of the notion of conflict-free, the
following result can be showed.

Proposition 2 Let S ⊆ G. S is conflict-free iff
⋃

g∈S

Leaves(g) is conflict-free.

Proof (⇒) Obvious from the definition of conflict-free.
(⇐) Assume that

⋃
g∈S Leaves(g) is conflict-free.

Let gi ∈ G and let Ei denote {desire(a)|a ∈
Leaves(gi)}. From the definition of a complete plan,
we have:
Ei ∪ Σ ` Support(a) ∪ {desire(a)} for each a∈
Nodes(gi)⋃

g∈S Leaves(g) is conflict-free means that:
⋃

i Ei ∪
Σ ∪ C 6` ⊥.
Then

⋃
g∈S

⋃
a∈Nodes(g) {desire(a)} ∪ Support(a) ∪

C ∪ Σ 6` ⊥.
The following example shows that we can find a

complete plan which is not conflict-free even if it does
not attack itself.

Example 6 X is an agent equipped with the follow-
ing bases:D = {d}, C = {b′ ∧ c′ → ¬a} and Σ =

a′ → a
b′ → b
c′ → c

a ∧ b ∧ c −→ d

There is a unique complete plan ford which does
not attack itself and whose set of nodes is conflicting:g =
{<d, {a, b, c}>, <a, {a′}>, <a’, ∅>, <b, {b′}>, <b’,
∅>, <c, {c′}>, <c’, ∅>}
Obviously a desire which has no conflict-free complete
plan will be called unachievable. This means it is
impossible to carry out such a desire.

Definition 9 (Unachievable desire)A desire d is un-
achievableif @ g ∈ G s.tRoot(g) = d andg is conflict-free.

A formal system for handling desires
From the preceding definitions, we can now present the
formal system for handling conflicting desires of an agent.

Definition 10 (System for handling desires)Let’s con-
sider a triple<D, Σ, C>. The pair<G, Attack> will be
called a system for handling desires (SHD).

A SHD has the same features as an argumentation frame-
work (Amgoud & Cayrol 2002). Inspired by previous
work on argumentation theory, we will define acceptable
sets of complete plans. Then we will be able to partition
the setG into three categories:

• The class ofaccepted complete plans. They represent
the good plansto achieve their corresponding desires.
These desires will become the intentions of the agent.

• The class ofrejected complete plans. These are the self-
attacked ones.

• The class ofcomplete plans in abeyancewhich gath-
ers the complete plans which are neither acceptable nor
rejected.

We give below the semantics of ”acceptable sets of
complete plans”.

Definition 11 Let<G, Attack> be a SHD andS ⊆ G. S
is anacceptableset of complete plans iff:

• S is conflict-free.

• S is maximal (for set inclusion).

Example 7 In example 1, there are four complete plans
(g1, g2, g3, g4) for the desire ”going on a journey to cen-
tral africa” and exactly one complete plang5 for the de-
sire ”finishing the paper”. Moreover,g5 attacksg1, g2

andg3. We have exactly two acceptable sets of complete
plans:

• S1 = {g1, g2, g3, g4}
• S2 = {g4, g5}

Note that if S is an acceptable set of complete plans,
{Root(g)|g ∈ S} is a set of desires which can be achieved
together. An intention set is a subset of{Root(g)|g ∈ S}
which the agent commits to carry out.

Definition 12 (Intentions) A set of desiresI ⊆ D is an
intention set iff there exists an acceptable set of complete
plansS such thatI = {Root(g)|g ∈ S}.

Example 8 In example 1,I1 = {jca} is achievable both
with plans ofS1 andS2. Contrastedly,I2 = {jca, fp} is
achievable only with the plans ofS2.

The purpose of an agent is to achieve a maximal subset of
D. Consequently, he will choose maximal intention sets.
In the above example, he will choose the setI2.

Assumption-based Truth Maintenance
System: ATMS

In this section we present the basic concepts of an ATMS
which forms the backbone of our proof theory.
Introduced by De Kleer (de Kleer 1986a;
1986b), an ATMS mainly has to manage interde-
pendencies in a knowledge base. It may be used as an
interface between an inference engine and the associated
knowledge base. In that case, each inference performed
by the program is sent to the ATMS which must in
turn determine which data may be believed in or not,
according to the available knowledge.
The specific mechanisms of an ATMS are based upon the
distinction between two sets of different data (represented
by propositional variables), that are supposed to be de-
fined at the beginning:assumptionsandnon-assumptions.
The basic idea is that the assumptions are the primitive
data from which all other data can be derived. They are
the parameters which characterize the different situations
worth-considering for a given problem, that problem
being described by a set of clauses which are called the
justifications.
In the following,P denotes a set of propositional sym-
bols. A ∪ NA denotes a partition ofP with elements
of A called assumptionsand elements ofNA are non-
assumptions.BJ denotes a set of clauses built fromP.

Example 9 Consider as an example the following base
of justifications, using upper-case symbols to denote
assumptions:

Ab → c
B → b
C → b
Db →

In this example,A = {A, B, C, D} andNA = {b, c}.
The clauseAb → c means that under the assumptionA,
if b is true thenc also is true. The clauseDb → means
that under the assumptionD, b is false.

The basic notion of an ATMS is that of environment
which is any set of assumptions. Formally:

Definition 13 A set of assumptionsE ⊆ A is called an
environment.

An environment may be incoherent with respect to the
baseBJ of clauses.

Definition 14 (Environment) An environment E is
incoherentwith respect toBJ iff BJ ∪ E ` ⊥.
An environmentE is coherentiff it is not incoherent.

The main purpose of an ATMS is to answer two ques-
tions. The first is as follows: “May a given conjunction of
assumptions be true, if we want to satisfy the base of jus-
tifications?”. This corresponds to the concept ofnogood
in an ATMS. Anogoodis a minimal (for set-inclusion) set
of assumptions such that the assumptions it contains can-
not be all taken as true (i.e. valuated by true) with respect
to the base of justifications. So, a set of assumptions is
inconsistent with the base of justifications if and only if it
contains a nogood.

Definition 15 (Nogood) Let BJ be a set of clauses.
A nogood is a minimal (for set-inclusion) incoherent
environment.

Let’s illustrate the above definition on the base of clauses
introduced in example 9.

Example 10 (Example continued)In the above base,
there are two nogoods:{B,D} and{C,D}.

The second important question to which an ATMS should
give an answer is the following one: “On which set of
assumptions may some assertion be believed, if we take
into account the justifications?”. This corresponds to the
concept oflabel in an ATMS: Thelabel of a proposition
is a complete and minimal collection of environments
(sets of assumptions) so that if the base of justifications
is satisfied and each assumption of the environment is
taken as true, then the proposition is true. Minimal means
that there are no two environments in the label such
that one contains the other. Complete means that each
environment that makes the proposition true includes at
least one environment of the label.

Definition 16 (Label) LetBJ be a set of clauses. Let d
be an element ofP. LetE be a coherent environment.E
∈ Label(d) w.r.t.BJ iff BJ ∪ E ` d and noE′ ⊆ E sat-
isfiesBJ ∪ E′ ` d.
Moreover, the label iscompletein the sense that each en-
vironmentE such thatBJ ∪ E ` d contains at least one
element of Label(d).

Example 11 (Example continued)As said in example
9, the setNA contains two symbols:b andc. According
to BJ , Label(b) = {{B} , {C}} and Label(c) = {{A,
B}, {A, C}}.

An ATMS is also able to return for any set of assumptions,
the data which are true under those assumptions. This is
called thecontextof that set of assumptions.

Definition 17 (Context) Let E be a coherent environ-
ment. Context(E) = {d|E contains an environment of
Label(d)}.

Example 12 (Example continued)In example 9,
Context({B, C}) = {b}.

An ATMS-based proof theory
As said before, the aim of this paper is to propose a proof
theory of the framework presented in previous sections.
The proof theory is based on an ATMS. In what follows
we introduce that proof theory.
As noted above, an ATMS handles two kinds of data:
assumptionsand non-assumptions. A parallel can be
established between the fundamental concepts of an
ATMS and the different notions defined in the framework
presented in the third section. In fact, the elementary
partial plans will play the role of assumptions. The leaves
of a conflict-free complete plan for a given desired will
be obtained by an environment in the label of a data
associated withd after an appropriate coding. We will
show also that sets of conflicting elementary partial plans
will correspond to nogoods.

An ATMS represents data with onlypositive literals.
So we need to encode the three basesD, Σ andC into
three new basesD′, Σ′ and C′ using an appropriate
procedure. In fact, the coding should produce clauses
which are tractable by an ATMS. For example, in order
to eliminate a negative literal¬x, we introduce a new
symbolnx. Then we replace elsewhere¬x by nx and we
add the two following clausesx ∧ nx → and→ x ∨ nx
to the baseC′. Note that disjunctions are handled in an
ATMS (see (de Kleer 1988) for more details).
In the rest of this paper, we will use only the modified
basesD′, Σ′ andC′ such thatC′ contains only negative
clauses.ℵ′ andG′ will denote the associated sets of partial
and complete plans. Moreover, the set of assumptionsA
= {h such that<h, H> ∈ ℵ′ and H =∅} and the set of
justificationsBJ = Σ′ ∪ C′.

Example 13 In example 1,A = {w, fr, ag, dr, hop} and
BJ = Σ ∪ C. Note that in this example, we don’t need to
encode the bases.

The following property shows clearly that the notion of
conflict-free in our framework is strongly related to the
notion of coherence of an environment in an ATMS.

Property 1 Let E ⊆ A. E is a coherent environment iff
{<h, ∅>, h∈ E} is a conflict-free set of partial plans.

Proof The proof follows directly from Definition 6 and
Definition 14.

We can show also that the leaves of a conflict-free
complete plan for a given desired will be obtained by an
environment in the label of a data associated withd.

Property 2 Letd ∈ D′ and letE ⊆ A.
E ∪ BJ ` d iff ∃ g complete plan ford such that
{Desire(a), a ∈ Leaves(g)} = E.

Proof
(⇒) LetE ⊆ A such thatE ∪ BJ ` d.

There existsE′ ⊆ E, E′ ∈ Label(d). The labels
are computed from (A, BJ). Label(d) is updated by
taking into account a justification ford, of the form
φ1 ∧ . . . ∧ φn → d, and the previously computed
Label(φ1), . . ., Label(φn). Negative clauses are only
considered for testing the coherence of an environment,
and they are all inC′.
So, from Definition 4, there exists a complete plang
for d such that{desire(a), a ∈ Leaves(g)} = E′.
The plan is built recursively fromd, {φ1, . . . , φn} and
a plan for eachφi.

(⇐) Let g be a complete plan ford. Let E =
{desire(a), a ∈ Leaves(g)}. Each non terminal node
of g corresponds to a justification inΣ′. So from the
definition of a complete plan, we haveE ∪ Σ′ ` d then
E ∪ BJ ` d.

In our framework, we have shown that some desires
are not achievable because their complete plans are not
conflict-free. We can show that such desires have an
empty label.

Property 3 Let d ∈ D′. d is unachievable iffLabel(d) =
∅.

Proof
(⇒) Let d ∈ D′ such thatd is unachievable. That means

that@ g ∈, G, g is conflict-free,g is a plan ford.
Let us suppose thatLabel(d) is not empty. LetE
∈ Label(d). Then E ∪ BJ ` d. By property 2,
there exists a complete plang for d such thatE =
{desire(a), a ∈ Leaves(g)}.
E is a coherent environment, so by property 1,
Leaves(g) is a conflict-free set of plans. Then by
proposition 2,g is conflict-free, which is in contradic-
tion with the initial assumption ”d is unachievable”. So
Label(d) must be empty.

(⇐) Let d ∈ D′ such thatLabel(d) = ∅. Let us suppose
that there existsg a conflict-free complete plan ford.
LetE = {desire(a), a ∈ Leaves(g)}.
By property 2,E ∪ BJ ` d. By property 1 and propo-
sition 2,E is coherent. So there existsE′ ∈ Label(d),
E′ ⊆ E, which is in contradiction with the assumption
Label(d) = ∅. Sod is unachievable.

From the above results, we show that there is a
correspondence between the label of a desired and its
conflict-free complete plans. However, we obtain only
minimal complete plans in the following sense.

Definition 18 Let g ∈ G. g is a minimal plan ford iff @
g′ ∈ G such thatg′ 6= g, Root(g′) = d andLeaves(g′) ⊂
Leaves(g).

Proposition 3 Let d ∈ D′. Label(d) 6= ∅ thenLabel(d)
= {E1, . . ., En} with Ei = {Desire(a), a∈ Leaves(gi)}
and g1, . . ., gn are the minimal conflict-free complete
plans ofd.

Proof It follows directly from the definition of Label(d)
and the above results.

Example 14 LetD = {d}, C = ∅ andΣ = {x∧y∧z → u,
u → d, x ∧ y → v, v → d}. There are two conflict-
free complete plansg1 and g2 for d Leaves(g1) =
{< x, ∅ >,< y, ∅ >,< z, ∅ >}, Leaves(g2) =
{< x, ∅ >,< y, ∅ >}. g2 is the unique minimal complete
plan for d. In the ATMS setting,A = {x, y, z}, BJ = Σ
andLabel(d) = {{x, y}}.

Example 15 In example 1, there are four minimal
conflict-free complete plans for the desirejca: g1, g2, g3

and g4. In the ATMS setting,Label(jca) = {{ag, hop},
{ag, dr}, {fr, hop}, {fr, dr}}. Concerning the desire
fp, there is a unique conflict-free complete plang5 and
exactly one environment in the label offp: Label(fp) =
{{w}}.

In addition to labels, an ATMS computes also the nogoods
which represent the sets of assumptions which cannot
be considered together as true. In our application, a
nogood represents the set of directly achievable desires
that cannot be performed together. We will denote by
NGS = {N1, . . ., Nn} the set of all the nogoods that can
be computed from<A, BJ>.

Example 16 In example 1, there are two nogoods:N1 =
{ag, w} andN2 = {w, dr}.

From the set of nogoods, an ATMS also enables to
compute the so-calledmaximal coherent environments.
In the following,T1, . . ., Tn will denote all the maximal
coherent environments computed from<A, BJ>.

Proposition 4 •
• LetS1, . . ., Sn be the acceptable sets of complete plans.
∀ i, {Desire(a) s.t. a∈

⋃
g∈Si

Leaves(g)} is a maxi-
mal coherent environment.

• Conversely, for each maximal coherent environmentTj ,
∃ Sj (an acceptable set of complete plans) such that
{Desire(a) s.t a∈

⋃
g∈Sj

Leaves(g)}=Tj .

Proof
(⇒) Let Si be an acceptable set of complete plans. Let

Ei denote{Desire(a), a ∈ ∪g∈SiLeaves(g)}. Si is
conflict-free, so by proposition 2,∪g∈SiLeaves(g) is
conflict-free and according to property 1,Ei is a co-
herent environment.
If Ei is not maximal coherent, there existsh ∈ A and
h /∈ Ei such thatEi ∪ {h} is coherent. By property 1,
∪g∈Si

Leaves(g) ∪ < h, ∅ > is conflict-free.
Let us considerS′

i = Si ∪ {< a, ∅ >}. S′
i

⊆ G, S′
istrictly contains Si. ∪g∈S′

i
Leaves(g) =

∪g∈SiLeaves(g) ∪ < h, ∅ > is conflict-free. So by
proposition 2,S′

i is conflict-free, which is in contradic-
tion with the assumption ”Si is maximal conflict-free”.

(⇐) Let Tj be a maximal coherent environment. LetXj

denote{<h,∅>, h∈ Tj}. By property 1,Xj is conflict-
free. Xj is a set of complete plans (each elementary
partial plan is a complete plan). So eitherXj is a max-
imal conflict-free set of plans, and thenXj = Sj , or
there existsSj an acceptable set of plans such thatXj

⊆ Sj , Xj 6= Sj (Xj ⊂ Sj).
If Xj = Sj then{Desire(a), a ∈ ∪g∈Si

Leaves(g)} =
Tj .
If Xj ⊆ Sj andXj 6= Sj , thenXj = ∪g∈Xj

Leaves(g)
⊂ ∪g∈Sj Leaves(g). The above inclusion is strict
since each plan inXj is elementary. ThenTj ⊂
{Desire(a), a ∈ ∪g∈Sj Leaves(g)}.
So, by the first part of proposition 4,Tj is strictly in-
cluded in a maximal coherent environment, which is in
contradiction wth the assumption ”Tj is maximal co-
herent”.

In the following, we show that the intention sets can be
computed through the context of each maximal coherent
environmentTi.

Proposition 5 I is an intention set iff∃ Ti such thatI =
Context(Ti) ∩ D′.

Proof Due to proposition 4, it is sufficient to prove the
following result:
Let Si be an acceptable set of complete plans. LetTi =
{Desire(a)|a ∈ ∪g∈Si

Leaves(g)} be the corresponding
maximal coherent environment.d ∈ D′ ∩ Context(Ti) iff
∃g ∈ Si, Root(g) = d.

(⇒) Letd ∈D′ ∩Context(Ti). It means thatd ∈D′ and
there existsEi ∈ Label(d), Ei ⊆ Ti. By proposition 3,
there existsg complete conflict-free plan ford with Ei

= {Desire(a)|a ∈ Leaves(g)}. By definition ofTi, we
are sure thatg ∈ Si, and we haveRoot(g) = d.

(⇐) Letd ∈ D′ such that∃g ∈ Si, Root(g) = d. We may
assume thatg is minimal. Indeed, ifg is not minimal,
wa can findg′ minimal such thatRoot(g) = Root(g′)
= d and Leaves(g′) ⊂ Leaves(g). Moreover,g′ ∈
Si: ∪g∈Si∪{g′}Leaves(g) = ∪g∈Si

Leaves(g). SoSi

∪ {g′} is conflict-free.Si is maximal conflict-free, sog′

∈ Si.
So, ∃g minimal conflict-free complete plan ford, g
∈ Si. By proposition 3,Label(d) contains Ei =
{Desire(a), a ∈ Leaves(g)}. Sinceg ∈ Si, Ei ⊆ Ti.
And by definition of a context,d ∈ Context(Ti).

Example 17 In example 1, there are two maximal co-
herent environments: T1 = {w, fr, hop} and T2 =
{ag, fr, hop, dr}. Context(T1) = {w, fr, hop, fp, jca}
Context(T2) = {ag, fr, dr, hop, jca}. There are two in-
tention setsI1 = {fp, jca} andI2 = {jca}.

Conclusion and perspectives
In this paper, we have presented a framework which com-
putes the intentions of an agent from its set of possibly
contradictory desires. A link is then established between
that framework and an ATMS-based computation proce-
dure. However, that framework has some limits due to the
use of a poor language. In fact, elements ofΣ and those of
C are represented in the same way and handled also in the
same way by the ATMS. However, the meaning of a rule
a → b in Σ is: ”if a is achieved thenb can be achieved” but
it is not ”if a is achieved thenb will be actually achieved”.
In the following, we illustrate this point on a variant of
example 1.

Example 18 LetD = {jca}, C = {ag → ¬visit} andΣ
= {t ∧ vac → jca, hop → visit, ag → t, hop → vac}.
The rulehop → visit means that if the agent goes to a
hospital, then he can visit a friend of him. The constraint
ag → ¬visit means that if the agent goes to an agency
then he will not have enough time to visit his friend in the
hospital.
According to our framework, the desirejca of the agent
cannot be achieved because of the rulehop → visit
which induces a conflict with the baseC. However, the
agent can achieve its desire if he goes to the hospital in
order to be vaccinated, witout visiting its friend.

An extension of the framework proposed in this paper
consists in solving the problem stated in the above exam-
ple.
In this paper, we compute sets of intentions. We would
like to be able to answer the question ”whether a given
desire can be an intention of the agent” without comput-
ing all the sets. For that purpose, we will define a proof
theory.
We shall also enrich the model by introducing preferences
between the desires. This will help to refine the classifi-
cation of the desires by leaving less desires in abeyance.
We can imagine two sources of preferences. The first one
is the agent itself. This means that an agent can have pref-
erences over its set of desiresD. In this case, if there is a
conflict between two partial plans, we keep the one whose
desire is mostly preferred by the agent. The second source
of preferences isargumentation. In this case, two partial
plansa1 anda2 can be in conflict but one of them can

have a good reason (argument) to be carried out. We are
currently investigating these matters.

Acknowledgments
This work was supported by the Commission of the Euro-
pean Communities under contract IST-2004-002307, “Ar-
gumentation Service Platform with Integrated Compo-
nents”.

References
Amgoud, L., and Cayrol, C. 2002. A reasoning model
based on the production of acceptable arguments.Annals
of Mathematics and Artificial Intelligence34:197–216.
Amgoud, L. 2003. A formal framework for handling
conflicting desires. InProceedings of the 7th European
Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, ECSQARU’2003, 552–563.
Bratman, M.; Israel, D.; and Pollack, M. 1988. Plans
and resource bounded reasoning.Computational Intelli-
gence.4:349–355.
Bratman, M. 1987.Intentions, plans, and practical rea-
son.Harvard University Press, Massachusetts.
Cohen, P. R., and Levesque, H. J. 1990a. Intention is
choice with commitment. InArtificial Intelligence, vol-
ume 42.
Cohen, P. R., and Levesque, H. J. 1990b. Rational inter-
action as the basis for communication. InIn P. R. Cohen,
J. Morgan and M. E. Pollack, eds. Intentions in commu-
nication, 221–256.
de Kleer, J. 1986a. An assumption-based tms.Artificial
Intelligence28:127–162.
de Kleer, J. 1986b. Extending the atms.Artificial Intel-
ligence28:163–196.
de Kleer, J. 1988. A general labeling algorithm for atms.
In Proceedings of the Sixth National Conference on Ar-
tificial Intelligence (AAAI), 188–192.
Doyle, J. 1992. Rationality and its role in reasoning,
volume 8. Computational Intelligence.
Pearl, J. 1993. From conditional ought to qualitative
decision theory. InProceedings of UAI’93, 12–20.
Rao, A. S., and Georgeff, M. P. 1991. Modeling ratio-
nal agents within a bdi architecture. InProceedings of
KR’91.
Rao, A. S., and Georgeff, M. P. 1992. An abstract archi-
tecture for rational agents. InProceedings of KR’92.
Rao, A. S., and Georgeff, M. P. 1995. Bdi agents: from
theory to practice. InProceedings of the 1st Interna-
tional Conference on Multi Agent Systems, 312–319.

