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Abstract

Argumentation theory has become an important topic in the
field of AI. The basic idea is to construct arguments in favor
and against a statement, to select the “acceptable” ones and,
finally, to determine whether the statement can be accepted or
not. Dung’s elegant account of abstract argumentation (Dung
1995) may have caused some to believe that defining an argu-
mentation formalism is simply a matter of determining how
arguments and their defeat relation can be constructed from a
given knowledge base. Unfortunately, things are not that sim-
ple; many straightforward instantiations of Dung’s theory can
lead to very unintuitive results, as is discussed in this paper.
In order to avoid such anomalies, in this paper we are inter-
ested in defining some rules, calledrationality postulatesor
axioms, that govern the well definition of an argumentation
system. In particular, we define two important rationality pos-
tulates that any system should satisfy: theconsistencyand the
closenessof the results returned by that system. We then pro-
vide a relatively easy way in which these quality postulates
can be warranted by our argumentation system.

Introduction
Argumentation has become an Artificial Intelligence key-
word for the last fifteen years, especially in sub-fields such
as non monotonic reasoning, inconsistency-tolerant reason-
ing, multiple-source information systems, natural language
processing and human-machine interface also in connec-
tion with multi-agents systems (Amgoud & Cayrol 2002;
Prakken & Sartor 1997; Rahwanet al. 2004; Ǵomez &
Ches̃nevar 2003).

Argumentation is a promising model for reasoning. It
follows three steps: i) to construct arguments in favor and
against a statement, ii) to select the “acceptable” ones and,
finally, iii) to determine whether the statement can be ac-
cepted or not. It may also be considered as a different
method for handling uncertainty. The basic idea behind ar-
gumentation is that it should be possible to say more about
the certainty of a particular fact than the certainty quantified
with a degree in [0, 1]. In particular, it should be possible to
assess the reason why a fact holds, in the form of arguments,
and combine these arguments to evaluate the certainty. In-
deed, the process of combination may be viewed as a kind of
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reasoning about arguments themselves in order to determine
the most acceptable of them.
One of the most abstract argumentation systems is Dung’s
one. It has been shown that several formalisms for non
monotonic reasoning can be expressed in terms of that ar-
gumentation system (Dung 1995). Since its original formu-
lation, Dung’s system has become very popular and differ-
ent instantiations of it have been defined. This may have
caused some to believe that defining an argumentation for-
malism is simply a matter of defining how arguments and
their defeat relation can be constructed from a knowledge
base. Unfortunately, things are not that simple. Some instan-
tiations of Dung’s system such as the Prakken and Sartor’s
system (Prakken & Sartor 1997) can lead to very unintuitive
results. The same problem occurs also in systems which are
not based on the Dung’s system, such as (Garcı́a & Simari
2004).
In order to avoid such anomalies, the aim of this paper
is twofold: on the one hand, like in the field of belief
revision, where the well-known AGM-postulates serve as
general properties a system for belief revision should ful-
fill, we are interested in defining someprinciples (called
hererationality postulatesor axioms) that any argumenta-
tion system should fulfill. These postulates will govern the
well definition of an argumentation system and will ensure
the correctness of its results. In this paper we focus par-
ticularly on two important postulates: theclosenessand
the consistencyof the results that an argumentation sys-
tem may return. These postulates are violated in systems
such as (Prakken & Sartor 1997; Governatoriet al. 2004;
Garćıa & Simari 2004). On the other hand, we study vari-
ous ways in which these postulates can be warranted in the
argumentation system developed in (Amgoudet al. 2004).

This paper is organized as follows: in the second sec-
tion we introduce an argumentation system which is an
instantiation of the Dung system. Through this system,
we will illustrate what is going wrong in most systems
such as (Prakken & Sartor 1997; Governatoriet al. 2004;
Garćıa & Simari 2004). In the third section, we introduce
the two rationality postulates. In the fourth section, we pro-
pose two possible solutions that warrant the satisfaction of
the postulates. Finally, the fifth section is devoted to some
concluding remarks and perspectives.

Note that for the lack of space, all the proofs can be found



in a technical report written by the authors of this paper.

An abstract argumentation system
In what follows, we present an instantiation of the Dung’s
system developed in (Amgoudet al. 2004). For the sake of
simplicity, priorities are not handled here. We will assume
arguments to consist oftreesof strict and defeasible rules.
This choice is somewhat arbitrary, it would be equally possi-
ble to define arguments aslistsof strict anddefeasiblerules,
and still obtaining the same basic problems and possible so-
lutions as is the case for arguments as trees. In what fol-
lows,L is a set of literals andK is a subset ofL. We assume
the availability of a function “−”, which works with literals,
such that−p =¬p and−¬p = p (where p is an atomic propo-
sition).S is a set of strict rules of the formφ1, . . . , φn → ψ
(meaning that ifφ1, . . . , φn hold, thenwithout exceptionit
holds thatψ) andD is a set of defeasible rules of the form
φ1, . . . , φn ⇒ ψ (meaning that ifφ1, . . . , φn hold, then it
usuallyholds thatψ) with φi, ψ elements ofL. From a de-
feasible theory(K,S,D), arguments can be built as follows:

Definition 1 (Argument). Let (K,S,D) be a defeasible
theory. Anargumentis defined as follows:

Premises: if φ ∈ K thenφ is an argument (A) with:
• Conc(A) = φ

• StrictRules(A) = ∅
• DefRules(A) = ∅
• SubArgs(A) = {A}

Strict construction: if A1, . . . , An (n ≥ 0) are arguments
andS contains a strict ruleConc(A1), . . . , Conc(An) →
ψ thenA1, . . . An → ψ (A) is an argument with:
• Conc(A) = ψ

• StrictRules(A) = StrictRules(A1) ∪ . . . ∪
StrictRules(An) ∪ {φ1, . . . , φn → ψ}

• DefRules(A) = DefRules(A1) ∪ . . . ∪
DefRules(An)

• SubArgs(A) = SubArgs(A1)∪ . . .∪ SubArgs(An)∪
{A}

Defeasible construction: if A1, . . . , An (n ≥ 0)
are arguments andD contains a defeasible rule
Conc(A1), . . . , Conc(An) ⇒ ψ thenA1, . . . An ⇒ ψ
(A) is an argument with:
• Conc(A) = ψ

• StrictRules(A) = StrictRules(A1) ∪ . . . ∪
StrictRules(An)

• DefRules(A) = DefRules(A1) ∪ . . . ∪
DefRules(An) ∪ {φ1, . . . , φn ⇒ ψ}

• SubArgs(A) = SubArgs(A1)∪ . . .∪ SubArgs(An)∪
{A}

An argumentA is strict iff DefRules(A) = ∅. A denotes
the set of all arguments that can be built from(K,S,D).

Since the knowledge bases are generally inconsistent, the
arguments may be conflicting. The first kind of conflicts
concerns the conclusions of the arguments. Indeed, two ar-
guments may conflict with each other if they support contra-
dictory conclusions.

Definition 2 (Rebutting). LetA, B ∈ A. A rebutsB iff ∃
A′ ∈ SubArgs(A) with Conc(A′) = ψ and∃ a non-strict
argumentB′ ∈ SubArgs(B) with Conc(B′) = −ψ.

Two arguments may also conflict if one of them uses a
defeasible rule of which the applicability is disputed by the
other argument. In the following definition,d.e stands for
the objectivation operator (Pollock 1995), which converts a
meta-level expression into an object-level expression (in our
case: a literal).
Definition 3 (Undercutting). Let A, B ∈ A. A un-
dercuts B iff ∃ B1, . . . , Bn ⇒ ψ ∈ SubArgs(B)
and ∃A′ ∈ SubArgs(A) with Conc(A′) =
¬dConc(B1), . . . , Conc(Bn) ⇒ ψe.

The two above relations are brought together in a unique
relation of “defeat”. Formally:
Definition 4 (Defeat). LetA andB be two arguments.A
defeatsB iff A rebutsB or A undercutsB.

The second step of an argumentation process consists of
computing theacceptablearguments. Dung has defined dif-
ferent acceptability semantics.
Definition 5 (Defence/conflict-free).LetS ⊆ A.
• S defendsan argumentA iff each argument that defeats
A is defeated by some argument inS.

• S is conflict-freeiff there exist noAi, Aj in S such that
Ai defeatsAj .

Definition 6 (Acceptability semantics).LetS be a conflict-
free set of arguments and letF : 2A → 2A be a function such
thatF (S) = {A | A is defended byS}.
• S is admissibleiff S ⊆ F (S).
• S is acompleteextension iffS = F (S).
• S is a preferredextension iffS is a maximal (w.r.t set⊆)

complete extension.
• S is agroundedextension iff it is the smallest (w.r.t set⊆)

complete extension.
Note that there is only one grounded extension. It con-

tains all the arguments which are not defeated and also the
arguments which are defended directly or indirectly by non-
defeated arguments.

The last step of an argumentation process consists of de-
termining, among all the conclusions of the different argu-
ments, the “good” ones calledjustified conclusions. Let
Output denote this set of justified conclusions. One way
of definingOutput is to consider the conclusions which are
supported by at least one argument in each extension.
Definition 7 (Justified conclusions).Let (A, defeat) be an
argumentation system and{E1, . . . , En} be its set of exten-
sions (under a given semantics).Output = {ψ|∀Ei,∃A ∈
Ei such thatConc(A) = ψ}.
Example 1. LetK = {a; d}, S = ∅, D = {a ⇒ b; d ⇒
¬b}. The following arguments can be constructed:
A1 : [a] A3 : [A1 ⇒ b]
A2 : [d] A4 : [A2 ⇒ ¬b]

ArgumentA3 defeatsA4 and vice versa. However, the ar-
gumentsA1 andA2 do not have any defeaters. Thus, they
belong to any extension. Consequently,a andb will be con-
sidered as justified conclusions.



Let us now consider the followinginterestingexample.

Example 2 (Married John). LetK = {wr; go}, S = {b→
¬hw;m → hw} andD = {wr ⇒ m; go ⇒ b} with: wr =
“John wears something that looks like a wedding ring”,m
= “John is married”, hw = “John has a wife”, go = “John
often goes out until late with his friends”,b = “John is a
bachelor”. The following arguments can be constructed:
A1 : [wr] A4 : [A2 ⇒ b]
A2 : [go] A5 : [A3 → hw]
A3 : [A1 ⇒ m] A6 : [A4 → ¬hw]

The argumentA5 defeats the argumentA6 and vice versa.
However, the argumentsA1, A2, A3 andA4 do not have
any defeaters. Thus, they belong to the grounded extension
{A1, A2, A3, A4}. Consequently, the set of justified con-
clusions isOutput = {b;m;wr; go}. This means that John
is both married (m) and a bachelor (b), even though from
the content of the knowledge base (the strict rulesm→ hw
andb → ¬hw) it should be clear thatb andm cannot hold
together.

Example 2 shows clearly that counter-intuitive conclu-
sions may be inferred from a base using the above argu-
mentation system. As a consequence, theclosure under the
set of strict rulesof the set of conclusions may be incon-
sistent. In the above example, the closure under the strict
rules of{b;m;wr; go} is {b;m;wr; go;hm;¬hm} which
is directly inconsistent. One may argue that the grounded
extension is “indirectly” inconsistent. Moreover, the set of
conclusions may also be notclosed under the set of strict
rules. For instance,hw and¬hw which are in the closure of
the set of justified conclusions are not in the set itself.

The above example returns counter-intuitive results in our
reference formalism, as well as in (Governatoriet al. 2004).
It should be noticed, however, that the problem is not limited
to these particular two systems. The following example, for
instance, is going wrong in (Prakken & Sartor 1997; Garcı́a
& Simari 2004; Governatoriet al. 2004).

Example 3. LetK = {a; d; g}, S = {b, c, e, f → ¬g} and
D = {a⇒ b; b⇒ c; d⇒ e; e⇒ f}.
The following arguments can be constructed:
A1 : [a] A5 : [A4 ⇒ c]
A2 : [d] A6 : [A2 ⇒ e]
A3 : [g] A7 : [A6 ⇒ f ]
A4 : [A1 ⇒ b] A8 : [A4, A5, A6, A7 → ¬g]

Here, argumentA8 is defeated byA3. The argumentsA1,
A2, A3, A4, A5, A6 andA7 do not have any defeaters, thus
they belong to the grounded extension. Therefore, the propo-
sitionsa, b, c, d, e, f andg are considered justified. Notice
that although there exists a strict ruleb, c, e, f → ¬g, ¬g
is not a justified conclusion. This shows that the justified
conclusions are not closed strict rules.

The problem with the above examples is that the consid-
ered language is not expressive enough to capture all the dif-
ferent kinds of conflicts that may exist between arguments.
As a consequence of missing some conflicts, the conclusions
may becounter-intuitive. In example 2, for instance, it is
not possible to conclude at the same time that John is both
married and a bachelor. Since conclusions may be counter-
intuitive, problems ofinconsistencyandnon-closureappear.

Rationality postulates
Like any reasoning model, an argumentation-based system
should satisfy some principles which guarantee the good
quality of the system. The aim of this section is to present
and to discuss two important postulates:consistencyand
closeness, that any argumentation-based system should sat-
isfy in order to avoid the problems discussed in the previous
section.

The idea of closeness is that the answer of an
argumentation-engine should be closed under strict rules.
That is, if we provide the engine with a strict rulea → b
(“if a then it is alsounexceptionallythe case thatb”), to-
gether with various other rules, and our inference engine
outputsa as justified conclusion, then it should also out-
put b as justified conclusion. Consequently,b should also
be supported by an acceptable argument. Before stating the
postulate, let’s first define the closure of a set of formulas.

Definition 8 (Closure of a set of formulas). Let F ⊆ L.
F is closediff for every ruleφ1, . . . , φn → ψ in S with
φ1, . . . , φn ∈ F , it holds thatψ ∈ F .

We say that an argumentation system satisfies closeness if
its set of justified conclusions, as well as the set of conclu-
sions supported by each extension are closed.

Postulate 1 (Closeness).Let (A, defeat) be an argumenta-
tion system built from a defeasible theory(K,S,D). Output
is its set of justified conclusions, andE1, . . . , En its exten-
sions.(A, defeat) satisfiesclosenessiff:

1. Output is closed.
2. ∀Ei, {Conc(A)|A ∈ Ei} is closed.

The second condition says that every extension should be
closed in the sense that an extension should contain all the
arguments acceptable w.r.t it.

As closeness is an important property, one should search
for ways to alter or constrain his argumentation formalism
in such a way that its resulting extensions and conclusions
satisfy closeness.

Another important property of an argumentation sys-
tem is consistency. It should not be the case that an
extension or the set of justified conclusions supports
opposite statements. This is of great importance since
it guarantees that the argumentation system deliverssafe
conclusions. Let’s first define the consistency of a set of
formulas.

Definition 9 (Consistency of a set of formulas).LetF ⊆
L. F is consistentiff ¬∃ψ, χ ∈ F such thatψ = −χ.

An argumentation system satisfies consistency if its set of
justified conclusions, and the different sets of conclusions
corresponding to each extension are consistent.

Postulate 2 (Consistency).Let (A, defeat) be an argu-
mentation system built from a defeasible theory(K,S,D).
Output is its set of justified conclusions, andE1, . . . , En its
extensions.(A, defeat) satisfies consistency iff:

1. Output is consistent.
2. ∀Ei, {Conc(A)|A ∈ Ei} is consistent.



The consistency of the extensions is verified in our for-
malism since complete extensions should be conflict-free,
and thus cannot contain two arguments that rebut each other
in the sense of definition 2.

Possible Solutions
In this section we propose two possible solutions for ensur-
ing the closeness and the consistency of the argumentation
system proposed in the previous section.

A possible analysis of example 2 and example 3 is
that some strict rules are missing. That is, if the rules
¬hw → ¬m and hw → ¬b (which are the contra-
posed versions of the existing rulesm → hw and
b → ¬hw) are added toS, then one can, for instance,
construct a counterargument against[(→ go) ⇒ b]:
[(((→ wr) ⇒ m) → hw) → ¬b]. The basic idea is then to
make explicit inS these implicit information by computing
a closure of the setS. The question then becomes whether
it is possible to define aclosure operatorCl onS such that
the outcome makes sure that the argumentation system built
on (K, Cl(S),D) satisfies closeness and consistency.

One way to define a closure operator given a set of
strict rules would be to convert the strict rules to material
implications, calculate their closure under propositional
logic, and convert the result back to strict rules again. In
what follows,` denotes classical inference.

Definition 10 (Propositional operator). Let S be a set of
strict rules andP ⊆ L. We define the following functions:

• Prop(S) = {φ1∧. . .∧φn ⊃ ψ | φ1, . . . , φn → ψ ∈ S}
• Cnprop(P) = {ψ | P ` ψ}
• Rules(P) = {φ1, . . . , φn → ψ | φ1 ∧ . . . ∧ φn ⊃ ψ ∈
P}

The propositional closure of S is Clpp(S) =
Rules(Cnprop(Prop(S))).

First of all, it can easily be seen thatClpp is indeed a clo-
sure operator. That is, it satisfies the following three proper-
ties:

Property 1. LetS be a set of strict rules.

1. S ⊆ Clpp(S)
2. if S1 ⊆ S2 thenClpp(S1) ⊆ Clpp(S2), (S1,S2 ⊆ S)
3. Clpp(Clpp(S)) = Clpp(S)

Furthermore, by usingClpp(S) instead of justS, one
guarantees that under grounded semantics the postulates
closeness (postulate 1) and consistency (postulate 2) are
warranted for the argumentation system presented in the pre-
vious section.

Theorem 1. Let (A, defeat) be an argumentation system
built from (K, Clpp(S),D). (A, defeat) satisfies closeness
and consistency under the grounded extension.

To illustrate howClpp works, consider again example 2.

Example 4 (Married John, continued). Let K =
{wr; go}, S = {m → hw; b → ¬hw} andD = {wr ⇒
m; go ⇒ b}. Under (K, Clpp(S),D) the following argu-
ment can be constructed:[[wr] ⇒ m]. However, since

Clpp(S) also contains the rule¬hw → ¬m it is now pos-
sible to construct the following counterargument:[[[[go] ⇒
b] → ¬hw] → ¬m]. Thus, the two arguments will not be
in the grounded extension. Consequently,m is no longer
a justified conclusion. Similarly, the two following con-
flicting arguments can be constructed:[[go] ⇒ b] and
[[[[wr] ⇒ m] → hw] → ¬b] (sincehw → ¬b is now in
Clpp(S)). Thus,b is not justified.

In the above example, it can be seen thatClpp can gener-
ate a rule (in this case:¬hw → ¬m) that is needed to obtain
an intuitive outcome. As a side effect,Clpp also generates
many rules that are not actually needed to obtain the intu-
itive outcome. An example of such a rule isb→ ¬m, which
corresponds to applying transitivity on the rulesb → ¬hw
and¬hw → ¬m. Worse yet,Clpp may also generate rules
which are actuallyharmful for obtaining an intuitive out-
come. An example of such a rule isp,¬p → q. Rules
like these, which are generated regardless of the content of
S, may give birth to self-defeating arguments, which may
prevent some “good” arguments from becoming acceptable.
This problem can be illustrated with the following example.

Example 5. Let K = {a; b; c}, S = ∅ andD = {a ⇒
d; b⇒ ¬d; c⇒ e}. This allows us to construct, among oth-
ers, the following arguments:A = [[a] ⇒ d], B = [[b] ⇒
¬d], andC = [[c] ⇒ e]. Intuitively, one may wish to have
e justified,d and¬d not justified. Unfortunately, this is not
the case because there now existsD = [A,B → ¬e] which
defeatsC. Note thatD is a self-defeating argument. To
see why this is a legally constructed counterargument, first
consider the fact that, under propositional logic, it holds
that d,¬d ` ¬e. Therefore, there exists a rule of the form
d,¬d → ¬e. It is this rule that is applied in argumentD
to combineA andB to obtain¬e. Thus,D defeatsC and
consequently, the argumentC is not acceptable ande is not
justified.

The above example clearly yields undesirable results,
even if under the grounded extensions, the system satisfies
both closeness and consistency. If Nixon is both a quaker
and a republican, then the issue of whether he is a pacifist
or not should not influence a completely unrelated proposi-
tion (say, whether it will rain today). Indeed, in general it
should not be the case that two arguments that rebut each
other can keep an arbitrary argument from becoming ac-
ceptable. To solve this problem, one may think of ruling
out self-defeating arguments and not considering them when
computing the set of acceptable arguments. Unfortunately,
this solution leads to the violate closeness. Let’s take the
following example:

Example 6. LetK = {a}, S = {c, d → ¬da ⇒ be} and
D = {a⇒ b; b⇒ c; b⇒ d}.
Now consider the following arguments:
A1 : [a] A4 : [A2 ⇒ d]
A2 : [A1 ⇒ b] A5 : [A3, A4 ⇒ ¬da⇒ be]
A3 : [A2 ⇒ c]

The argumentA5 is self-defeating (self-undercutting) and
thus ruled out. This means thatA2, A3 andA4 don’t have
any defeaters anymore, and are thus justified. This means



that the literalsc andd are also justified. Yet¬da ⇒ be is
not justified, which violates closeness.

In the light of the above, one can observe that the ap-
proach of computing the closure of a set of strict rules re-
quires a closure operator that generates at least those rules
that are needed to satisfy closeness and consistency, but at
the same time does not generate rules which can be used to
build new arguments that may keep “good” arguments from
becoming acceptable, and consequently keep their conclu-
sions from becoming justified. In other words, the closure
operator shouldn’t generate too little, but it shouldn’t gener-
ate too much either.

We are now about to define a second closure opera-
tor Cltp that is a lot weaker than our first one (Clpp).
Our discussion starts with the observation that a strict rule
(say φ1, . . . , φn → ψ), when translated to propositional
logic (φ1 ∧ . . . ∧ φn ⊃ ψ) is equivalent to a disjunction
(¬φ1 ∨ . . . ∨ ¬φn ∨ ψ). In this disjunction, different literals
can be put in front (like¬φi in ¬φ1 ∨ . . . ∨ ¬φi−1 ∨ ψ ∨
¬φi+1 ∨ . . .∨¬φn ∨¬φi), which can again be translated to
a strict rule (φ1, . . . , φi−1,¬ψ, φi+1, . . . , φn → ¬φi). This
leads to the following definition.

Definition 11 (Transposition). A strict rules is a transpo-
sitionofφ1, . . ., φn → ψ iff s = φ1, . . ., φi−1,¬ψ, φi+1, . . .,
φn →¬φi for some 1≤ i ≤ n.

Based on the thus defined notion of transposition, we now
define our second closure operator.

Definition 12 (Transposition operator). Let S be a set of
strict rules.Cltp(S) is a minimal set such that:

• S ⊆ Cltp(S), and
• if s ∈ Cltp(S) and t is a transposition ofs then t ∈
Cltp(S).

We say thatS is closed under transpositioniff Cltp(S) = S.

One can easily check that transposition is a special in-
stance of contraposition. It is then easily verified that with
theCltp operator, example 2 (Married John) is handled cor-
rectly. Note also that such an operator minimizes the number
of self-defeating arguments.

Lemma 1. Let (A, defeat) be an argumentation system
built from (K, Cltp(S),D). (A, defeat) satisfies closeness
and consistency under grounded semantics.

Unfortunately, theCltp operator by itself is not enough
to guarantee the closeness and consistency of an argumenta-
tion system for the other acceptability semantics (preferred
semantics, stable semantics, complete semantics). This can
be seen by examining the following example.

Example 7. LetK = {a; b; c; g}, S = {d, e, f → ¬g} and
D = {a⇒ d; b⇒ e; c⇒ f}.
Now, consider the following arguments:
A : [[a] ⇒ d]
B : [[b] ⇒ e]
C : [[c] ⇒ f ]
One can easily check that withoutCltp, the arguments
A, B and C do not have any counter-arguments (which
makes them members of any Dung-style extension). How-
ever, if one would replace the defeasible theory(K,S,D) by

(K, Cltp(S),D), then counter-arguments againstA, B and
C do exist. For instance,D = [[[b] ⇒ e], [[c] ⇒ f ], [g] →
¬d] defeatsA (becausee, f, g → ¬d ∈ Cltr(S)). The
counter-arguments againstA, B andC make sure that, un-
der grounded semantics, neitherd, e nor f is justified. At
the same time, however, it must be observed that the set
{A,B,C} is admissible. Even thoughD defeatsA, A
also defeatsD, and similar observations can also be made
with respect toB and C. And because{A,B,C} is ad-
missible, there also exists a preferred extension (a superset
of {A,B,C}) with conclusionsd, e, f and alsog. This
means that this preferred extension does not satisfy close-
ness. Moreover, the closure under the strict rules of its con-
clusions is inconsistent.

So, while the closure of strict rules under transposi-
tion solves the issue of closeness and consistency under
grounded semantics, the problem is still open for preferred
semantics. For this, an alteration to the core formalism is
necessary, in particular to the notion of rebutting. The basic
idea is that strict arguments take precedence over defeasi-
ble ones. Moreover, if two arguments (let’s sayA andB)
are both defeasible and the top rule ofA is strict and has a
consequentψ and the top rule ofB is defeasible and has a
consequent−ψ thenA takes precedence overB. This gives
birth to a restricted notion of rebutting.

Definition 13 (Restricted rebut). An argumentA restric-
tively rebutsan argumentB iff Conc(A) = ψ andB has a
subargument of the formB′

1, . . . , B
′
n ⇒ −ψ.

It can easily be seen that the notion of restricted rebut is
indeed a restricted version of “ordinary” rebut. That is, if
A rebutsB under the restricted definition (definition 13),
thenA also rebutsB under the definition 2. The converse,
however, is not true; it does in general not hold that ifA
rebutsB, thenA rebutsB under the restricted definition.
For instance,[[→ a] ⇒ b] rebuts[[[→ c] ⇒ d] → ¬b]
under the unrestricted definition, but not under the restricted
definition. LetRrestricted denote the restricted rebut relation
andRunrestricted denote the unrestricted rebut relation.

Property 2. Let A, B ∈ A. If A Rrestricted B thenA
Runrestricted B. The reverse does not always hold.

To see how the restricted rebut can help to solve the issue
of postulates, again consider the problem of example 7.

Example 8 (7, continued). Let K = {a; b; c; g}, S =
{d, e, f → ¬g} andD = {a⇒ d; b⇒ e; c⇒ f}.
Now, again consider the following arguments:
A : [[a] ⇒ d]
B : [[b] ⇒ e]
C : [[c] ⇒ f ]
Under the restricted version of rebutting, it holds that
{A,B,C} is not an admissible set under(Cltp(S),D). For
instance, the argument[[[b] ⇒ e], [[c] ⇒ f ], [g] → ¬d] (D)
now rebutsA butA does not rebutD, nor does any other
argument in{A,B,C} defeatD. Thus{A,B,C} is not ad-
missible in(Cltp(S),D) under the restricted definition of
rebutting.

We will now show that if we consider the transposition
closureCltp and the “restricted rebutting” then the two pos-



tulates (closeness and consistency) are satisfied under any
reasonable semantics. Before we do so, however, we should
first make clear what we mean with “under any reasonable
semantics”. Surely, we want at least grounded and preferred
semantics to be included. One way to achieve this is to con-
sider the complete extensions. Dung has proved that every
stable extension, preferred extension or grounded extension
is also a complete extension (Dung 1995). Therefore, what
we are going to prove is that with the combination ofCltr
and restricted rebutting, the two postulates hold foranycom-
plete extension.

Theorem 2. Let (A, defeat) be an argumentation system
built on (K, Cltp(S),D). Under restricted rebutting, every
complete extension of(A, defeat) is closed.

Now it’s time for the main theorem of consistency.

Theorem 3. Let (A, defeat) be an argumentation system
built on (K, Cltp(S),D). Under restricted rebutting, every
complete extension of(A, defeat) is consistent.

So far, what has been proved is that every complete exten-
sion is closed and consistent (assuming restricted rebutting
and strict rules that are closed under transposition). The next
step is to prove that the setOutput containing the justified
conclusions is also closed and consistent.

Theorem 4. Let (A, defeat) be an argumentation system
built on (K, Cltp(S),D). Under restricted rebutting, the set
Output is closed and consistent.

From Theorem 2 and Theorem 4, it is clear that the argu-
mentation system satisfies the closeness.

Corollary 1. Let (A, defeat) be an argumentation system
built on (K, Cltp(S),D). Under restricted rebutting, the
system(A, defeat) satisfies closeness.

From Theorem 3 and Theorem 4, it is also clear that the
argumentation system satisfies consistency.

Corollary 2. Let (A, defeat) be an argumentation system
built on (K, Cltp(S),D). Under restricted rebutting, the
system(A, defeat) satisfies consistency.

The same results also hold if the propositional operator is
combined with the restricted rebutting, even if that operator
has some weak points as outlined above.

Theorem 5. Let (A, defeat) be an argumentation system
built on (K, Clpp(S),D). Under restricted rebutting, the
system(A, defeat) satisfies consistency and closeness.

Conclusion
Argumentation theory is seen as a foundation for reasoning
systems. Consequently, an increasing number of argumen-
tation systems has been proposed. While, these systems use
generally the same acceptability semantics, they differ in the
way they define their logical language, the notion of argu-
ment and the defeasibility relation. These last are defined
in ad hoc way and this leads the systems to encounter some
problems such as returning counter-intuitive results.

In order to avoid such problems, the aim of this paper is
to define some postulates or axioms that any argumentation

system should satisfy. These postulates govern the well def-
inition of an argumentation system and guarantee the safety
of its outputs. We have focused on two important postulates:
theclosenessand theconsistencyof the results of a system.
These last are violated by several argumentation systems
such as (Prakken & Sartor 1997; Governatoriet al. 2004;
Garćıa & Simari 2004). We then studied two ways in which
these postulates are warranted for an instantiation of the
Dung system. In particular, we have proposed two clo-
sure operators that allow to make more explicit some im-
plicit information. These closure operators solve the prob-
lems encountered by the argumentation systems defined
in in (Prakken & Sartor 1997; Governatoriet al. 2004;
Garćıa & Simari 2004).

An extension of this work would be to explore other ra-
tionality postulates, especially for reinstating arguments, i.e.
for defining the acceptable ones. Indeed, for some appli-
cations, the acceptability semantics defined in (Dung 1995)
are unfortunately not suitable and new semantics are needed.
One rationality postulate should guarantee that the new se-
mantics consider non defeated arguments as acceptable.
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