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Abstract: In this paper, we describe the synthesis and structural characterization of the 1-(cyclohex-1-
en-1-yl)-3-(prop-2-yn-1-yl)-1,3-dihydro-2H-benzimidazol-2-one (2) via IR, NMR (H and 13C), and
HRMS. The crystal structure of the isolated organic compound 2 was confirmed through single-
crystal X-ray diffraction analysis. The experimental results regarding the molecular geometry and
intermolecular interactions within the crystal are in accordance with the DFT calculations and
Hirshfeld surface analysis.

Keywords: benzimidazolone derivative; cyclohexenyl; X-ray diffraction; DFT; Hirshfeld surface

1. Introduction

Aromatic compounds with heterocyclic structures incorporating nitrogen and oxy-
gen play an important role in organic chemistry synthesis. Benzimidazoles containing
nitrogen are well known for their wide range of biological activities [1-4]. In addition,
they have been studied extensively for their anticancer activity [5], antifungal agents [1,6],
antiviral activity [7,8], and antidiabetic properties [9,10]. Moreover, the benzimidazolone
nucleus is often used as a scaffold for the development of therapeutic molecules with
medicinal and biological applications. Benzimidazolone derivatives display noticeable
pharmacological applications such as antimicrobial [11,12], anti-inflammatory [13], and
antitumor agents [7,14]. Additionally, the use of benzimidazole and its derivatives as
corrosion inhibitors for mild steel in an acidic medium has been reported [15,16]. Several
methodologies can be employed for the synthesis of benzimidazolone derivatives, with
one common approach involving the condensation reaction between o-phenylenediamine
and ketoester derivatives [17,18].

Within the various categories of heterocycles, benzimidazole derivatives have gained
notable recognition in medicinal chemistry [19-21]. As a result, significant interest has
been directed toward the creation of new benzimidazole systems. Since the N-alkylation of
benzimidazole derivatives generates rigid analogs, it is highly desirable to develop such
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scaffolds [22-24]. Recently, alkylating agents have been extensively studied, which has led
to the development of many biologically active benzimidazole compounds, particularly
molecules that are based on a triazolic moiety [25,26]. Figure 1 shows some different
compounds reported in the literature that have been prepared for their biological activities
from benzimidazole and its derivatives.
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Figure 1. Examples of biologically active benzimidazole derivatives.

In this work, we approached the synthesis of benzoimidazol-2-one 2 through the
solid-liquid phase-transfer alkylation of benzimidazolone 1. The structure of (2) was
established using FI-IR and NMR methods and confirmed through a single-crystal X-ray
structure determination. Furthermore, Hirshfeld surface (HS) analysis was used to reveal
the different intramolecular contacts, their percentage contribution, the contour and surface
plots (dnorm, dj, and de), and the major as well as minor contributions of the contacts
for compound 2. Furthermore, the chemical activity parameters determined via the
molecular electrostatic potential (MEP) were investigated, demonstrating the nucleophilic
and electrophilic character, which is related to the charge distribution around the crystal
molecule (2).

2. Results and Discussion
2.1. Synthesis and Structural Characterization

The condensation reaction, a valuable synthetic process in organic chemistry, leads to
the formation of benzimidazole and benzodiazepine derivatives. Continuing our previous
investigations on the synthesis of benzimidazolone derivatives, we report the synthesis
of 1-(cyclohex-1-en-1-yl)-3-(prop-2-yn-1-yl)-1,3-dihydro-2H-benzimidazol-2-one (2) in one
step using a direct alkylation reaction under phase-transfer catalysis conditions (Scheme 1).
The title compound (2) was synthesized through the direct N-alkylation of benzimidazolone
1 using a previously described process [18,22]. Compound 1 was reacted with propargyl
bromide which acted as a catalyst. The reaction was carried out at room temperature for
6 h. Then, the reaction mixture was purified with a hexane/ethyl acetate mixture as an
eluent, and then we filtered off the precipitated solid, dried well, and recrystallized from
ethyl acetate to prepare 2 with a good yield.
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Synthetic precursors of various heterocyclic systems
likely to exhibit pharmacological properties.

Scheme 1. Reagent and condition: (i) R-X, K,CO3 and DMF/CH3CN, T.A, 6 h.

The structure of 2 was determined using FT-IR and NMR spectroscopy methods, with
extensive validation accomplished by cross-referencing the acquired spectroscopic data
with the available literature [18]. Furthermore, the geometric arrangement of the chemical
was validated using XRD analysis, providing additional confirmation of its structural
characteristics.

2.2. FT-IR Analysis

The infrared (IR) spectrum of 2 (KBr pellet, cm ') reveals prominent characteristic
peaks, as illustrated in Figure 2. Specifically, the CH, group exhibits a notable peak at
2930 cm ™!, the C—N stretch appears at 1404 cm™~!, while other distinctive groups, such
as the C=0 stretch and the C=C triple bond, are observed at 1710 cm 1 and 2125 em !,
respectively. For a more comprehensive understanding, the theoretical IR spectrum was
computed using the B3LYP/6-311++G(d,p) level in the gas phase and is presented in
Figure 2. The most important experimental and calculated harmonic stretching frequencies
are listed in Table 1. Comparing the values, it is evident that the theoretical FT-IR, derived
from the same basis-set calculations, generally aligns well with the experimental data, as
summarized in Table 1.
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Figure 2. Experimental IR spectrum of compound 2.
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Table 1. Vibrational study of compound 2 (cm™1).

Assignments Experimental B3LYP/6-311++G(d,p)
VCH2 2930 3022
VC-N 1404 1411
Vc=0 1710 1771
ve=C 2125 2223
VC=C (Aromatic) 1620 1648

2.3. X-ray Diffraction and Geometry Optimization

The molecular structure of 2 is depicted in Figure 3a. The benzimidazole unit (N1/C1/
N2/C2-C7) is almost planar, with maximum deviations of —0.012 (1) A for atom N1. The
cyclohexenyl ring is disordered over two conformations and both it and the NCH,C=CH
group are rotated out of the mean benzimidazole plane. The benzimidazole plane makes di-
hedral angles of 119.26° and 111.72° with the base of the cyclohexenyl ring (N1-C8-C9) and
the approximately planar (N2-C14-C15) propynyl chain, respectively. The dihedral angle
between the cyclohexenyl ring and the NCH,C=CH group is 58.99°. The major conforma-
tion of the cyclohexenyl ring has a half-chair conformation with puckering parameters of
Q=0.496(2)A, 6 = 128.1(2), and ¢ = 23.4 (4)° [27].
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Figure 3. (a) ORTEP of compound 2 at a 50% probability level (only the major disorder component
is shown), (b) optimized structure of compound 2, and (c) superimposition of the X-ray structure
(green) and the optimized structure (magenta) on the studied molecule 2.

Table 2 provides a summary of the crystal data, the data collection process, and details
of the structural refinement. The positioning of C-bound H atoms was determined through
calculated positions, where C-H distances ranged from 0.93 to 0.97 A. Subsequently, refine-
ment was conducted using the riding-model approximation, with Uiso(H) = 1.2-1.5 Ueq of
the respective parent atom, as depicted in Table 3.

Table 2. Details of the XRD data collection and structure refinement parameters for 2.

Empirical Formula C16H16N-O

Crystal system Monoclinic,
Space group P2;/c
Temperature (K) 293 (2)

a,b,c(A) 11.591 (5), 14.988 (5), 7.570 (5)
B () 92.134 (5)
V (A3) 1314.2 (11)
z 4

# (mm~1) 0.081

Crystal size (mm) 0.2 x0.1x0.1
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Table 2. Cont.
Empirical Formula C16H16N2O
Absorption coefficient 0.081 mm™!
No. of measured, mdepender}t, and observed 31171, 4013, 3287
[I > 20(I)] reflections
Rint 0.0403
(sin 8/A)max (A~1) 0.001
R[F? > 20(F?)], wR(F?), S 0.04554, 0.1264, 1.056
No. of reflections 4013
No. of parameters 185
Largest diff. peak and hole (e A-3) 0.440, —0.324
Table 3. Hydrogen bond geometry (A, ©).
D-H---A D-H H---A D---A Angle
C5-H5---Cg2 ¥ 0.93 293 3.746(3) 147
C12-H12B.--Cg2 ¥1i 0.97 2.78 3.576(8) 140
C14-H14B---O il 0.97 2.54 3.2299(18) 127.9
Cl16-H16---011 0.93 2.39 3.203(3) 146
2 Cg2 is the centroid of the C2-C7 benzene ring. Symmetry code: O _y, —y+1/2,z+1/2; (i) .y y,z—1 (i) x4

1, —y+1,—z+2.

In the crystal, C14-H14B---O1 and C16-H16---O1 hydrogen bonds plus C5-H5---Cg2
and C12-H12B.--Cg2 interactions (Table 3) form layers of molecules parallel to the bc plane
(Figure 4), which stack along the g-axis direction with normal van der Waals contacts

(Figure 5).

Figure 4. A portion of one layer, observed along the a-axis orientation, illustrates C-H---O hydrogen
bonds and C-H---n(ring) interactions denoted by black and green dashed lines, respectively. For

clarity, hydrogen atoms with no interaction are omitted from the representation.
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Figure 5. Stacking of layers along the a-axis direction. Hydrogen atoms are omitted for clarity.

The measured X-ray data and the computed geometry parameters, including bond
lengths and bond angles, are listed in Table 4. The ORTEP, optimized geometry, and
superimposition of the X-ray structure alongside the optimized structure are shown in
Figure 2. After aligning the optimized ideal molecular geometry obtained through DFT
calculations with the final geometry of 2 derived from the X-ray data, the determination
of the root mean square deviation (RMSD) value becomes feasible through superposition,
as shown in Figure 3c. This process allows a quantitative assessment of the structural
congruence between the experimentally determined X-ray structure and the theoretically
optimized molecular geometry. From the alignment (Figure 3c), it is clear the optimized
geometry is superimposed upon the experimental one with an overlay similarity of 0.98%,
which means that the puckering potential is consistent at the B3LYP level, except for the
cyclohexenyl ring that showed a small deviation. This deviation was confirmed by an
RMSD value of 0.18. According to this, the DFT calculation yields a meaningful geometry
of the benzimidazole-2-one (2), and the findings of the obtained experimental data from
the X-ray correctly described the calculated geometric parameters. The findings revealed
minimal heterogeneity between experimental and computational methods. From these
results presented in Table 4 and depicted in Figure 2, the selected theoretical method and
the basis set (i.e., B3LYP/6-311++G(d,p)) could be suitable for the DFT calculation study
of (2).

A molecule with a large gap (AE) (i.e., the highest occupied molecular orbital (HOMO)
minus the lowest unoccupied molecular orbital (LUMO)) has generally a high kinetic
stability and a low chemical reactivity (Figure 6) [28]. In terms of the energetic stability of a
molecule, it is unfavorable to add electrons to a high-lying HOMO and to remove electrons
from a low-lying LUMO. Table 5 shows the calculated molecular reactivity parameters
for the title molecule, including electronegativity (x), ionization potential (IP), chemical
potential (i), chemical hardness (17), chemical softness (S), and electron affinity index (EA).
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Table 4. Selected geometrical parameters for the title compound 2.

Bond Lengths (A), Bond Experimental Calculated
Angles (°) DFT/B3LYP/6-311++G(d,p)
0O1-C1 1.2237 (14) 1.222
N1-C1 1.3849 (16) 1.401
N1-C2 1.3956 (15) 1.402
N1-C8 1.4362 (16) 1.431
N2-C1 1.3806 (15) 1.396
N2-C7 1.3910 (15) 1.391
N2-C14 1.4541 (15) 1.431
C1-N1-C2 109.85 (10) 109.59
C1-N1-C8 123.81 (10) 123.50
C2-N1-C8 125.88 (10) 126.90
C1-N2-C7 110.49 (10) 110.51
C1-N2-C14 122.77 (10) 121.66
C7-N2-C14 126.69 (10) 127.77
0-C1-N1 126.89 (11) 127.96
O-C1-N2 127.09 (11) 126.30
N2-C1-N1 106.01 (9) 105.72
C3-C2-N1 131.39 (11) 131.85
N1-C2-C7 107.04 (10) 107.25
N2-C7-C2 106.61 (10) 106.90
C6-C7-N2 131.76 (11) 131.55
C9-C8-N1 119.37 (11) 120.07
N1-C8-C13 116.57 (12) 116.09
N2-C14-C15 111.65 (10) 113.76

(a) LUMO

(b) HOMO

Figure 6. Frontier molecular orbitals (a) LUMO and (b) HOMO of the title crystal 2.

Table 5. Calculated chemical reactivity parameters for 2.

Descriptors

EHOMO —5.8779 eV
ELUMO —0.6057 eV
Energy gap (AE) 52722 eV
Ionization potential (I) 5.8779 eV
Electron affinity (EA) 0.6057 eV
Electronegativity (x) 2.6361 eV
Chemical hardness (1) 3.2418 eV
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2.4. Hirshfeld Surface Analysis

In view of visualizing the different intermolecular contacts in the crystal packing of
compound 2, an analysis using the Hirshfeld surface (HS) was performed. This method
facilitates the identification of regions of interaction between pairs of atoms, shedding light
on the contributions of these contacts. The analysis specifically highlights atoms with the
potential to engage in hydrogen bonds and 7-stacking interactions, providing valuable
information on the nature and strength of intermolecular forces [29-31]. This approach
improves our understanding of the spatial distribution and importance of specific atomic
interactions within the crystal lattice. The dnorm (normalized contact distance) plays a
crucial role in identifying the key sites for intermolecular contacts. In the context of the
HS represented in dnorm (Figure 7), the white surface signifies the points which contact
the van der Waals radii at intervals equidistant from their cumulative total. The distances
of the van der Waals radius that are shorter (near touch) or longer (different contact) are
represented by red and blue colors [30].

shape index curvedness

Figure 7. Hirshfeld surface mapped with dnorm, di, de, shape index, and curvedness for
compound (2).

The dnorm, dj, de, curvedness, and shape index are —0.2600 to 1.1859, 0.9684 to 2.4213,
0.9696 to 2.4592 A, —4 to 4 and —1 to 1, respectively. The dnorm, dij, de, shape index,
and curvedness contour maps on a molecule HS are depicted in Figure 7. The analysis
of m-stacking interactions is further aided by the HS shape index and curvedness plots,
which are computed based on local curvatures. The presence of blue and green colors
illustrates the packed stacking of a compound throughout the curvature. The 2D fingerprint
plots quantified the contribution of each type of interaction to the HS. Red spots on the
surface designate intermediate interactions taking into account the hydrogen bonds and the
interatomic contacts between the molecules. As can be seen on the dnorm surface (Figure 7),
the C-H---O intermolecular hydrogen bonds and C-H---Cg over the surface were indicated
by the adjacent red— blue spots.

Dominant interactions within the HS are corroborated by the fingerprint diagrams, as
illustrated in Figure 8, where one molecule acts as an acceptor (d; > de) while the other func-
tions as a donor (de > d;). The 2D fingerprint diagrams, depicted in Figure 8, highlighted
the prevalence of specific intermolecular contacts, with H---H and C---H interactions being
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the most prevalent in 2, constituting 56.3% and 25.5% of the total area, respectively. Other
dominant forces are O---H/H---O (9.4%) and N---H/H---N (2.3%) contacts for (2). The
presence of m-m-stacking-type interactions in the shape index is corroborated by the flat
green surface, delimited by a blue hump close to the red hollows, as well as a blue outline
on the curvedness surface. The 2D fingerprint plots and the molecular HS regions are
useful in clarifying the contributions of the different inter-contacts that participate in the
stabilization of the crystal structure. These contributions indicate that the arrangement
of 2 is predominantly influenced by the robust electrostatic interactions that drive the
crystal-packing force in 2.

Hé e
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Figure 8. Two-dimensional fingerprint plots for 2.

2.5. Molecular Electrostatic Potential (MEP)

The MEP is associated with the electronic density and serves as a valuable descriptor
for identifying regions pertinent to nucleophilic and electrophilic reactions. It also aids in
understanding chemical reactivity and hydrogen bonding interactions [32]. The various
electrostatic potential values are visually represented with distinct colors: green represents
zero potential regions, red represents the most negative electrostatic potential surface,
and blue represents the most positive electrostatic potential areas. Within the MEP, the
positive electrostatic potential (depicted by the blue areas) corresponds to the push exerted
by nuclei, while the negative electrostatic potential (represented by yellow and red) is
associated with the electrostatic charge of a proton and the overall electron density within
the molecule. The negative electrostatic potential (shown by the yellow and red regions) is
largely located on the nitrogen and oxygen atoms, making them the most reactive places
for an electrophilic assault, as seen in Figure 9. In contrast, hydrogen atoms have a positive
electrostatic potential (indicated by the blue patches), indicating that they are the most
reactive places for a nucleophilic attack.
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Figure 9. Molecular electrostatic potential map of 2, Hydrogen atoms were omitted for clarity.

2.6. Pharmacological Analysis

To determine the bioactivity of benzimidazolone (2), the physicochemical and phar-
macokinetic properties were examined using the SwissADME web tool, and the results are
shown in Table 6. Compound (2) meets the topological polar surface area (TPSA) criteria
specified by the Egan rule (TPSA < 132 A?) and the Veber rule (TPSA < 140 A2) [33,34]. The
LogP values aid in determining the transport and binding behavior of medicinal molecules
inside the body [35]. The SwissADME tool predicts LogP values using five different mod-
els, and the average of the five predicted LogP values represents the lipophilicity of our
produced molecule. Molecule (2) has a high absorption rate in the gastrointestinal (GI)
tract. The negative log Kp value indicates that title chemical (2) is less skin-permeant [36].

Table 6. Drug-like properties of 2 estimated through the use of SwissADME online tool.

Drug-Like Parameter Benzimidazolone (2)
Formula Ci16H16N2O
Molecular weight (g/mol) 252.31 g/mol
H-bond acceptors 1
H-bond donors 0
Rotatable bonds 2
TPSA (A?) 26.93 A2
iLOGP 3.03

GI absorption High

log Kp (cm/s) —594 cm/s
Lipinski violations Yes *
Veber violations Yes *
Egan violations Yes *
Muegge violations Yes *
Bioavailability score 0.55

*

: No violation.

The toxicity of molecule (2) was calculated using the GUSAR online tool and is illus-
trated in Table 7. According to these results, title molecule (2) belongs to the toxic (Class 4)
group in the oral mode and the slightly harmful (Class 4) group in the intraperitoneal (IP)
and subcutaneous (SC) modes.
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Table 7. Estimated acute toxicity prediction for molecule (2) using the GUSAR server.

LD50 LD50 (mg/kg)
Rat Intraperitoneal (IP) 317.3#

Rat Intravenous route (IV) 29.02 *

Rat Oral 1181.00 #

Rat Subcutaneous route (SC) 411.80 *

* Molecule in Class 4; * Molecule in Class 3.

3. Experimental and Computational Methods
3.1. General

The determination of melting points was carried out using an open capillary Buchi
510 instrument. The spectroscopic analysis, involving 13C NMR (75 MHz) and 'H NMR
(300 MHz), was conducted on a Bruker spectrometer. The recorded spectra present
numerical values of chemical shifts in parts per million (ppm), relative to tetramethylsilane
(TMS) set as the reference at 0.00 ppm. This methodology ensures precision and accuracy
in assessing both the physical and spectroscopic characteristics of the compounds under
investigation. A Triple TOFTM 5600 LC/MS-MS System (AB SCIEX) was utilized to acquire
high resolution mass spectral data. The ion spray voltage, in the 5500 ionization mode,
was utilized in the mass spectra. To perform column chromatography, E-Merck silica gel
60-F254 was used. To monitor the progression of the reaction, thin-layer chromatography
(TLC) was employed, utilizing silica gel 60-F254. The UV-light method was employed for
spot detection at a wavelength of 254 nm. Standard purification procedures were applied to
purify reagents and solvents before their use in the experiment, ensuring the reliability and
accuracy of the analytical results. A EuroEA Elemental Analyser was utilized to measure
the elemental analysis of 2.

3.2. Synthesis of Alkylated Benzimidazolones (2)

A mixture of 1-(cyclohex-1-en-1-yl)-1,3-dihydro-2H-benzimidazol-2-one (1) (4.7 mmol),
benzyltriethylammonium chloride (2.3 mmol), and potassium carbonate (14.69 mmol) in a
mixture of N,N-dimethylformamide and acetonitrile (15 mL, 3:2 v/v) was heated at 90 °C
for 30 min. After cooling, propargyl bromide (4.8 mmol) was added. The mixture was
stirred at room temperature for 6 h. The reaction mixture was diluted with 30 mL of
distilled water and then extracted three times with 30 mL of dichloromethane. Anhydrous
sodium sulfate was used to dry the mixed organic layers. The solvent was evaporated
under vacuum, and the residue was purified using column chromatography on silica gel
using a hexane/ethyl acetate mixture (8/2) as eluent. This procedure made it possible to
obtain a pure and isolated product with a yield of 85% [22].

Characterization of 1-(Cyclohex-1-en-1-yl)-3-(prop-2-yn-1-yl)-1,3-dihydro-2H-benzimidazol
-2-one (2)

White solid. Yield: 85%, 0.95 g, m.p. 118-120 °C (ethyl acetate). IR (KBr, v (cm™1),
2125 (-C=CH), 1710 (2C=0). 'H NMR (CDCl3): ppm: 1.63, 1.73, 2.16, 2.40 (4m, 8H, 4CH)-
cyclohex-1-enyl), 2.15 (t, ] = 3 Hz, 1H, HC=C), 4.56 (d, ] = 3 Hz, 2H, N-CH,-C), 5.82 (m,
1H, HC=C-, H- cyclohex-1-enyl), 6.89-7.14 (m, 4H, H-Ar). 13C NMR (CDCl3): sppm: 21.63,
22.56,24.71,26.75 (4C, 4CH,, C- cyclohex-1-enyl), 30.37 (1C, N-CH,-C), 72.67 (1C, HC=C),
127.41 (4C, =CH-, C-Ar), 128.56, 129.67, 132.15 (4C, =C-, C-quaternary), 154.60 (1C, C=0).
HRMS of [M+H]* m/z 253.1335, calcd for C14H17N,O, found: 253.1296. Anal. Caled for
C16H16N2O: C, 76.16; H, 6.39; N, 11.10. Found: C, 76.56; H, 6.27; N, 11.22.

3.3. Crystal Structure Determination and Refinement

The benzimidazolone (2) was selected and X-ray intensity data were collected at
296 K on a Bruker APEX-II QUAZAR CCD graphite-monochromated Mo-K« radiation
(A =0.71073 A). A complete data set was processed using Bruker SAINT. The structure
solution was obtained via direct methods using SHELXT [37] and refined through a full
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matrix, least-squares on F? using SHELXL [37]. The cyclohexenyl ring is disordered over
two sites in a 0.844(3)/0.156(3) ratio. The two moieties were resolved and refined with some
restraints that their geometries be comparable. The crystallographic characteristics, details
of X-ray data collection and structure refinement parameters for 1-(cyclohexenyl)-3-(prop-
2-ynyl)-1,3-dihydro-2H-benzimidazol-2-one (2) are listed in Table 2. The H atoms bound to
carbon were placed in calculated positions with C-H = 0.93-0.97 A and refined in the riding-
model approximation with Uiso (H) = 1.5 Ueq of the parent atom. The residual electron
density in the final difference Fourier map was between —0.23 < Dq < 0.75. The geometry
of the title crystal molecule 2 was resolved and refined using WinGX [38], SHELXL, and
Mercury [39].

3.4. DFT Calculations

The molecular structure was optimized and the harmonic vibrational frequencies of
compound 2 were computed using the same DFT/B3LYP on a 6-311G++(d,p) basis set
using the Gaussian program 09W without any restrictions on geometry. The obtained
vibrational frequencies of the optimized compound using the B3LYP/6-311++G(d,p) in the
gas phase were scaled by 0.9627 [40].

Hirshfeld surface (HS) analysis was carried out to determine the type of intermolec-
ular contacts. The 2D fingerprint plots and molecular surface regions for 2 were created
to offer information about the percentage contribution as well as the major and minor
intermolecular contributors. The HS was mapped using dnorm, the shape index, curvature,
and 2D fingerprint plots generated using Crystal Explorer 17 [41]. The primary goal of
quantum chemistry lies in elucidating the molecular geometry, chemical reactivity, energy,
and the intricacies of chemical bonds. DFT calculations were employed in this study to
gain insights into the electrophilic and nucleophilic structures. The current investigation
consists of structural and chemical properties and spectroscopic details, as well as both local
indicators (molecular electrostatic potential (MEP)) and global descriptors like softness
and hardness parameters. These assessments were conducted using the DFT/B3LYP/6-
311++G(d,p) method, providing a comprehensive understanding of the molecular behavior
and reactivity.

3.5. Drug-Likeness Prediction

The drug-like physicochemical and pharmacokinetic properties of the synthesized
compound were estimated using the SwissADME online server [42]. The acute toxicity
of the title molecule 2 was estimated using the GUSAR (General Unrestricted Structure-
Activity Relationships) web tool by calculating the LDs( values for oral, intravenous (IV),
intraperitoneal (IP), and subcutaneous (SC) administration methods [43].

4. Conclusions

Benzimidazolone (2) was prepared via the liquid-solid phase-transfer alkylation
method from benzimidazolone (1). The structure of the alkylated benzimidazolone was
characterized via 1H-NMR, 3C-NMR, HRMS, and X-ray analysis. This research aimed
to explore the various hydrogen-bonding modes and -7t interactions in the solid. The
Hirshfeld surface analysis assisted in identifying and understanding these intermolecular
interactions. The 2D fingerprint plots revealed that H---H and C---H/H---C intermolecular
interactions are the most important contributors to these interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13121661/s1. TH-NMR, 3C-NMR and HRMS spectra of 2 can
be found in the Supplementary Materials.
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