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ABSTRACT

We consider the use of the spatio-temporal sample autocorre-
lation matrix in order to determine whether the signals received by
a distributed antenna system are spatially correlated. The asymp-
totic behavior of linear spectral statistics built from this matrix is
studied, assuming that (i) the number of antennas, (ii) the sample
size and (iii) the number of tested time lags all converge to infin-
ity. In this asymptotic regime, linear spectral statistics of the spatio-
temporal sample correlation matrix are shown to be asymptotically
equivalent to the corresponding functional average with respect to a
Marchenko-Pastur distribution. This means that the eigenvalue dis-
tribution of the original sample autocorrelation matrix essentially be-
haves as a sample covariance matrix of spatio-temporal white noise
with equivalent dimensions. This result turns out to be useful in or-
der to address the problem of detecting the presence of wideband di-
rectional signals with a number of uncalibrated receivers distributed
over a large area.

Index Terms— Correlation tests, multivariate time series, ran-
dom matrix theory, wideband signal detection.

1. INTRODUCTION

We consider the problem of testing whether a collection of wideband
signals received by a large number of spatially distributed antennas
are correlated. The main motivation for this problem in array signal
processing is the detection of the presence of wideband directional
sources using a large number of receivers that are subject to calibra-
tion and synchronization errors. Since the received signals are gener-
ally wideband, they can be best modeled as time series. Under these
challenging circumstances, and given the difficulty of establishing
valid signal models for such a general propagation environment, one
possible way of detecting the presence of directional signals is by
establishing whether the signals that are measured at the different
antennas are statistically independent. If the signals are assumed to
be zero-mean and Gaussian distributed, the problem is equivalent to
testing uncorrelation among the different time series.

Uncorrelation tests among multiple time series have traditionally
been formulated from two different perspectives, namely frequency-
domain approaches and lag-domain approaches. Frequency-domain
methods establish that the different time series are uncorrelated when
the spectral coherence matrix is equal to the identity over all the
spectrum, e.g. [1, 2, 3, 4]. Lag-domain approaches, on the con-
trary, directly examine the autocorrelation coefficients between the
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different time series taken at distinct time lags, e.g. [5, 6, 7, 8, 9].
In this paper, we focus on this second family of approaches, which
directly work on the sample autocorrelation matrix series between
pairs of time series. For a similar treatment of frequency-domain
approaches, the reader is referred to [10, 11].

Let ym[n] denote the signal that is captured at the mth antenna,
m = 1, . . . ,M , where M is the total number of receive antennas.
Assuming that the signals are complex circularly symmetric Gaus-
sian stationary processes with zero mean, they will be uncorrelated
if and only if

E [ym[n+ �]y∗
k[n]] = rm(�)δm=k (1)

for all � ∈ Z, where (rm(�))�∈Z
is the covariance sequence of the

mth received signal, which can be expressed as the inverse Fourier
transform of the associated spectral density Sm (ν), namely

rm (�) =

∫ 1

0

Sm (ν) e2πiν�dν. (2)

In practice, the right hand side of (1) is replaced with the empirical
mean estimate taken from N consecutive samples of the received
signals, that is r̂m,m′ (n+ �, n) where

r̂m,m′
(
n, n′) =

1

N

N−1∑
n=0

ym[n]y∗
m′ [n′]

which is computed for a finite span of time lags, namely � =
− (L− 1) , . . . , L − 1 for some design integer L. In order to for-
malize the construction of uncorrelation tests based on the above
empirical estimates, let us consider the ML×ML spatio-temporal

empirical covariance matrix R̂L. This matrix is structured in blocks
of size L×L associated to each pair of series. More specifically, the
L × L block matrix in the position (m,m′) for 1 ≤ m,m′ ≤ M

can be denoted as R̂(m,m′)
L and corresponds to the sample cross-

covariance matrix between the signals received at antennas m and
m′. The (l1, l2)th entry of this matrix can therefore be written as(

R̂(m,m′)
L

)
l1,l2

= r̂m,m′ (n+ l1, n+ l2) .

If we keep M,L fixed and let N → ∞ assuming that the signals are

independent, the spatio-temporal sample covariance matrix R̂L con-
verges almost surely to a block diagonal matrix with L×L Toeplitz
blocks Rm,L, m = 1, . . . ,M , with entries

(Rm,L)l1,l2 = rm(l1 − l2). (3)

This means that, if N is sufficiently large, one can test whether the

signals are uncorrelated by checking how far R̂L is from a block



diagonal matrix. This is the main motivation for considering the
sample spatio-temporal correlation matrix, defined as

R̂corr,L = B̂−1/2
L R̂LB̂−1/2

L

where B̂L is the block diagonal matrix with blocks R̂(m,m)
L , m =

1, . . . ,M . If N is sufficiently large with respect to the other param-

eters (in the sense that ML/N � 1) one would expect R̂corr,L to
be close to the identity matrix provided that the observed signals are
uncorrelated.

A key aspect of the above discussion is how to choose the maxi-
mum tested lag L in a practical setting. On the one hand, L should be
sufficiently large, because this allows to identify correlations among
signals collected at different antennas associated to large time lags.
For example, if a jammer source transmits white noise and is re-
ceived at two different antennas with a time difference of more than
L samples, it will be perceived as completely uncorrelated signals
at these two antennas. On the other hand, L should be chosen suf-
ficiently small so that ML/N � 1 in order to make the estimation

error ‖R̂corr,L − IML‖ reasonably low when the signals are indeed
uncorrelated. The situation is specially challenging when the num-
ber of collected signals M is large and the number of observations N
is limited, because the condition ML/N � 1 requires the selection
of a small value for L, thus drastically limiting the efficiency of the

uncorrelation tests based on ‖R̂corr,L − IML‖. Our objective here

is to study the spectral behavior of R̂corr,L in asymptotic regimes
where M,N,L converge towards +∞ in such a way that cN = ML

N
converges towards a non zero constant c∗ ∈ (0,+∞). This asymp-
totic regime is much more relevant than conventional asymptotics
(N → ∞ for fixed ML) because it corresponds to a situation where

size of the spatio-temporal sample autocorrelation matrix R̂corr,L

is comparable in magnitude to the number of samples used in the
underlying sample covariance estimators.

There exist several studies in the literature that have specifi-
cally focused on this large dimensional asymptotic regime (see, e.g.
[12, 13, 14]), although most of them have considered the case where
L is fixed. In fact, a number of previous works have investigated the
behavior of the autocovariance matrix for a given fixed time lag (see
[15, 16, 17, 18, 19, 20, 21]). The case of large L has been investi-
gated in [22] and [23], which also addressed the asymptotic regime
considered in the present paper. More specifically, [22] assumed that
the M mutually independent time series are i.i.d. Gaussian white
noise and established that the empirical eigenvalue distribution of

the sample spatio-temporal covariance matrix R̂L converges to the
Marchenko-Pastur distribution. In [23], a more general situation in
which the different time series were independent but were allowed
to present non-trivial statistical dependencies in the time domain.
Under the present asymptotic conditions, it was established that the
empirical eigenvalue distribution has also a deterministic behavior.

In this paper, we propose to study the behavior of spectral statis-

tics built from the eigenvalues of R̂corr,L, which will be denoted by

(λ̂k,N )k=1,...,ML. More specifically, we will consider linear spec-
tral statistics (LSS) built from this matrix, which take the general
form

φ̂N =
1

ML
Tr

[
φ
(
R̂corr,L

)]
=

1

ML

ML∑
k=1

φ
(
λ̂k,N

)
(4)

where φ is assumed to be a sufficiently smooth function. Our interest
is mainly on the behavior of this type of statistics for the character-
ization of uncorrelation tests under the null hypothesis, which cor-

responds to the situation where the different signals are independent
but present non-trivial statistical dependence in the time domain.

2. ASYMPTOTIC DETERMINISTIC EQUIVALENT OF φ̂N

Our objective is to characterize the behavior of linear spectral statis-
tics as given in (4) when the three parameters M,L,N grow without
bound. We will strongly rely on the following asymptotic and statis-
tical assumptions.

Asymptotic assumptions. We will let M → +∞, N → +∞
in such a way that cN = ML

N
→ c�, where 0 < c� < +∞, and that

L = L(N) = O(Nβ) for some constant β ∈ (0, 1).
Special emphasis will be given to the case where β is small. In-

deed, the scenario with small β can be associated with configurations
operating with a large number of receiving antennas M . In this case,
the conventional regime (ML � N ) could only be achieved with a
very small L, which would seriously limit the correlation identifica-
tion capabilities among the different received signals.

Statistical assumptions. We will assume that the signals re-
ceived by the M antennas, that is ym[n], m ≥ 1, are mutually in-
dependent, stationary, zero mean and circularly symmetric Gaussian
distributed time series with autocovariance sequences (rm(k))k∈N

in (1) and associated spectral densities Sm(ν) as in (2). We will
assume that the spectral densities are uniformly bounded above and
below, that is

0 < inf
m≥1

min
ν∈[0,1]

Sm(ν) ≤ sup
m≥1

max
ν∈[0,1]

Sm(ν) < +∞.

Furthermore, the autocovariance sequence rm will be assumed to
decay sufficiently fast in the lag domain, so that

sup
m≥1

∞∑
n=−∞

(1 + |n|)γ0 |rm(n)| < ∞ (5)

for some γ0 > 0. Finally, if we denote by rM the M -dimensional
sequence of covariances, namely rM (k) = [r1(k), . . . , rM (k)]T ,
we will also need to assume that

sup
M≥1

1√
M

∑
k∈Z

‖rM (k)‖ < +∞.

We will see next that, with exponentially high probability, the

empirical eigenvalue distribution of the R̂corr,L has the same asymp-
totic behavior as a deterministic scalar measure μN (λ) that essen-
tially depends on the autocovariance sequences of the signals re-
ceived at the M different antennas. This measure will be useful
to characterize the asymptotics of the linear spectral statistics φ̂N

whenever the autocovariance sequences (or the associated spectral
densities) of the different time series are known beforehand. Later,
we will see that this deterministic measure μN (λ) can be further ap-
proximated by the Marchenko-Pastur distribution of parameter cN ,
a result that can be used to characterize the asymptotic behavior of

φ̂N in the more common situation where the covariance structure of
the different signals is unknown.

In order to introduce the measure μN (λ), we need to con-
sider some matrix Toeplitzation operators that were originally
used in [23], which inherently depend on the covariance sequences
(rm)m≥1 of the received signals. In order to introduce these opera-
tors, for ν ∈ [0, 1] and R ∈ N, we define the column vector

dR(ν) =
(
1, e2iπν , . . . , e2iπ(R−1)ν

)T

(6)



and let aR(ν) denote the corresponding normalized vector, i.e.

aR(ν) = R−1/2dR(ν). With these two definitions, we are now
able to introduce the Toeplitzation operators used to define the
above deterministic measure μN (λ). For a given squared matrix M

with dimensions R × R, we define Ψ
(m)
K (M), m = 1, . . . ,M , as

the K ×K Toeplitz matrix given by

Ψ
(m)
K (M) =

∫ 1

0

Sm (ν)aH
R (ν)MaR (ν)dK (ν)dH

K (ν) dν.

The above operator is the key building block that defines Ψ and Ψ,
which are the ones that determine the master equations that define
μN (λ). Indeed, consider an N ×N matrix M. We define Ψ(M) as
an ML×ML block diagonal matrix with mth diagonal block given

by Ψ
(m)
L (M), namely

Ψ(M) = Bdiag
(
Ψ

(1)
L (M) , . . . ,Ψ

(M)
L (M)

)
. (7)

Finally, consider an ML×ML matrix M, and let Mm,m denote its
mth L× L diagonal block. We define Ψ(M) as the N ×N matrix
given by

Ψ(M) =
1

M

M∑
m=1

Ψ
(m)
N (Mm,m) . (8)

Having introduced the above operators, we are now ready to
present the master equations that define the deterministic measure
μN (λ). Consider a z ∈ C

+ (the upper complex semiplane) and the

following pair of equations in TN (z), T̃N (z):

TN (z) = −1

z

(
IML + B−1/2

L Ψ
(
T̃T

N (z)
)
B−1/2

L

)−1

(9)

T̃N (z) = −1

z

(
IN + cNΨ

T
(
B−1/2

L TN (z)B−1/2
L

))−1

. (10)

where BL is an ML × ML block diagonal matrix with L × L
blocks Rm,L, m = 1, . . . ,M as defined in (3). It can be shown that

there exists a unique pair of solutions TN (z), T̃N (z) to the above
equations in the set of matrix-valued Stieltjes transforms of positive
matrix measures carried by R

+ of sizes ML × ML and N × N
respectively. Then, μN (λ) is defined as the deterministic measure
with Stieltjes transform tN (z) = (ML)−1 Tr(TN (z)). We recall
that the measure μN (λ) can be retrieved from its Stieltjes transform
tN (z) via the Stieltjes inverse formula, that is∫ b

a

dμN (λ) = lim
y→0+

1

π

∫ b

a

Im [tN (x+ iy)] dx

for any two continuity points a, b ∈ R. Having introduced this
deterministic measure, we are now in the position to present the first
result of this paper, which is proven in [24].

Theorem 1. Consider the above statistical and asymptotic assump-
tions. Let β < 4/5 and assume that φ is a smooth function with
compact support on the positive real axis. Then, for every small
ε > 0 there exists an r > 0 independent of N such that

P

(∣∣∣∣φ̂N −
∫
R+

φ(λ)dμN (λ)

∣∣∣∣ > N ε

Nmin(βγ0,1−β)

)
< e−Nr

(11)

for all N sufficiently large.

The above theorem establishes that, with exponentially high
probability, linear spectral statistics of the spatio-temporal sample

autocorrelation matrix are asymptotically close to a deterministic
quantity that can be completely characterized from the determin-
istic scalar measure μN (λ), with an error term that decays as

O(N−min(βγ0,1−β)). In order to determine the asymptotic de-

terministic equivalent of the statistic φ̂N , we need the deterministic
measure μN (λ), which inherently depends on the spectral densities
of the signals received at the different antennas. In most applications,
these spectral densities are completely unknown, so that μN (λ) can-
not possibly be determined. In these cases, we may consider an
additional approximation step, which shows that μN (λ) is asymp-
totically close to a Marchenko-Pastur distribution of parameter cN ,
up to an additional deterministic error term.

Before we present this second approximation, it is worth point-
ing out that the assumption that the function φ has compact sup-
port can be relaxed under some special conditions. For example,
the above result is equally valid for the function φ(λ) = (λ− 1)2,
which gives rise to the famous Frobenius norm test (sum of the

squared modulus of the off-diagonal entries of R̂corr,L), which cor-

responds to φ̂N = ||R̂corr,L − IML||2F . We refer the reader to [24,
Remark 6.1] for further details on when Theorem 1 can still be ap-
plied to functions without compact support.

3. APPROXIMATION BY A MARCHENKO-PASTUR LAW

Let us now turn to the more common situation where the spectral
densities of the received signals are unknown, so that one has to rely
on a less accurate asymptotic approximation of the linear spectral
statistic. The following result is established in [24] by using results
on orthogonal polynomials associated to the measures Sm(ν)dν [25,
26]. We will denote by μmp,cN the Marchenko-Pastur distribution
with parameter cN = ML

N
. We recall that μmp,cN is the limit

of the empirical eigenvalue distribution of a large random matrix
N−1XXH where X is an ML × N random matrix with i.i.d. en-
tries having zero mean and unit variance.

Theorem 2. Consider the statistical and asymptotic assumptions at
the beginning of Section 2. Then, for every γ < γ0, γ 
= 1 and every
compactly supported smooth function φ on the positive real axis, we
have∣∣∣∣

∫
R+

φ(λ)dμN (λ)−
∫
R+

φ(λ)dμmp,cN (λ)

∣∣∣∣ < κ
1

N2β min(γ,1)

(12)
for some universal constant κ > 0.

The above theorem basically establishes a further level of ap-

proximation of the original linear spectral statistic φ̂N , which can
be asymptotically described by the Marchenko-Pastur law (thus not
requiring the knowledge of the individual spectral densities Sm(ν)).
The price to pay is an additional error term, this time decaying to
zero with speed O(N−2β min(γ,1)). Unfortunately, the error term in
(12) becomes the dominant one as soon as β < 1/3 if γ0 > 1. Note
that the situation where β is small (or, equivalently, L � M ) is the
most relevant asymptotic scenario. Otherwise, the ratio M/N con-
verges quickly towards 0, which in practice represents situations in
which M � N . Therefore, it may be possible to choose a reason-
ably large value of L such that ML

N
� 1 and therefore the simpler

asymptotic regime where ML
N

→ 0 may be relevant enough.
In conclusion, we observe that when β < 1/3 and γ0 > 1, the

dominant error incurred by approximating the linear spectra statistic

φ̂N as an integral with respect to the Marchenko-Pastur law is in fact
an unknown deterministic term as established in (12).
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Fig. 1. Histogram of the eigenvalues of R̂corr,L in comparison with
the distributions μN and μmp,cN for different values of M,N,L
with ρ = 0.5. The upper plot corresponds to a situation where cN >
1 whereas the lower plot represents the case cN < 1.

4. NUMERICAL VALIDATION

We consider here a simple example in which the M independent
time series are all autoregressive processes of order one AR(1)
with parameter ρ and unit power. By this, we mean that we gener-
ate each time series independently by the recursion ym[n + 1] =
ρym[n] + em[n] where em[n] ∼ NC(0, 1− |ρ|2). We first compare
the empirical eigenvalue distribution of the sample cross correlation

matrix R̂corr,L with the scalar deterministic measure μN and the
Marchenko-Pastur distribution with parameter cN , that is μmp,cN .

Figure 1 represents the histogram of the eigenvalues of R̂corr,L

together with the densities of μN and μmp,cN for different values of
M,N,L. In general terms, we observe that the Marchenko-Pastur
law is a very good approximation of the actual empirical eigenvalue
distribution, even for relatively low values of M,L. In fact, it is
difficult to spot the difference between the two densities of μN and
μmp,cN , which appear to be more apparent near the endpoints of
their corresponding supports.

Next, consider a correlation detection test statistic consisting
of the sum of the squared value of all the off-diagonal entries of

R̂corr,L. As mentioned above, this corresponds to a linear spectral

statistic of R̂corr,L built with the function φ(λ) = (λ−1)2. For this
particular choice of the function φ(λ), we can establish that∫

φ(λ)dμN (λ) = cN + cN
1

ML
Tr

(B−1
L Ψ(EN )

)
(13)

where we have introduced the N ×N matrix EN , defined as

EN =

∫ 1

0

1

M

M∑
m=1

(
Sm(ν)aH

L (ν)R−1
m,LaL(ν)− 1

)
dN (ν)dH

N (ν)dν

with Rm,L defined in (3). On the other hand, we can also estab-
lish that

∫
φ(λ)dμmp,cN (λ) = cN . In the upper plot of Figure 2

we evaluate the error between φ̂N and the corresponding integral of
φ(λ) with respect to the Marchenko–Pastur distribution. For each
experiment, we fixed the three parameters c�, N and β and con-
sidered a set of M = [(c�N)1−β ] independent signals and L =
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Fig. 2. Evolution of the error of φ̂N with respect to the Marchenko-
Pastur limit as a function of β.

[(c�N)β ] time lags, where [x] here denotes the integer that is closest
to x. The errors are represented as the square root of the empirical
mean of the corresponding normalized difference, averaged over the
104 realizations of the AR(1) processes. In the lower plot, we repre-
sent the two constituent errors that are characterized in Theorems 1
and 2 respectively. “Error 1” (solid lines) represents the square root

of the empirical mean of |φ̂N −∫
φ(λ)dμN |2, and “Error 2” (dotted

lines) represents | ∫ φ(λ)dμN − ∫
φ(λ)dμmp,N |.

These results tend to confirm the fact that the error between
the considered statistic and its asymptotic deterministic approxima-
tion tends to be dominated by two different phenomena depend-
ing on whether M � L (large β) or M � L (small β). In the
fist case, the main contribution to the error corresponds to the term

φ̂N − ∫
φ(λ)dμN (Error 1). We recall that, since the correlation

sequence considered here decays exponentially to zero, this error
term is dominated by N−(1−β), which in particular increases with β.
Conversely, when M � L (small β), the error is dominated by the
difference between the two measures μN and μmp,N . We have seen
that this error term is dominated by a term of order N−2β , which in
particular decreases with β. Observe also that the optimum choice of
β in terms of approximation error appears to be close to 1/3, which
corresponds to the case where the two error rates coincide.

5. CONCLUSIONS

We have examined the problem of testing uncorrelation via linear
spectral statistics of the spatio-temporal sample autocorrelation ma-
trix under the hypotheses that the signals received at the different an-
tennas are mutually uncorrelated. In the large dimensional regime,
these statistics can be well approximated by deterministic equiva-
lents depending on the constituent spectral densities. A closed form
expression has been derived for the Stieltjes transform of the deter-
ministic measure associated to this asymptotic equivalent. Finally, it
has been shown that (up to an additional error term) one can also ex-
press these deterministic equivalents as the corresponding integrals
with respect to a Marchenko-Pastur distribution, which do not re-
quire the knowledge of the covariance structure of the signals.
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