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INTRODUCTION

We consider the problem of testing whether a collection of wideband signals received by a large number of spatially distributed antennas are correlated. The main motivation for this problem in array signal processing is the detection of the presence of wideband directional sources using a large number of receivers that are subject to calibration and synchronization errors. Since the received signals are generally wideband, they can be best modeled as time series. Under these challenging circumstances, and given the difficulty of establishing valid signal models for such a general propagation environment, one possible way of detecting the presence of directional signals is by establishing whether the signals that are measured at the different antennas are statistically independent. If the signals are assumed to be zero-mean and Gaussian distributed, the problem is equivalent to testing uncorrelation among the different time series.

Uncorrelation tests among multiple time series have traditionally been formulated from two different perspectives, namely frequencydomain approaches and lag-domain approaches. Frequency-domain methods establish that the different time series are uncorrelated when the spectral coherence matrix is equal to the identity over all the spectrum, e.g. [START_REF] Wahba | Some tests of independence for stationary multivariate time series[END_REF][START_REF] Taniguchi | Nonparametric approach for non-Gaussian vector stationary processes[END_REF][START_REF] Eichler | A frequency-domain based test for noncorrelation between stationary time series[END_REF][START_REF] Eichler | Testing nonparametric and semiparametric hypotheses in vector stationary processes[END_REF]. Lag-domain approaches, on the contrary, directly examine the autocorrelation coefficients between the This work has been partially funded by the French government through the Bézout Labex (ANR-10-LABX-58) and the HIDITSA project (ANR-17-CE40-0003) and by the Spanish government under the Aristides project (RTI2018-099722-B-I00).

different time series taken at distinct time lags, e.g. [START_REF] Haugh | Checking the independence of two covariancestationary time series: a univariate residual cross-correlation approach[END_REF][START_REF] Hong | Testing for independence between two covariance stationary time series[END_REF][START_REF] Duchesne | Robust tests for independence of two time series[END_REF][START_REF] Kim | A test for independence of two stationary infinite order autoregressive processes[END_REF][START_REF] Himdi | Tests for non-norrelation of two multivariate time series: A nonparametric approach[END_REF]. In this paper, we focus on this second family of approaches, which directly work on the sample autocorrelation matrix series between pairs of time series. For a similar treatment of frequency-domain approaches, the reader is referred to [START_REF] Loubaton | Large random matrix approach for testing independence of a large number of Gaussian time series[END_REF][START_REF] Rosuel | On The Frequency Domain Detection of High Dimensional Time Series[END_REF].

Let ym[n] denote the signal that is captured at the mth antenna, m = 1, . . . , M, where M is the total number of receive antennas. Assuming that the signals are complex circularly symmetric Gaussian stationary processes with zero mean, they will be uncorrelated if and only if

E [ym[n + ]y * k [n]] = rm( )δ m=k (1)
for all ∈ Z, where (rm( )) ∈Z is the covariance sequence of the mth received signal, which can be expressed as the inverse Fourier transform of the associated spectral density Sm (ν), namely

rm ( ) = 1 0 Sm (ν) e 2πiν dν. (2) 
In practice, the right hand side of (1) is replaced with the empirical mean estimate taken from N consecutive samples of the received signals, that is rm,m (n + , n) where

rm,m n, n = 1 N N -1 n=0 ym[n]y * m [n ]
which is computed for a finite span of time lags, namely = -(L -1) , . . . , L -1 for some design integer L. In order to formalize the construction of uncorrelation tests based on the above empirical estimates, let us consider the ML × ML spatio-temporal empirical covariance matrix RL. This matrix is structured in blocks of size L × L associated to each pair of series. More specifically, the

L × L block matrix in the position (m, m ) for 1 ≤ m, m ≤ M can be denoted as R (m,m ) L
and corresponds to the sample crosscovariance matrix between the signals received at antennas m and m . The (l1, l2)th entry of this matrix can therefore be written as

R (m,m ) L l 1 ,l 2 = rm,m (n + l1, n + l2) .
If we keep M, L fixed and let N → ∞ assuming that the signals are independent, the spatio-temporal sample covariance matrix RL converges almost surely to a block diagonal matrix with L × L Toeplitz blocks Rm,L, m = 1, . . . , M, with entries

(Rm,L) l 1 ,l 2 = rm(l1 -l2). ( 3 
)
This means that, if N is sufficiently large, one can test whether the signals are uncorrelated by checking how far RL is from a block diagonal matrix. This is the main motivation for considering the sample spatio-temporal correlation matrix, defined as

Rcorr,L = B -1/2 L RL B -1/2 L
where BL is the block diagonal matrix with blocks R (m,m) L

, m = 1, . . . , M. If N is sufficiently large with respect to the other parameters (in the sense that ML/N 1) one would expect Rcorr,L to be close to the identity matrix provided that the observed signals are uncorrelated.

A key aspect of the above discussion is how to choose the maximum tested lag L in a practical setting. On the one hand, L should be sufficiently large, because this allows to identify correlations among signals collected at different antennas associated to large time lags. For example, if a jammer source transmits white noise and is received at two different antennas with a time difference of more than L samples, it will be perceived as completely uncorrelated signals at these two antennas. On the other hand, L should be chosen sufficiently small so that ML/N 1 in order to make the estimation error Rcorr,L -IML reasonably low when the signals are indeed uncorrelated. The situation is specially challenging when the number of collected signals M is large and the number of observations N is limited, because the condition ML/N 1 requires the selection of a small value for L, thus drastically limiting the efficiency of the uncorrelation tests based on Rcorr,L -IML . Our objective here is to study the spectral behavior of Rcorr,L in asymptotic regimes where M, N, L converge towards +∞ in such a way that cN = ML N converges towards a non zero constant c * ∈ (0, +∞). This asymptotic regime is much more relevant than conventional asymptotics (N → ∞ for fixed ML) because it corresponds to a situation where size of the spatio-temporal sample autocorrelation matrix Rcorr,L is comparable in magnitude to the number of samples used in the underlying sample covariance estimators.

There exist several studies in the literature that have specifically focused on this large dimensional asymptotic regime (see, e.g. [START_REF] Jiang | Central limit theorems for classical likelihood ratio tests for high-dimensional distributions[END_REF][START_REF] Dette | Likelihood ratio tests for many groups in high dimensions[END_REF][START_REF] Mestre | Correlation tests and linear spectral statistics of the sample correlation matrix[END_REF]), although most of them have considered the case where L is fixed. In fact, a number of previous works have investigated the behavior of the autocovariance matrix for a given fixed time lag (see [START_REF] Jin | Limited spectral distribution of a symmetrised auto-cross covariance matrices[END_REF][START_REF] Li | On singular value distribution of largedimensional autocovariance matrices[END_REF][START_REF] Liu | On the Marcenko-Pastur law for linear time series[END_REF][START_REF] Bhattachargee | Large sample behaviour of highdimensional autocovariance matrices[END_REF][START_REF] Jiang | The limiting distributions of eigenvalues of sample correlation matrices[END_REF][START_REF] Nowak | Spectra of large time-lagged correlation matrices from random matrix theory[END_REF][START_REF] Loubaton | On the behaviour of large autocovariance matrices between the past and the future[END_REF]). The case of large L has been investigated in [START_REF] Loubaton | On the almost sure location of the singular values of certain Gaussian block-Hankel large random matrices[END_REF] and [START_REF] Loubaton | Spectral convergence of large block-Hankel Gaussian random matrices[END_REF], which also addressed the asymptotic regime considered in the present paper. More specifically, [START_REF] Loubaton | On the almost sure location of the singular values of certain Gaussian block-Hankel large random matrices[END_REF] assumed that the M mutually independent time series are i.i.d. Gaussian white noise and established that the empirical eigenvalue distribution of the sample spatio-temporal covariance matrix RL converges to the Marchenko-Pastur distribution. In [START_REF] Loubaton | Spectral convergence of large block-Hankel Gaussian random matrices[END_REF], a more general situation in which the different time series were independent but were allowed to present non-trivial statistical dependencies in the time domain. Under the present asymptotic conditions, it was established that the empirical eigenvalue distribution has also a deterministic behavior.

In this paper, we propose to study the behavior of spectral statistics built from the eigenvalues of Rcorr,L, which will be denoted by ( λk,N ) k=1,...,M L . More specifically, we will consider linear spectral statistics (LSS) built from this matrix, which take the general form

φN = 1 ML Tr φ Rcorr,L = 1 ML ML k=1 φ λk,N (4) 
where φ is assumed to be a sufficiently smooth function. Our interest is mainly on the behavior of this type of statistics for the characterization of uncorrelation tests under the null hypothesis, which cor-responds to the situation where the different signals are independent but present non-trivial statistical dependence in the time domain.

ASYMPTOTIC DETERMINISTIC EQUIVALENT OF φN

Our objective is to characterize the behavior of linear spectral statistics as given in (4) when the three parameters M, L, N grow without bound. We will strongly rely on the following asymptotic and statistical assumptions. Asymptotic assumptions. We will let M → +∞, N → +∞ in such a way that cN = ML N → c , where 0 < c < +∞, and that L = L(N ) = O(N β ) for some constant β ∈ (0, 1). Special emphasis will be given to the case where β is small. Indeed, the scenario with small β can be associated with configurations operating with a large number of receiving antennas M . In this case, the conventional regime (ML N ) could only be achieved with a very small L, which would seriously limit the correlation identification capabilities among the different received signals.

Statistical assumptions. We will assume that the signals received by the M antennas, that is ym[n], m ≥ 1, are mutually independent, stationary, zero mean and circularly symmetric Gaussian distributed time series with autocovariance sequences (rm(k)) k∈N in (1) and associated spectral densities Sm(ν) as in [START_REF] Taniguchi | Nonparametric approach for non-Gaussian vector stationary processes[END_REF]. We will assume that the spectral densities are uniformly bounded above and below, that is

0 < inf m≥1 min ν∈[0,1] Sm(ν) ≤ sup m≥1 max ν∈[0,1] Sm(ν) < +∞.
Furthermore, the autocovariance sequence rm will be assumed to decay sufficiently fast in the lag domain, so that

sup m≥1 ∞ n=-∞ (1 + |n|) γ 0 |rm(n)| < ∞ (5)
for some γ0 > 0. Finally, if we denote by rM the M -dimensional sequence of covariances, namely rM (k) = [r1(k), . . . , rM (k)] T , we will also need to assume that

sup M ≥1 1 √ M k∈Z rM (k) < +∞.
We will see next that, with exponentially high probability, the empirical eigenvalue distribution of the Rcorr,L has the same asymptotic behavior as a deterministic scalar measure μN (λ) that essentially depends on the autocovariance sequences of the signals received at the M different antennas. This measure will be useful to characterize the asymptotics of the linear spectral statistics φN whenever the autocovariance sequences (or the associated spectral densities) of the different time series are known beforehand. Later, we will see that this deterministic measure μN (λ) can be further approximated by the Marchenko-Pastur distribution of parameter cN , a result that can be used to characterize the asymptotic behavior of φN in the more common situation where the covariance structure of the different signals is unknown.

In order to introduce the measure μN (λ), we need to consider some matrix Toeplitzation operators that were originally used in [START_REF] Loubaton | Spectral convergence of large block-Hankel Gaussian random matrices[END_REF], which inherently depend on the covariance sequences (rm) m≥1 of the received signals. In order to introduce these operators, for ν ∈ [0, 1] and R ∈ N, we define the column vector dR(ν) = 1, e 2iπν , . . . , e 2iπ(R-1)ν T [START_REF] Hong | Testing for independence between two covariance stationary time series[END_REF] and let aR(ν) denote the corresponding normalized vector, i.e. aR(ν) = R -1/2 dR(ν). With these two definitions, we are now able to introduce the Toeplitzation operators used to define the above deterministic measure μN (λ). For a given squared matrix M with dimensions R × R, we define Ψ (m) K (M), m = 1, . . . , M, as the K × K Toeplitz matrix given by

Ψ (m) K (M) = 1 0 Sm (ν) a H R (ν) MaR (ν) dK (ν) d H K (ν) dν.
The above operator is the key building block that defines Ψ and Ψ, which are the ones that determine the master equations that define μN (λ). Indeed, consider an N × N matrix M. We define Ψ (M) as an ML × ML block diagonal matrix with mth diagonal block given by Ψ (m) L (M), namely

Ψ (M) = Bdiag Ψ (1) L (M) , . . . , Ψ (M ) L (M) . ( 7 
)
Finally, consider an ML × ML matrix M, and let Mm,m denote its mth L × L diagonal block. We define Ψ (M) as the N × N matrix given by

Ψ (M) = 1 M M m=1 Ψ (m) N (Mm,m) . ( 8 
)
Having introduced the above operators, we are now ready to present the master equations that define the deterministic measure μN (λ). Consider a z ∈ C + (the upper complex semiplane) and the following pair of equations in TN (z), TN (z):

TN (z) = - 1 z IML + B -1/2 L Ψ T T N (z) B -1/2 L -1 (9) 
TN (z) = - 1 z IN + cN Ψ T B -1/2 L TN (z)B -1/2 L -1 . ( 10 
)
where BL is an ML × ML block diagonal matrix with L × L blocks Rm,L, m = 1, . . . , M as defined in (3). It can be shown that there exists a unique pair of solutions TN (z), TN (z) to the above equations in the set of matrix-valued Stieltjes transforms of positive matrix measures carried by R + of sizes ML × ML and N × N respectively. Then, μN (λ) is defined as the deterministic measure with Stieltjes transform tN (z) = (ML) -1 Tr(TN (z)). We recall that the measure μN (λ) can be retrieved from its Stieltjes transform tN (z) via the Stieltjes inverse formula, that is

b a dμN (λ) = lim y→0 + 1 π b a Im [tN (x + iy)] dx
for any two continuity points a, b ∈ R. Having introduced this deterministic measure, we are now in the position to present the first result of this paper, which is proven in [START_REF] Loubation | On the asymptotic behavior of the eigenvalue distribution of block correlation matrices of highdimensional time series[END_REF].

Theorem 1. Consider the above statistical and asymptotic assumptions. Let β < 4/5 and assume that φ is a smooth function with compact support on the positive real axis. Then, for every small > 0 there exists an r > 0 independent of N such that [START_REF] Rosuel | On The Frequency Domain Detection of High Dimensional Time Series[END_REF] for all N sufficiently large.

P φN - R + φ(λ)dμN (λ) > N N min(βγ 0 ,1-β) < e -N r
The above theorem establishes that, with exponentially high probability, linear spectral statistics of the spatio-temporal sample autocorrelation matrix are asymptotically close to a deterministic quantity that can be completely characterized from the deterministic scalar measure μN (λ), with an error term that decays as O(N -min(βγ 0 , 1-β) ). In order to determine the asymptotic deterministic equivalent of the statistic φN , we need the deterministic measure μN (λ), which inherently depends on the spectral densities of the signals received at the different antennas. In most applications, these spectral densities are completely unknown, so that μN (λ) cannot possibly be determined. In these cases, we may consider an additional approximation step, which shows that μN (λ) is asymptotically close to a Marchenko-Pastur distribution of parameter cN , up to an additional deterministic error term.

Before we present this second approximation, it is worth pointing out that the assumption that the function φ has compact support can be relaxed under some special conditions. For example, the above result is equally valid for the function φ(λ) = (λ -1) 2 , which gives rise to the famous Frobenius norm test (sum of the squared modulus of the off-diagonal entries of Rcorr,L), which corresponds to φN = || Rcorr,L -IML|| 2 F . We refer the reader to [24, Remark 6.1] for further details on when Theorem 1 can still be applied to functions without compact support.

APPROXIMATION BY A MARCHENKO-PASTUR LAW

Let us now turn to the more common situation where the spectral densities of the received signals are unknown, so that one has to rely on a less accurate asymptotic approximation of the linear spectral statistic. The following result is established in [START_REF] Loubation | On the asymptotic behavior of the eigenvalue distribution of block correlation matrices of highdimensional time series[END_REF] by using results on orthogonal polynomials associated to the measures Sm(ν)dν [START_REF] Ya | Polynomials Orthogonal on a Circle and Interval[END_REF][START_REF] Simon | Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory[END_REF]. We will denote by μmp,c N the Marchenko-Pastur distribution with parameter cN = ML N . We recall that μmp,c N is the limit of the empirical eigenvalue distribution of a large random matrix N -1 XX H where X is an ML × N random matrix with i.i.d. entries having zero mean and unit variance.

Theorem 2. Consider the statistical and asymptotic assumptions at the beginning of Section 2. Then, for every γ < γ0, γ = 1 and every compactly supported smooth function φ on the positive real axis, we have

R + φ(λ)dμN (λ) - R + φ(λ)dμmp,c N (λ) < κ 1 N 2β min(γ,1) (12 
) for some universal constant κ > 0.

The above theorem basically establishes a further level of approximation of the original linear spectral statistic φN , which can be asymptotically described by the Marchenko-Pastur law (thus not requiring the knowledge of the individual spectral densities Sm(ν)). The price to pay is an additional error term, this time decaying to zero with speed O(N -2β min(γ,1) ). Unfortunately, the error term in [START_REF] Jiang | Central limit theorems for classical likelihood ratio tests for high-dimensional distributions[END_REF] becomes the dominant one as soon as β < 1/3 if γ0 > 1. Note that the situation where β is small (or, equivalently, L M ) is the most relevant asymptotic scenario. Otherwise, the ratio M/N converges quickly towards 0, which in practice represents situations in which M N . Therefore, it may be possible to choose a reasonably large value of L such that ML N 1 and therefore the simpler asymptotic regime where ML N → 0 may be relevant enough. In conclusion, we observe that when β < 1/3 and γ0 > 1, the dominant error incurred by approximating the linear spectra statistic φN as an integral with respect to the Marchenko-Pastur law is in fact an unknown deterministic term as established in [START_REF] Jiang | Central limit theorems for classical likelihood ratio tests for high-dimensional distributions[END_REF]. 

NUMERICAL VALIDATION

We consider here a simple example in which the M independent time series are all autoregressive processes of order one AR [START_REF] Wahba | Some tests of independence for stationary multivariate time series[END_REF] with parameter ρ and unit power. By this, we mean that we generate each time series independently by the recursion ym

[n + 1] = ρym[n] + em[n] where em[n] ∼ N C (0, 1 -|ρ| 2 )
. We first compare the empirical eigenvalue distribution of the sample cross correlation matrix Rcorr,L with the scalar deterministic measure μN and the Marchenko-Pastur distribution with parameter cN , that is μmp,c N . Figure 1 represents the histogram of the eigenvalues of Rcorr,L together with the densities of μN and μmp,c N for different values of M, N, L. In general terms, we observe that the Marchenko-Pastur law is a very good approximation of the actual empirical eigenvalue distribution, even for relatively low values of M, L. In fact, it is difficult to spot the difference between the two densities of μN and μmp,c N , which appear to be more apparent near the endpoints of their corresponding supports. Next, consider a correlation detection test statistic consisting of the sum of the squared value of all the off-diagonal entries of Rcorr,L. As mentioned above, this corresponds to a linear spectral statistic of Rcorr,L built with the function φ(λ) = (λ -1) 2 . For this particular choice of the function φ(λ), we can establish that

φ(λ)dμN (λ) = cN + cN 1 ML Tr B -1 L Ψ(EN ) (13) 
where we have introduced the N × N matrix EN , defined as

EN = 1 0 1 M M m=1 Sm(ν)a H L (ν)R -1 m,L aL(ν) -1 dN (ν)d H N (ν)dν
with Rm,L defined in (3). On the other hand, we can also establish that φ(λ)dμmp,c N (λ) = cN . In the upper plot of Figure 2 we evaluate the error between φN and the corresponding integral of φ(λ) with respect to the Marchenko-Pastur distribution. For each experiment, we fixed the three parameters c , N and β and considered a set of M = [(c N ) [(c N ) β ] time lags, where [x] here denotes the integer that is closest to x. The errors are represented as the square root of the empirical mean of the corresponding normalized difference, averaged over the 10 4 realizations of the AR(1) processes. In the lower plot, we represent the two constituent errors that are characterized in Theorems 1 and 2 respectively. "Error 1" (solid lines) represents the square root of the empirical mean of | φNφ(λ)dμN | 2 , and "Error 2" (dotted lines) represents | φ(λ)dμNφ(λ)dμmp,N |.

These results tend to confirm the fact that the error between the considered statistic and its asymptotic deterministic approximation tends to be dominated by two different phenomena depending on whether M L (large β) or M L (small β). In the fist case, the main contribution to the error corresponds to the term φNφ(λ)dμN (Error 1). We recall that, since the correlation sequence considered here decays exponentially to zero, this error term is dominated by N - (1-β) , which in particular increases with β. Conversely, when M L (small β), the error is dominated by the difference between the two measures μN and μmp,N . We have seen that this error term is dominated by a term of order N -2β , which in particular decreases with β. Observe also that the optimum choice of β in terms of approximation error appears to be close to 1/3, which corresponds to the case where the two error rates coincide.

CONCLUSIONS

We have examined the problem of testing uncorrelation via linear spectral statistics of the spatio-temporal sample autocorrelation matrix under the hypotheses that the signals received at the different antennas are mutually uncorrelated. In the large dimensional regime, these statistics can be well approximated by deterministic equivalents depending on the constituent spectral densities. A closed form expression has been derived for the Stieltjes transform of the deterministic measure associated to this asymptotic equivalent. Finally, it has been shown that (up to an additional error term) one can also express these deterministic equivalents as the corresponding integrals with respect to a Marchenko-Pastur distribution, which do not require the knowledge of the covariance structure of the signals.
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 1 Fig. 1. Histogram of the eigenvalues of Rcorr,L in comparison with the distributions μN and μmp,c N for different values of M, N, L with ρ = 0.5. The upper plot corresponds to a situation where cN > 1 whereas the lower plot represents the case cN < 1.
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 2 Fig. 2. Evolution of the error of φN with respect to the Marchenko-Pastur limit as a function of β.