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Introduction : Cross-field transport, that controls the energy confinement time in tokamaks,
is mainly driven by turbulence. In L-mode edge plasmas, the interchange and drift waves in-
stabilities are expected to be dominant. The first one is linked to the magnetic curvature while
the second derives from the parallel conductivity [1]. It is observed that the resulting ion-scale
turbulence can self-organize into zonal flows (ZFs) that participate efficiently to its saturation
[2, 3]. More recently, it has been observed that ZFs can structure into staircases [4], hence pro-
ducing a set of micro-barriers that can efficiently mitigate avalanche transport.

In this work, the issues of ZFs generation and impact on transport are addressed by means of
a reduced flux-driven nonlinear model that features both interchange and drift waves instabili-
ties [5, 6]. The linear properties of both instabilities are controlled by two plasma parameters,
the mean curvature g of the magnetic field, and the adiabaticity parameter C that scales like the
square of the parallel wave vector divided by the electron-ion collision frequency.

It is shown here that albeit the interchange parameter is controlling the structuration into
staircases, the adiabaticity parameter controls the turbulent energy that gets stored in the flows.
Moreover, the confinement time normalized to a mixing length estimate exhibits the same de-
pendencies as the energy balance between turbulent modes and zonal flows, attesting the effi-
ciency of nonlinearly generated flows to mitigate turbulent transport.

Tokamld: a reduced interchange-drift waves model

One considers a magnetized plasma of constant ion T; and electron Te temperatures, 7 = Ti/Te,
immersed in a constant-in-time magnetic field B. The model is solved in a SLAB geometry with
x and y standing for the Cartesian coordinates perpendicular to B. The model derives from the

electron continuity and charge balance equations. A generalized Ohm’s law closes the system,



linking the parallel current to the electric field and the electron pressure gradient.
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The system of equations (1,2) involves the logarithm of the electron density N = In n and the

generalized vorticity Q = V2 (¢ + 7N). The nonlinearities are contained in Poisson brackets

{f, g} = axfoyg — 9y fxg. The magnetic curvature parameter is defined as g = 2, with R
the major radius of the tokamak and ps the sound Larmor radius. The parallel conductivity

is considered constant and is defined as the electron cyclotron frequency to the electron-ion
collision frequency o = ‘f/—;e . The system is flux-driven with a source of particles Sy and the
damping of small scales is ensured by the diffusive terms D and v.

So as to keep track of nonlinear dynamics while dealing with a more tractable system, the
model is further reduced from 3-dimensions to 1 by splitting each field between an equilibrium

and a fluctuating component, both depending on (X, t) only. Single parallel and poloidal wave

vectors (kj, ky) are retained for the fluctuating quantities, so that (V, dy) —— i(ky, ky). The final
system of equations then evolves 4 fields. Two real fields for the equilibrium components, Neg,

Veq = dx@eq, and two complex fields for the fluctuating parts, Nk, Q«. The adiabaticity parameter

is then defined as C = ak|2.

Turbulent energy gets stored into flows at high C

Simulations are performed using a Nx = 512 radial points grid on confinement timescales
with dt = 10-'wg!. The adiabaticity parameter C is scanned from 2.10-* to 2.10-2 for 2 dif-
ferent values of g: 10-* and 10—3. As a comparison, using WEST tokamak data (major radius
R = 2.5 m, minor radius a = 0.5 m, magnetic field at separatrix Bsep ~ 3 T), and considering
a density of no = 10~ m—3, temperature of Te =~ 100 eV and safety factor ges = 5, one can
estimate the instability parameters to be C = 4.5.10—3and g = 2.6.10-*.

It is observed that ZFs are generated in every simulations although not at the same intensity.
Whenever the flows are artificially switched off, a large scale radial mode tends to grow and
the system enters a state of large density gradient building and strong quasi-periodic relaxation
events. When flows are retained, it appears that ZFs develop staircase-like structures in inter-
change dominated simulations (fig 1) meaning at high g for a fixed C.

The total energy is conserved in the simulations. It is possible to define transfer channels from

the quadratic terms of the free energy conservation theorem. Among them, most of the energy
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Figure 1: Veq as a function of radius and time for a small (left) and high (right) magnetic curva-
ture g, both performed at C = 2.10-4.
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Figure 2: (left) Turbulent energy stored into flows as a function of C for two values of g. (right)
Mean shear of velocity.

is stored in the density gradient. The rest is split between the turbulence, Ewrb, the flows, Ev,,,
and the transfer terms between gradient and flows. It is then possible to study the energy dis-
tribution between turbulence and flows depending on the instability parameters, see fig 2. The
relative energy stored in the flows tends to increase with the adiabaticity parameter, while the
interchange parameter have a little role, if any. Consistently, the mean shear tends to increase as

the energy is stored inside the flows.

Confinement time of particles improves with flows

The effect of the flows on the transport is evaluated with the confinement time of the particles
for each simulation. The confinement time 7, is given by the total number of particles (integral
of the density profile) divided by the integral of the particle source. This time is mostly gov-
erned by the turbulent transport, l'es = —2ky|Nk||g«|sinA¢, which is largely controlled by the

instability parameters as they control the linear growth rate and linear cross-phase A¢. In fig 3,

L %2

the confinement time of the particles 7, is compared to a mixing length estimate, rm. = .
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Figure 3: (left) Confinement time of the particles 7, and mixing length estimate computed from
the linear dispersion relation ruc. (right) Normalized confinement time 7p/ TmL.

This estimate represents the expected confinement time if the system was following the linear
estimations and no flows were created. The linear growth rate yiin is computed from the disper-
sion relation of the system where the density gradient is taken from the final equilibrium density
profile. Normalizing the particle confinement time with the mixing length estimate highlights
the role of the flows to regulate the turbulent transport and increase the confinement. It exhibits
the same shape as the energy stored inside the flows and the mean shear.

Conclusion: This paper analyzes the generation and structuration of zonal flows in a com-
peting drift-waves - interchange turbulence using the flux-driven nonlinear Tokam1d code. The
energy channels are computed and compared to the global confinement time of the particles. A
mixing length estimate is used to normalize the confinement time and focus on the role of flows.
The staircases structures are found to emerge mostly in interchange dominated turbulence , i.e.
at large g for a fixed C. The energy and shear increase with the adiabaticity parameter with no
clear effect of the magnetic curvature. Finally, the normalized confinement time is shown to be

consistent with the energy stored in flows.
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