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Abstract: Research in the field of pharmacology aims to generate new treatments for pathologies.
Nowadays, there are an increased number of chronic disorders that severely and durably handicap
many patients. Among the most widespread pathologies, obesity, which is often associated with
diabetes, is constantly increasing in incidence, and in parallel, neurodegenerative and mood disorders
are increasingly affecting many people. For years, these pathologies have been so frequently observed
in the population in a concomitant way that they are considered as comorbidities. In fact, common
mechanisms are certainly at work in the etiology of these pathologies. The main purpose of this
review is to show the value of anticipating the effect of baseline treatment of a condition on its
comorbidity in order to obtain concomitant positive actions. One of the implications would be that by
understanding and targeting shared molecular mechanisms underlying these conditions, it may be
possible to tailor drugs that address both simultaneously. To this end, we firstly remind readers of the
close link existing between depression and diabetes and secondly address the potential benefit of the
pleiotropic actions of two major active molecules used to treat central and peripheral disorders, first a
serotonin reuptake inhibitor (Prozac ®) and then GLP-1R agonists. In the second part, by discussing
the therapeutic potential of new experimental antidepressant molecules, we will support the concept
that a better understanding of the intracellular signaling pathways targeted by pharmacological
agents could lead to future synergistic treatments targeting solely positive effects for comorbidities.

Keywords: depression; diabetes; pharmacology; cell signaling; receptor; channel

1. Introduction

It is generally accepted that a drug’s pleiotropy is observed when its effects are
different from those initially intended. This includes both negative and positive effects.
Up to now, research into and the development of treatments for a given pathology have
generated drugs which, when used, have revealed multiple side effects, some of them
deleterious, leading to more restrictive use or abandonment. There are numerous examples,
particularly for chronic treatments, such as those employed in diabetes and depression [1,2].
In many cases, the collateral clinical effects are mediated by mechanisms other than those
associated with the target for which the drug was initially designed. Collateral clinical
effects are often justified by the presence of the initially identified target in another organ,
tissue or cell. Both scenarios raise concerns about pleiotropic effects and emphasize the
necessity for a comprehensive characterization of the various molecular impacts of the
drug, especially those linked to its target. Rather than considering pleiotropy as a more or
less beneficial inevitability, we are seeking to highlight the value of using one of its aspects,
i.e., targeting a molecular target present in different tissues, to seek convergence toward
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specifically beneficial effects. Here, we seek to illustrate this point of view by taking stock
of knowledge on two pathologies that are often linked: diabetes and depression.

Depression is the most common psychiatric pathology, with a prevalence that is es-
timated to range from 5% to 20% of the general population [3]. Depressive disorders are
characterized by sadness of sufficient severity or persistence that interferes with daily living
and often by diminished interest or pleasure in activities (anhedonia). The exact cause
is unknown but is probably multifactorial, involving heredity, altered neurotransmitter
levels, altered neuroendocrine functions and psychosocial factors. Therapeutic approach
usually involves medication and/or psychotherapy. Depressive states are often associated
with deficits in serotonin (5-hydroxytryptamine, 5-HT), which is an essential neurotrans-
mitter for communication between neurons and is involved in eating, sexual behavior, the
sleep–wake cycle, pain and anxiety or mood disorders [4,5]. Being defined by the World
Health Organization as a common mental disorder worldwide, depression is the main
mental disability leading to death (WHO, 2021) [6]. Numerous reports suggest that 2/3 of
individuals taking antidepressant drugs actually benefit from their medications. However,
for the remaining 1/3, antidepressants currently available on the market are ineffective
and/or make their depressive symptoms worse [7].

Diet-Induced Obesity (DIO) and type 2 diabetes mellitus (T2DM) also represent major
healthcare problems. DIO alone was identified as the cause of 80% of all T2DM cases, and
both disorders mainly result from adverse eating habits and inadequate physical activity.
Although there is an abundance of research examining the complex association between
obesity and major depressive disorder (MDD), the conclusions are still inconsistent [8].
Whereas the larger body of evidence is leaning toward the presence of a link between these
two pathological conditions [9], several studies report that they are unrelated [10] or only
show an association in subgroups, for example, in women [11]. A review [9] summarizing
the epidemiological evidence of the interconnection between obesity and MDD from large
meta-analyses suggests overall that obesity and depression are bi-directionally associated,
with the presence of one increasing the risk of developing the other. Overall, the rate of mild,
moderate and severe depression in patients with diabetes increases with a higher body
mass index (BMI). Subjects with obesity and diabetes appear to be at an even higher risk
for depression compared to subjects with obesity but not diabetes [12]. Thus, subjects with
obesity and diabetes are at greater risk of depression compared to the general population.

We should also mention meta-analyses showing the effects of antidepressant treat-
ments on diabetes in patients with depression. This shows that some antidepressants
(escitalopam and agomelatime) have a beneficial effect on glycemic control [13]. Con-
versely, numerous trials have been conducted to explore the potential of antidiabetic treat-
ments such as metformin, thiazolidinediones and GLP-1 as antidepressants to ameliorate
depression [14]. Results suggest that there are shared molecular mechanisms underlying
these conditions that we should take advantage of for developing drugs that can effectively
treat both conditions, and the authors insist on the need for rationality to guide the tailoring
of future treatments. Furthermore, recent reviews emphasize that, given the established
link between these two pathologies, common causes or molecular mechanisms must be
sought [15].

In this review, a focus on drugs that target excitable cells such as neurons or insulin-
secreting beta cells will be made. We take stock of the effects of two reference treatments
at central and endocrine levels: fluoxetine for depression and GLP1 receptor agonists
for diabetes. To complete the picture, we will show how this pleitropic approach can be
implemented in preclinical research by using the example of an experimental antidepressant
(spadin and its derivatives) based on a sortilin-derived propeptide (PE) that we recently
demonstrated to have beneficial potential in diabetes. However, rather than looking for
related mechanisms implicated in the onset of depression and diabetes, we sought to
identify whether the molecular target could exert beneficial effects on cell types at the heart
of both pathologies, neurons and pancreatic beta cells, and if so, whether this could lead to
a synergistic action on comorbidities. To corroborate this point, this review draws parallels
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between the mechanisms and effects of two gold-standard treatments for diabetes and
depression, and the signaling pathways mobilized by the closure of TREK-1 background
K+ channels through PE/spadin interaction. As a treatment of choice for depression, we
will summarize the effects of fluoxetine on both pathologies. In parallel, the benefit of
the drug homologues of the enteroendocrine hormone glucagon like peptide-1 (GLP-1) in
diabetes and mood will be described. Finally, we will report the properties of the new class
of molecules derived from PE in these comorbidities.

2. Depression and Diabetes as Comorbidities

As mentioned above, obesity can increase the risk of depression, and depression is
predictive of developing obesity. Psychological stresses frequently lead to modifications of
hormone levels and proinflammatory molecules (C-reactive protein and cytokines) that
generate a higher risk of type 2 diabetes and depression [16]. Both overall adiposity (total
body fat and BMI) and abdominal adiposity (waist circumference and visceral adipose)
measures are associated with depressive mood. The strongest association is observed
between levels of adiposity and specific “atypical” neurovegetative depressive mood
symptoms (e.g., fatigability and hyperphagia), which may be an indication of an alteration
in the energy homeostasis. A higher degree of obesity is likely causal for the specific
symptom of increased appetite in participants with depression. Indeed, subjects with
atypical depression have markedly elevated obesity rates compared to population controls
and to other subjects with depression [17]. In contrast, obesity rates are not significantly
different in subjects with classic depression and controls without depression. Thus, refining
the target phenotype(s) for future work on depression and obesity might improve our
understanding, prevention and treatment of this complex clinical problem [18]. There is
also several established molecular links between depressive pathology and some adipose-
related metabolic signals such as glucocorticoids, leptin, adiponectin, resistin, insulin and
inflammatory signals [16]. Elevated glucocorticoids levels, produced by adrenal glands,
are implicated in the pathophysiology of both obesity and depression. Indeed, the critical
role of corticoids on adipose tissue deposition was demonstrated by studies showing that
adrenalectomy prevents obesity [19]. In addition, repeated administration of corticosterone
to rodents is reported to display depressive-like behavior [20], and leptin-deficient ob/ob
mice (obese and hyperglycemic animals) have elevated corticosterone, which is reduced by
leptin treatment [21].

Genetic analysis of risk factors for MDD and T2DM almost expectedly shows an asso-
ciation of comorbidity genes involved in natural immunity or cellular aging [22]. Genes
relevant to the innate immune system, tau protein formation and cellular aging were iden-
tified, and the experimental results indicate that the common, often comorbid, conditions
of MDD and T2DM have a common molecular pathway [22]. For example, overexpression
of the BDNF gene in the dorsal raphe nucleus (DRN) of obese and diabetic mice subjected
to a stress-induced depression protocol will have an associated antidepressant effect by
improving serotonin homeostasis [23]. In addition, the improvement in metabolic biological
constants due to BDNF overexpression shows, as expected, the importance of the DRN in
depression as well as the importance of this brain area in diabetes [23].

Nowadays, various therapeutic approaches are proposed for patients with depres-
sion and diabetes. Among these, drugs targeting a specific receptor or channel at the
transmembrane level have proven effectiveness, bringing them to the level of major thera-
peutic approaches such as fluoxetine for treating depression and GLP-1 as an antidiabetic.
Moreover, besides their original expected effect, their clinical long-lasting use has revealed
unexpected additional beneficial effects.

3. Fluoxetine
3.1. Fluoxetine as an Antidepressant Reference Treatment

Since the 1960s, the strategies based on antidepressant molecule development have
mainly focused on increasing the quantity of 5-HT released in the synaptic cleft, the space
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between two neurons where nerve communications take place via neurotransmitters. 5-HT
can activate the different subtypes of the 5-HT receptor family (1, 2, 3, 4, 5, 6 and 7), lead-
ing to their respective signal transduction pathway within the postsynaptic neurons [24].
In presynaptic 5-HT terminals, 5-HT is either taken up by storage vesicles through se-
lective serotonin transporters or degraded by monoamine oxidase (MAO). Some MDD
treatments target the serotoninergic system through two pharmacological approaches: se-
lective 5-HT1A receptor antagonists [25] and selective serotonin reuptake inhibitors (SSRIs),
including fluoxetine [26]. This latter class of antidepressants is considered serotoninergic
because they increase intrasynaptic serotonin concentrations by inhibiting presynaptic 5-HT
reuptake, leading to the stimulation of postsynaptic 5-HT receptors. Thus, the serotonin
remaining at the synaptic cleft for a longer period of time would repeatedly stimulate the
receptors of the postsynaptic cell.

Fluoxetine was discovered in the 1970s. Initially called LY110140, it was described
as a selective 5-HT reuptake inhibitor [27,28]. Fluoxetine hydrochloride (better known as
ProzacR) was the first molecule in the family of antidepressants known as SSRIs [29], the
most widely prescribed antidepressants for the treatment of depressive states nowadays.
The first clinical study conducted in 1993 showed its efficacy on severe depression with few
side effects, allowing its use for long-term treatment [30]. It took several years to demon-
strate the physical interaction between the serotonin transporter (SERT) and fluoxetine.
Indeed, at the molecular level, SSRIs bind directly to the SERT to maintain the transporter
in an outward open conformation, preventing the binding of substrates [31]. SSRIs are selec-
tive for the serotonergic 5-HT system but not specific for a particular 5-HT receptor. Indeed,
they allow stimulation of 5-HT1 receptors, combining antidepressant and anxiolytic effects,
as well as that of 5-HT2, often causing anxiety, insomnia and sexual dysfunction, and 5-HT3
receptors, inducing nausea and headache. Thus, selective serotonin reuptake inhibitors
can paradoxically relieve and generate anxiety. In addition, it was shown very recently
that antidepressant drugs were binding directly to the TRKB neurotrophin receptor, which
facilitates BDNF stimulation [32]. This new piece of knowledge highlights the complex
effects of SSRI drugs and strengthens the evidence for their potential pleiotropic action.

3.2. Fluoxetine Action on Pancreatic Endocrine Function

In the clinic, it became apparent early on that fluoxetine could be used on very
large patient populations. Patients with diabetes are as sensitive to fluoxetine as patients
with depression, and this treatment also improves glycemia after only few weeks [33–35].
Indeed, fluoxetine tends to improve glycemic regulation and weight loss by inducing
higher insulin sensitivity and regulation of skeletal muscle glycogen synthase activity [36].
In fact, this increase in insulin sensitivity seems to be one of the major effects observed
among patients treated with Prozac [37]. Fluoxetine significantly reduces food intake in
lean or obese rats [38,39], and its indirect effect on weight maintenance is achieved by the
balance between food intake and energy expenditure managed by the hypothalamus [40].
Interestingly, an atlas of vagal sensory neurons has recently been published. The authors
indicate that serotonin is expressed in specific neuron types [41]. This suggests a possible
peripheral effect of fluoxetine on these neurons, which innervate the pancreas. In this
vein, in mice, electrostimulation of the pancreatic nerve has been shown to be an effective
approach to eradicating recent-onset type 1 diabetes [42].

Interestingly, serotonin is expressed in endocrine cells of the pancreas and is se-
questered in the same secretory granules as pancreatic hormones [43,44]. Whereas on one
hand 5HT regulates the pancreatic secretion of glucagon and insulin (32), 5-HT secretion
is, on another hand, regulated by glucose in β-cell lines (MIN6) in vitro [45] and vesicular
transporters of 5-HT (VMAT1/2) are expressed in pancreatic β cells [46]. In addition, the
increase in β-cell mass during gestation requires the control of serotonin homeostasis. Thus,
altered serotonin signaling also contributes to β-cell mass dysfunction and to diabetes [43].
The clearance transporter SERT is also expressed in β cells [47], suggesting an effect of
fluoxetine on the endocrine pancreas. Recently, a direct effect of fluoxetine on pancreatic β
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cells to potentiate insulin exocytosis has been shown [48], and preliminary experiments
on ob/ob mice show improvement in metabolic physiological parameters [48]. However,
several other in vitro studies have shown the opposite results [49–51]. For example, insulin
secretion is inhibited by fluoxetine [49,51] in rodent and [47] in human islets. Additionally,
the increase in serotonin concentration outside the β cells induces the dysfunction of mi-
tochondrial activity, which is by itself coupled to insulin secretion [49]. Thus, despite the
extensive research conducted in the field, the effects of 5-HT on the endocrine pancreas
remain difficult to grasp because of the expression of various receptors and transporters
of 5-HT in the islets of Langerhans [52] (Figure 1). For now, the molecular data allow
us to anticipate a long-term effect of treatments using SSRIs, as shown in animal model
studies [53]. The complex effects of serotonin on the adaptive mechanisms of the endocrine
pancreas suggest that caution is required in the use of drugs targeting this signaling system.
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Figure 1. Specific molecular targets of fluoxetine on neurons and pancreatic β cells. Distribution of
5-HT transporters and receptors in neurons (upper panel) and in pancreatic β cells (lower panel). In
neurons, 5-HT receptors are expressed mostly at the postsynaptic level, and they modulate signal
transmission. β cells express 5-HT receptors similar to those of neurons. SSRIs are symbolized by
blue, 5-HT by red and insulin by green dots. 5-HT1, 2, 4, 6 and 7 are 7-TM domain receptors (GPCRs).
5-HT3 is a cationic channel symbolized by blue. SERTs are in orange.

4. GLP-1
4.1. GLP-1R Agonists as Antidiabetic Drugs

Current front-line treatments for type 2 diabetes are not fully satisfactory because
they do not act on weight loss and/or improve β-cell function. Glucagon-like peptide-1
(GLP-1) analogues or GLP-1 receptor agonists are promising treatment options because
they improve glycemic control, as well as decrease weight by approximately 2–3 kg/year.
In addition, they offer the hope of stabilizing or improving β-cell function by promoting the
proliferation or inhibiting the apoptosis of β cells. Thus, GLP-1R agonists represent a good
opportunity to treat patients who are inadequately controlled by the classical combination
of insulin sensitizer–insulin secretor agents such as metformin–sulfonylurea, and their
efficiency can be compared favorably with insulin therapy [54].

Food intake induces a number of physiological adaptations that enable nutrient absorp-
tion and metabolism. Among these adaptations, some gastrointestinal hormones, called
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incretins, facilitate glycemic homeostasis by stimulating insulin secretion. The demon-
stration of the intestinal–pancreatic axis comes from the observation that a bolus intake
of glucose results in a higher insulin secretion than the same amount administered intra-
venously. The first incretin identified, GIP (glucose-dependent insulinotropic polypeptide),
is a 42-amino-acid hormone synthesized by enteroendocrine K cells in the duodenum and
jejunum. It weakly inhibits gastric acid secretion and stimulates insulin exocytosis. The
second, GLP-1 (glucagon-like peptide-1), is produced from the proglucagon gene and is
secreted by enteroendocrine L cells in the distal ileum and colon [55]. The plasma level of
GLP-1 is around 5–10 pmol/L in the fasting state and increases rapidly after carbohydrate
intake, reaching about 15–50 pmol/L. GLP-1 and GIP are rapidly degraded, with a half-life
of two minutes, and are eliminated by two enzymes, dipeptidyl peptidase 4 (DPP4) and
neutral endopeptidase (NEP), respectively.

GLP-1 stimulates insulin secretion in a glucose-dependent manner, and its insulinotropic
effect is lost when the glucose value is below 4.5 mmol/L. GLP-1 and GIP play an extremely
important role in glucose homeostasis since their additive insulinotropic effects are responsible
for about 60% of the insulin secreted after a meal in humans. In patients with type 2 diabetes,
GLP-1 and GIP secretion are relatively normal, but their ability to stimulate insulin secretion
is decreased by about 50% for GIP and 30% for GLP-1 compared to subjects without diabetes.
GLP-1 stimulates insulin secretion in β cells but also activates insulin gene transcription,
increases insulin biosynthesis, stimulates cell proliferation and survival and decreases cell
death. In addition to insulin β cells, GLP-1 acts on other tissues, such as the central and
peripheral nervous system, heart, kidney, lung and digestive tract. Finally, GLP-1 inhibits
glucagon secretion, slows gastric emptying and increases the feeling of satiety (Figure 2).
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The overall effects of GLP-1 on glucose homeostasis as well as on the feeling of satiety
and β-cell mass have raised considerable interest in the treatment of type 2 diabetes. In-
deed, most antidiabetic treatments act by increasing either insulin secretion (sulfonylureas,
glinides) or peripheral insulin sensitivity (metformin, glitazones). But none of them seem to
target the two most important parameters in the evolution of type 2 diabetes, body weight
and progressive deterioration of the functional β-cell mass, at the same time. Thus, GLP-1,
due to its pleiotropic effects, particularly at the level of food intake and β-cell mass, brings
hope for the long-term management of this disease [56].

GLP-1′s insulinotropic activity is exerted by its interaction with a specific receptor,
namely the GLP-1 receptor, which belongs to the GPCR family. Its binding activates
the adenylate cyclase via Gs, resulting in the formation of cAMP [57]. This results in
the activation of protein kinase A and cAMP-regulated guanine nucleotide exchange
factor II (cAMP-GEFII, also known as Epac2), leading to a plethora of events, including
altered ion channel activity, intracellular calcium handling and enhanced exocytosis of
insulin-containing granules [58]. The increase in cAMP concentration in the vicinity of
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the plasma membrane of β cells potentiates glucose-stimulated insulin secretion (GSIS)
when the glucose level reaches a certain threshold [59]. It also evokes depolarization of the
membrane through its effect on the sulfonylurea-sensitive channels that are responsible
for the depolarization process [60]. The inhibition of the adenylate cyclase by Gi is caused
by membrane repolarization and a reduction in calcium influx [61]. The potentiating
effect of GLP-1 initiate numerous events, including PKA-dependent phosphorylation,
which promotes inhibition of K+-ATP channels, opening of L-type VOCs (and thus Ca2+

influx) and inhibition of voltage-dependent repolarizing K+ channels. The complex SUR1-
KiR6.2 proteins, the pore-forming subunit of the KATP channel and the alpha1 subunit
of calcium channels are PKA substrates [62,63]. Thus, PKA induces an overall increase in
Ca2+ influx [64,65]. The increase in cAMP is associated with an increased amplitude of
L-type calcium currents, in a dose-dependent manner [63,66] (Figure 3).
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Figure 3. GLP-1 signaling pathways in pancreatic beta cells. Secreted GLP-1 from enteroendocrine L
cells in the small intestine epithelium acts on several target cells, such as pancreatic beta cells. GLP-1
receptor agonists are associated with cAMP-dependent pathways, which amplify regulated exocytosis
and increase cell survival and proliferation. Amplification and survival pathways controlled by
cAMP as a second messenger activate PKA and EPAC sensors. Once activated, these sensors maintain
endocrine function by modulating CREB transcriptional activity.

One of the most important parts of the regulation pathway involves the secretory
machinery. Translocation of insulin granules from the reserve pools close to the plasma
membrane increases the size of the readily releasable granule pool (RRP) by accelerating
their filling rate [67]. In addition to this enhancement of the glucose effects on the so-called
proximal steps of exocytosis, PKA-dependent phosphorylation of exocytosis machinery pro-
teins (the SNARE complex) [68–70] allows GLP-1 to sensitize the insulin granule docking
and fusion complex to calcium influx. The numerous targets of PKA-dependent phospho-
rylation (CSP, Snapin, SNAP25) [71–75], which are very abundant in neurons, are present
in endocrine cells.

4.2. GLP-1 as a Neuromodulator

GLP-1 is present in the brain [76] and is involved in the regulation of food intake in
the hypothalamus and reward areas [77]. GLP-1 has anorexic effects via direct or indirect
activation of nucleus arcuate neurons [78] and activates the POMC and CART neurons
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through the control of AMPK. One part of the central GLP-1 is produced in the tractus
nucleus solitari and medulla vasolateral [76], and another part derives from the peripheral
circulation through the Blood–Brain Barrier (BBB) [79]. GLP-1 analogs and agonists of the
GLP-1 receptor (GLP-1R) are able to cross the BBB as well [80]. In addition, in humans,
GLP-1R is expressed in the cerebral cortex, hypothalamus and septum lymbic [81] with an
expression pattern that could suggest a role in mood regulation [82].

In both humans and rodents, GLP-1 injection activates the hypothalamic–pituitary–
adrenal (HPA) axis with a resulting increase in both ACTH and corticosterone/cortisol
concentrations in the blood. As increased secretion of cortisol is observed in cases of severe
depression, especially those associated with anxiety, the fact that GLP-1 may interfere
with cortisol level is of interest. Indeed, chronic administration of GLP-1 (12 weeks of
treatment with liraglutide) in patients with obesity induces a decrease in urinary cortisol
concentration [83]. Although acute and chronic GLP-1 administration lead to different
effects on cortisol concentrations, they illustrate the possible modulatory effects of GLP-1
on mood in humans. Interestingly, the behavior-modulating effect of GLP-1 is not limited
to its effects on cortisol concentrations but also acts directly on neurons [80,84]. In rodent
models, GLP-1R agonists (liraglutide or exenatide) increase anxiety behaviors [85,86],
and anxiogenic effects may be associated with an acute increase in corticosterone and
ACTH. Conversely, chronic administration of GLP-1 or analogues is anxiolytic [87–89].
Thus, GLP-1R is required in animals for adaptive behavior in response to stress. A few
human studies have been published on the effects of GLP-1 on depression and anxiety.
In 2010, a large cohort study did not reveal any effect of liraglutide on depression or
anxiety scores in treated T2D patients [90]. However, in 2011, a following study using
another GLP-1 analogue, exenatide, showed decreased anxiety and depression scores in
T2D patients [91]. In addition, subjects with bipolar syndromes and depression have
found benefit from liraglutide treatment [92]. Indeed, weight loss associated with the
improvement in glycemia is conducive to a feeling of well-being [93]. Overall, the main
benefit of GLP-1R agonist therapy is an improved quality of life [94].

To conclude this section, while current therapeutic molecules designed to hit a single
target in a specific tissue have demonstrated some potent pleiotropic effects, it was a matter
of chance whether or not the side effects led to additional beneficial actions. In the field
of pharmacology related to diabetes and depression, our recent findings on PE/spadin
peptides strongly suggest that the upstream elucidation of the multiple biological actions
induced by a single molecular mechanism would enable us to better anticipate pleiotropic
effects, especially positive ones.

5. PE/Spadin

Several new classes of antidepressants are actually under investigation, i.e., potentially
safer peptide antidepressant compounds. The study of antidepressant response in mouse
models of depression has allowed the identification of a new set of genes whose association
with remission has been examined in a large treatment efficacy trial. The Sequenced
Treatment Alternatives to Relieve Depression (Star(*)D study) was conducted in order to
decipher the mechanisms of action of antidepressants [95]. One of these identified genes
codes was for TREK-1, a neuronal background potassium channel widely expressed in
brain areas implicated in major depression [95,96]. Among all the targets identified for
the treatment of depression, TREK-1 channels were characterized a few years ago [97,98]
as being directly involved in mood disorders. TREK-1 and two other background K+

channels, TASK-1 and TASK-2, are activated by volatile anesthetics and may therefore
contribute to the central nervous system (CNS) depression produced by these volatile
compounds [99]. TREK-1 belongs to the family of two-pore-domain potassium channels
(K2P) [100]. These channels contribute to the background (or leak currents) that set the
resting potential and oppose depolarizing currents. TREK-1 is activated by membrane
stretch, volatile anesthetics, acidosis and polyunsaturated fatty acids [101–103]. The first
phenotyping study conducted on TREK-1-deficient mice demonstrated a major role of
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the channel in the control of depression [97]. Indeed, several studies have established
that these channels are required for mood stability, for example, in a post-stroke model of
depression [104]. Recently, it has been shown that an endogenous peptide (PE) of 44 aa,
released after the cleavage of prosortilin by furin [105], and its synthetic counterpart spadin
have potent antidepressant effects in rodents [106]. Sortilin is a class 1 receptor involved
in the sorting of many types of proteins, such as transmembrane proteins (GLUT4, LDLR,
p75NTR, NTSR1, TREK-1, etc.) [107]. PE/spadin action comes from its ability to specifically
block TREK-1 currents by directly binding the channel with high affinity. The membrane
depolarization induced by this blockage leads to the efficient antidepressant action of the
peptides in several behavioral models of depression [106]. In particular, spadin increases
the activity of 5-HT-secreting neurons and induces neurogenesis with a delay in action of
only 4 days [106]. Spadin does not produce any side effects on the functions controlled
by the TREK-1 channel (pain, epilepsy, heart function) [108]. It was also demonstrated
that spadin directly acts on neurons to trigger the activation of the PI3 kinase pathway, a
well-described survival pathway, leading to an increase in spine maturation [109].

Serum PE levels are decreased in patients with major depressive disorder vs. healthy
individuals, and these levels are restored to normal after antidepressant treatment [110],
as confirmed in cohorts of antidepressant-treated patients. Among patients resistant to
pharmacological treatment, those treated with electroconvulsive therapy show a significant
increase in serum PE levels one month after therapy [110]. Hypothetically, PE could serve
as a marker of depressive state and also as an indicator of remission of the pathology [111].
Interestingly, mice deficient in sortilin show a phenotype similar to TREK-1-deficient
mice [112] (Figure 4), suggesting common molecular events driven by sortilin and TREK-1.
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Figure 4. PE signaling pathway in neurons and pancreatic beta cells. PE is present in the general
circulation, being secreted by several cells, such as adipocytes, skeletal muscle and the intestinal
epithelium. PE is a specific K2P TREK-1 channel blocker, thus inducing partial plasma membrane
depolarization. The subsequently induced calcium entry activates several signaling pathways: Akt,
ERK and CaM-Kinases. The final resulting activation upregulates CREB transcriptional activity,
maintaining cellular functions. As described, secreted peptides can modulate central and peripheral
targets and provide co-benefits for different but related pathologies. In both cases, the target is a
common molecular system that generates similar protective and functional improvements for the
challenged organs.
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While the antidepressant potential of PE/spadin peptides can easily be identified, we
wondered whether the same pathway that is expressed in the endocrine pancreas might be
of interest in the treatment of diabetes.

Recently, in vitro and in vivo studies have demonstrated that peripheric inflammation,
induced by obesity and diabetic status, leads to a decrease in sortilin (which generates
PE) expression in adipocytes, skeletal muscles [113] and the liver [114,115]. Addition-
ally, sortilin expression (from sort1 gene) was inhibited in 3T3L1 adipocytes treated with
TNFα [113,116]. Finally, downregulation of sortilin has been also observed in the adipose
tissue and skeletal muscles of patients with diabetes [117]. Sortilin and TREK-1 channels
are both expressed in pancreatic beta cells [118–120], and TREK-1 channel closure in-
duced by spadin potentiates glucose-dependent insulin secretion in response to a glycemic
challenge [120]. Spadin acts on the plasma membrane potential in a similar manner to
exendin-4, a potent GLP-1R agonist, and amplifies glucose-induced (20 mM) plasma mem-
brane depolarization [121]. In vivo, spadin is able to improve the recovery of mice during
an intra-peritoneal glucose tolerance test (IPGTT) [120] by potentiating insulin secretion.
The circulating insulin concentration in spadin-injected mice is significantly higher. In
contrast, spadin has no effect on glucose storage in adipocytes [116]. Given the properties
of PE on neurons, it was postulated that PE and its synthetic derivatives could protect
pancreatic β cells from dysfunction and death. Results showed that modulation of mem-
brane potential has a protective effect on both endocrine cells and neurons [106,109,122].
Indeed, PE and its derivative spadin have anti-apoptotic, proliferative and maintenance
of function effects. This protective pattern is possible as PE/spadin application promotes
a rise in intracellular calcium concentration [123] that activates the calcium/calmodulin
Kinase (CAMK-2 and 4) [122] and thus activates Akt and ERK survival and proliferative
pathways. In addition, the level of P-CREB in the nucleus increases in the presence of
PE/spadin, especially under cellular stress. Interestingly, P-CREB immunoreactivity was
detected in the hippocampal neuron nucleus in spadin-treated mice [106], suggesting that
similar molecular processes are activated in both neurons and beta cells (Figure 4).

Unexpectedly, it was shown that the antidepressant fluoxetine (ProzacR) is as able
as PE and derivatives to act directly on TREK-1, producing a subsequent concentration-
dependent inhibition of TREK-1 current [124]. Structural tridimensional studies performed
on crystallized TREK-2 channels demonstrated state-dependent inhibition of TREK chan-
nels by ProzacR [125]. Fluoxetine’s inhibition of TREK channels could therefore have similar
beneficial effects on both neurons and beta cells.

6. Concluding Remarks

This review supports the concept of searching for new therapeutic targets by identi-
fying proteins involved in the same pathway in different cellular systems, which could
offer multiple positive effects. In this approach, the “side effects” cooperate. Thus, the
long-term effects of SSRIs are difficult to assess, but it is known that serotonin has a complex
role in the periphery, for example, in the endocrine pancreas. It is therefore not possible
to eliminate all effects on long-term pathologies such as diabetes. However, the use of
a drug that targets a signaling pathway through a specific receptor is more effective in
terms of positive effects. GLP-1 is a good example, because even if most of its positive
effects are peripheral, there are enough neuronal pathways sensitive to its agonists to
generate beneficial effects at the central level on eating behavior and mood control. This
emphasizes once again that the periphery is able to modulate the central activity of neurons.
Finally, our recent work has shown that modulation of the membrane potential, through the
closure of background potassium channels, systematically generates facilitating effects on
the exocytosis of hormones and neurotransmitters as well as on the activation of survival
pathways (Figure 4). These two parameters are key to achieving an optimized cure for
chronic diseases such as depression and diabetes.

Finally, it seems that our current knowledge should enable us to better anticipate
some pleiotropic effects and develop drugs that can effectively serve in multiple conditions,
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specifically comorbidities like depression and diabetes. In fact, we have at our disposal
the distribution of gene expression (genomics and transcriptomics) and protein expression
(proteomics) in numerous tissues. The use of this knowledge, together with the char-
acterization of molecular targets, will be decisive for better drug positioning and could
lead to more efficient and integrated therapeutic solutions for individuals facing multiple
health challenges.
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