
HAL Id: hal-04322647
https://hal.science/hal-04322647

Submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Wave Tanks
Alessandro Guerri

To cite this version:
Alessandro Guerri. Numerical Wave Tanks: Comparison of different nonlinear models. Centrale
Nantes. 2023. �hal-04322647�

https://hal.science/hal-04322647
https://hal.archives-ouvertes.fr


Numerical Wave Tanks

Comparison of different nonlinear
models

Alessandro Guerri
Supervisor: Guillaume Ducrozet

MSc Marine Technology - Hydrodynamics for Ocean Engineering
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1 Introduction

This work is developed as part of the WASANO project, funded by the I-Site NExT initiative,
which has its main objective in finding an accurate and efficient description of extreme
environmental conditions for ocean engineering. In order to do so, there is the need to
define the extreme sea states, as well as be able to reproduce them in ocean water tanks.

In this framework, it appears crucial to have highly reliable and efficient numerical solvers
which simulate the propagation of waves in wave tanks. Indeed, they can be integrated
with experimental solutions in order to foresee the response of structures at sea. Several
approaches exist under the potential flow theory. The Boundary Element Method (see
e.g. [11]), which makes use of the Green function to solve boundary integral equations,
is widely used. Other approaches involve the discretisation of the whole domain, based
on finite difference, like OceanWave3D, or finite elements, like IITM-FNPT (see later).
Alternatively, it is possible to solve the problem uniquely in the free-surface, by means of
the pseudo-spectral methods, as in HOS-NWT. In this study, an extended comparison of
three numerical methods that simulate the propagation of fully nonlinear waves in wave tank
under the potential theory is performed. These models have been developped by three of the
several WASANO partners and they are referred to as Numerical Wave Tanks (NWT). The
first method, developed in Ecole Centrale de Nantes, is based on the Higher Order Spectral
model, initially ideated by West et al [3] and Dommermuth and Yue [6]. The second model,
OceanWave3D from Danish Technical University, is dedicated to the simulation of waves
using high-order finite difference solver [9]. Finally, IITM-FNPT, by the Indian Institute
of Technology Madras, is considered. The latter is based on a finite element discretisation
with triangular elements [15].

After having presented the numerical methods behind the three models, the metrics
used for the purpose of the study, in terms of implementation and accuracy evaluation, are
explained. In particular, the numerical results will be compared to free surface elevation
measurements from some experiments performed in the LHEEA wave tank. Two sets of
experimental data are available: a first one for less steep waves and a second one for steeper
waves with breaking events. The quantification of the error will be done both in the time
and frequency domain.

Next, for each case, a convergence analysis is done with respect to the most important
parameters, as individuated from the theory. This allows evaluating the range of accuracy
reached by the three models. Finally, the efficiency in terms of accuracy and computational
effort is evaluated. The optimal configuration is sought for the choice of parameters for each
model and, then, compared between each other.
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2 Numerical Methods

2.1 General Framework

The considered fluid domain, representing the LHEEA cean wave tank, is rectangular and
bidimensional (only unidirectional wave case is studied). The vertical z-axis is oriented
upwards, with z = 0 corresponding to the free surface elevation at rest and z = −h (where
h is the tank depth) to the bottom. The horizontal direction varies from x = 0 (i.e. the
wavemaker position) to x = Lx, where Lx is the tank length.

In the following, potential flow theory will be assumed. As a consequence, the mass
conservation reduces to Laplace equation:

△ϕ = 0 (1)

where ϕ represents the velocity potential, defined as:

∇⃗ϕ = V⃗ (2)

with V⃗ being the fluid velocity. The system needs to be completed with the boundary
conditions, which at the walls of the tank are implemented as free-slip conditions:

∂ϕ

∂n⃗
= 0 (3)

where n⃗ represents the local normal to the fixed walls, in particular the bottom (z = −d).
On the free surface (z = η), the kinematic and dynamic boundary conditions read:

∂ϕ

∂t
= −gη + 1

2
|∇⃗ϕ|

∂η

∂t
=
∂ϕ

∂z
− ∇⃗ϕ · ∇⃗η

(4)

After some developments, the equations can be rewritten in terms of free surface quan-
tities, in particular free surface potential ϕ̃(x, z, t) = ϕ(x, η, t). Following [17], the previous
free-surface boundary conditions (Eq (4)) become:

∂ϕ̃

∂t
= −gη − 1

2
|∇⃗ϕ̃|+ 1

2
(1 + |∇⃗η|2)W 2

∂η

∂t
= (1 + |∇⃗η|2)W − ∇⃗ϕ̃ · ∇⃗η

(5)

The quantities of interest for the evolution of the free surface (η and ϕ̃) can be, therefore,
advanced in time solving the previous equations. In order to do so, one needs to evaluate
the vertical velocity at the free surface position W = ∂ϕ

∂z (x, z = η, t).
Finally, the boundary condition on the wavemaker wall needs to be accounted for and it

is expressed as a no-flux condition at the position of the wavemaker x = X(z, t):

∂X

∂t
=
∂ϕ

∂x
− ∇⃗X · ∇⃗ϕ (6)
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2.2 HOS-NWT

As introduced in the previous chapter, computing the vertical velocity at the free surface is
a key point to solve the nonlinear FSBC. In HOS-NWT, it is done with the Higher Order
Spectral method (HOS) [8], which consists in a double expansion of the velocity potential ϕ
and of the vertical velocity at the free surface W . First, they are both expanded as a power
series of η:

ϕ(x, z, t) =

∞∑
m=1

ϕ(m)(x, z, t)

W (x, t) =

∞∑
m=1

W (m)(x, t)

(7)

where the index (m) represents the term with order of magnitude equal to the m− th power
of η. Moving forward, a Taylor expansion around the free surface rest position is performed
for ϕ(m), obtaining:

ϕ(m)(x, z = η, t) =

∞∑
n=1

ηn

n!

∂nϕ(m)

∂zn
(x, z = 0, t) (8)

Finally, terms from (7) and (8) are regrouped according to their order of magnitude in η.
This results in a triangular system, from which the different orders of the velocity potential
and, successively, of the vertical velocity at the free surface are computed. Indeed, one gets:

ϕ(m)(x, 0, t) = −
m−1∑
k=1

ηk

k!

∂kϕ(m−k)

∂zk
(x, 0, t)

W (m)(x, t) =

m−1∑
k=0

ηk

k!

∂k+1ϕ(m−k)

∂zk+1
(x, 0, t)

(9)

HOS-NWT relies on the pseudo-spectral approach. The physical quantities are thus
decomposed on eigenfunctions of the computational domain ψ and multiplied by the modal
amplitudes. In particular, for a rectangular wave tank one gets:

ψm(x, z) = cos(kmx)
cosh[km(z + 1)]

cosh(km)
(10)

with km = mπ/Lx. Thanks to this definition of the velocity potential, the Laplace problem
(Eq (1) with the bottom boundary condition) is implicitly solved.

In order to solve the problem numerically, some discretisations need to be applied. First,
the order up to which the vertical velocity is evaluated in (9) is finite and called HOS order
M . Moreover, the functional Fourier space (defined by the set of wavenumbers that appear
in (10) is computed up to the finite value Nx. Also, in order to avoid the phenomenon of
aliasing the zero-padding technique is applied. Therefore, the dealiasing can be performed
until a chosen parameter. Another discretisation is required in the vertical direction, since
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the boundary condition on the wavemaker is applied onNz nodesFinally, the time integration
scheme used is the fourth-order Runge-Kutta Cash-Karp with adaptive timestep, for which
the time tolerance needs to be defined.

2.3 OceanWave3D

Developed by DTU, OceanWave3D is a finite difference method which uses a mixed Eulerian-
Lagrangian approach. In a first step, the Laplace equation is solved via the finite difference
discretisation, and successively the FSBC (4) are used to advance η and ϕ in time.

Figure 1: σ transformation

Following [9], in order to obtain a time-invariant problem, the following change of coor-
dinate in the vertical direction is applied (see Figure (1)):

σ =
z + h

η(x, t) + h
=

z + h

d(x, t)
(11)

where h represents the height of the tank. Therefore, the Laplace problem (defined by (1)
and (2)) becomes:

Φ = ϕ̃; σ = 1

∇2Φ+∇2σ
∂Φ

∂σ
+ 2∇σ · ∇∂Φ

∂σ
+

(
∇σ · ∇σ +

∂σ

∂z

2) ∂2Φ

∂σ2
= 0; 0 ≤ σ < 1(

∂σ

∂z
+∇h · ∇σ

)(
∂Φ

∂σ

)
+∇h · ∇Φ = 0; σ = 0

(12)

where Φ(x, σ, t) = ϕ(x, z, t). It should be noticed that all the spatial derivatives of σ can
be directly computed if the free surface elevation is known. The wave elevation η and free
surface potential ϕ̃ being known at the current time-step, the system (12) can be solved in
order to obtain Φ. The kinematics of the flow is then evaluated via the chain rule:

V⃗ (x, z) = ∇⃗ϕ(x, z) = ∇⃗Φ(x, σ) + ∇⃗σ∂Φ
∂z

(x, σ)

W (x, z) =
∂ϕ

∂z
ϕ(x, z) =

∂Φ

∂σ
(x, σ)

∂σ

∂z

(13)

Similarly to HOS-NWT, when the vertical velocity is computed, one can apply the FSBC
(5) and move to the next timestep.
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As already mentioned, the Laplace problem (12) is numerically solved through a finite
difference discretisation. In particular, for our 2D case, the grid is composed of Nx point
along the free-surface and Nσ points in the vertical direction. Choosing r nearby points
allows order (r− 1) finite difference scheme for the 1D first and second derivatives in (x, σ)
to be developed in the standard way using Taylor series expansion at each of the x and σ
positions on the grid. More in detail, the stencil is composed of r = α+ β+1 points, where
α indicates the number of points in the positive coordinate direction and β in the negative
direction from the point of interest. Once the problem is linearised thanks to the finite
difference scheme, it is resolved with a left preconditioned GMRES (generalised minimal
residual) iterative solution. The vector of the solution is, thus, obtained from an iteration
when the residuals reach a preset tolerance. The time integration, a 4-th order Runge-Kutta
scheme is used and the influence of the timestep size needs to be evaluated.

2.4 IITM-FNPT

Following a similar approach to that explained for OceanWave3D, IITM-FNPT also is based
on a Mixed Eulerian-Lagrangian scheme (MEL). The main difference stands in the formula-
tion and resolution of the Laplace problem, here obtained through finite elements method.

In particular, as explained in [15], the fluid domain Ω (whose boundaries are denoted by
Γ) is divided into finite elements connected with n nodes. Formulating the Laplace equation
(1) to the associated boundary conditions leads to the following finite elements system of
equations: ∫

Ω

∇Ni

m∑
j=1

φj∇Nj dΩ|j,i/∈Γs
=

= −
∫
Γp

Ni
∂X

∂t
(t) dΓ−

∫
Ω

∇Ni

m∑
j=1

φj∇Nj dΩ|j∈Γs,i/∈Γs

(14)

where Γs and Γp are the free surface and wavemaker boundaries; m is the total number
of nodes and the potential inside an element ϕ(x, t, z) can be expressed in terms its nodal
potential φj , as:

ϕ(x, t, z) =

n∑
j=1

φjNj(x, z) (15)

Here, Nj is the shape function and n = 3 is the number of nodes in the element. Note that
for this code the elements are defined with a triangular shape. Moving on to the next step,
the horizontal velocity is calculated by fitting cubic splines to the x coordinate and φ values.
Basing on continuity condition, one can write:

δxi
6

∂2fi−1

∂x2
+
δxi + δxi+1

3

∂2fi
∂x2

+
δxi+1

6

∂2fi+1

∂x2
=
fi+1 − fi
δxi+1

− fi − fi−1

δxi
; i = 2, ..., k−1 (16)

where, in our case, fi represents the potential at the i-th node φi, f
′′

i its second derivative
with respect to x and δxi the horizontal spacing between i-th and (i-1)-th node. The previous
equation is solved considering k = 5 and the second derivatives of the potential (in our case
fi = φi) are obtained. It should also be noted that at the two ends the second derivatives
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are zero, i.e. the natural spline condition. Always following the cubic spline interpolation,
once the second derivatives are known, one can compute the first derivatives as:

2
∂2ffi
∂x2

+
∂2fi+1

∂x2
=

6

δxi

(
fi+1 − fi
δxi

− ∂fi
∂x

)
(17)

Figure 2: Vertical nodes configuration

Finally, with reference to Figure (2), the vertical velocity at the free surface is computed
by means of a backwards finite difference scheme, expressed as:

∂ϕ

∂z
|z=η =

(
α2 − 1

)
φ1 − α2φ2 + φ3

α (α− 1) (z1 − z2)
(18)

where

α =
z1 − z3
z1 − z2

(19)

Note that if α = 1 the nodes are equidistant and Eq (18) reduces to the standard backwards
finite difference. Once also the kinematics of the flow at the current time-step is known, the
FSBC conditions (4) are applied to update the quantities of interest. In order to overcome
difficulties related to numerical instability and high frequency oscillations, regridding at the
free-surface is applied. It consists in redistributing the nodes and the associated values at
a variable spacing (fitting a cubic spline) after a selected number of timesteps. The time
integration scheme here used is a 4-th order Runge-Kutta. Therefore, other than the grid
definition (i.e. horizontal and vertical number of nodes Nx and Nz), also the choice of the
length of the timestep dt will influence the solution.

2.5 Numerical Absorption

An absorbing beach is present in the ocean wave tank in order to decrease the waves re-
flection. It is, then, necessary to reproduce this phenomenon in the numerical models. For
all the three considered model, it is done by adding a pressure damping term in the dy-
namic FSBC from (5). The damping is selected as zero until x = 0.8Lx and then smoothly
increased. Following [5], this set-up corresponds to the best reproduction of the physical
beach of the LHEEA wave tank. Thus, the amount of reflection expected is similar to that
obtained in the experiments.
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2.6 Breaking Models

Due to the assumptions made at the beginning (in particular the potential flow hypothesis
or the fact that the wave elevation η is uniquely defined on the vertical coordinate), the
considered methods cannot simulate the wave breaking. Therefore, for steeper waves, the
need to prevent this phenomenon arises. It can be obtained following different approaches
and those implemented in the considered codes will be here presented. It should be noted
that at the moment no breaking model exists for IITM-FNPT and, therefore, this method
will not be part of the study for breaking case.

2.6.1 HOS-NWT

In HOS-NWT, several breaking models can be applied. The first one here introduced is the
so-called Tian model. It is based on the idea of dissipating the energy in order to prevent
the breaking from occurring. It is applied when the wave configuration exceeds a predefined
criterion. The latter is a kinematic criterion, which compares the water particle velocity at
the top of the crest Ux to the crest speed Cx, following Barthelemy’s approach [4]:

Bx =
Ux

Cx
=
∂ϕ

∂x

1

Cx
> threshold (20)

Note that the threshold is set to 0.85 (see [14]). The criterion is computed at every timestep
and if it is verified, a dissipation term is added to the FSBC as an extra viscous term.
Following Tian [16], one gets:

∂ϕ̃

∂t
= −gη − 1

2
|∇⃗ϕ̃|+ 1

2
(1 + |∇⃗η|2)W 2 + 2νeddy∇⃗ · ∇⃗ϕ̃

∂η

∂t
= (1 + |∇⃗η|2)W − ∇⃗ϕ̃ · ∇⃗η + 2νeddy∇⃗ · ∇⃗η

(21)

with νeddy is defined as:

νeddy = β
HbrLbr

Tbr
(22)

where Hbr, Lbr and Tbr are computed using:

• kbLbr = 24.3Sb − 1.5

• ωbTbr = 18.4Sb + 1.4

• kbHbr = 0.87Rb − 0.3

with Lb = 2Lc, kb = 2π/Lb, Sb = kb(2Hc +Ht1 +Ht2)/4 and Rb = L2/Lc (with reference
to Figure (3), depicting the geometry of the wave just prior to breaking); β is dimensionless
and in the following will be set to 0.02.

Another model that can be applied is the hyperviscous filter. Its action is based on
the assumption of an energy cascade from low to high frequencies, modelling breaking as
a turbulent process. Thus, it applies a low-pass filter in the Fourier space. Applying the
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Figure 3: Geometric quantities defining νeddy used in Tian model

Fourier transform to the FSBC (5), one can write:

∂ϕ̃k
∂t

= Ek − µkϕ̃k

∂ηk
∂t

= Fk − µkηk

(23)

where the subscript k represents the Fourier transform of the considered quantity, Ek and
Fk the Fourier transforms of the right hand side of the FSBC (5) and µk is given by:µk = ak2max

(
|k|−kd

kmax−kd

)2

if |k| ≥ kd

µk = 0 if |k| < kd
. (24)

where kmax is given by the spatial discretisation and a and kd are to be set by the user.
For the purpose of this study, kd is chosen as 15kmax and a as 2. In case that numerical
instabilities occurred for most refined discretisations, a will be increased to 3. Figure (4)
shows the evolution of µ of Eq (24) with a equal to 2 and kd = 15kmax over an example of
wave spectrum.

Finally, it also possible to implement a combination of the presented breaking models,
which applies the Tian model in the physical space and the hyperviscous filter in the Fourier
space.

2.6.2 OceanWave3D

OceanWave3D allows the treatment of breaking events with a local smoothing technique,
as explained in [13]. Similarly to the Tian model in HOS-NWT, a wave breaking onset is
detected with the use of a preset threshold. In this model a dynamic limit is fixed and it is
based on the downward acceleration at the free surface:

−∂W
∂t

> γg (25)

where γ is a tuning parameter and g is the gravitational acceleration. According to Babanin
[1], γ has a theoretical value of 0.5. Where the condition is exceeded, a strong smoothing
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Figure 4: Example of hyperviscous filter action

filter is applied on that point and on the neighboring points to each side. Considering the
wave elevation at the i-th horizontal node xi, the new free-surface elevation will be given by:

(η(xi, t))new = 0.25η(xi−1, t) + 0.5η(xi, t) + 0.25η(xi+1, t) (26)

This will result in a change of wave amplitude, as well as a phase shift. Following the theory,
in this study γ is fixed to 0.5.

2.7 Summary

Table 1 and Table 2 list the parameters that have been presented previously.

Space discretisation Time discretisation Specificities
HOS-NWT Nx Nz time tolerance M , dealiasing parameter

OceanWave3D Nx Nz timestep size r, GMRES tolerance
IITM-FNPT Nx Nz timestep size α, n. of steps for regridding

Table 1: Main parameters for each model

Model onset Specificities

HOS-NWT
Tian threshold (0.85) β

Hyperviscous None a, kd
OceanWave3D Smoothing γ None

Table 2: Main parameters for each breaking model
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3 Experimental Data

The accuracy of the numerical results will be evaluated with respect to a set of experiments
performed in the LHEEA ocean wave tank, whose characteristics are shown in Figure (5).
The horizontal length is Lx equal to 46.4m and the depth is h equal to 5m. It should be
noticed that the considered wave tank presents flap type wavemaker. The wave elevation
measurements come from two experiments, whose goal is to generate a wavefield with a
controlled spectrum. In particular, the aim is to have a JONSWAP type spectrum at a
specific target location. Table 3 lists the characteristics of the JONSWAP spectrum, the
target location and the probe location. The first experiment (Case 1) does not experience
breaking events in the wavefield, while the second one (Case 2) does. Figure (6) represents
the spectra of the wave elevation signal at the considered probes compared to the target
JONSWAP spectrum.

Hs(m) Tp(s) γ h(m) λ Target x-coord. (m) Probe x-coord. (m)
Case 1 13.6 12.3 1 200 40 17.5 13.95
Case 2 17 15.5 2.6 250 50 14 11.25

Table 3: JONSWAP spectra parameters for experimental data

Figure 5: LHEEA ocean wave tank
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Figure 6: Spectral representation for nonbreaking Case 1 (left) and breaking Case 2 (right)
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4 Methods Implementation and Evaluation

4.1 Wavemaker Motion Implementation

In order to obtain the numerical results, the boundary condition on the wavemaker (6) needs
to be implemented. For all the methods, this condition is only considered at the first order
of nonlinearity (i.e. ∂X

∂t = ϕ
∂x ). As already mentioned, the LHEEA wave tank presents flap

type wavemakers. Nevertheless, since some of the considered methods can only implement
piston type, this configuration will be used for all the simulations for a fair comparison. The
experimental wavemaker motions are transformed trying not to vary the wavefield generated.
Away from evanescent modes and under linear theory, the wave elevation does not change,
but for nonlinear waves some discrepancies arise. From the experiments the harmonics η̂
corresponding to the waves generated are available, given for N finite frequencies. In order to
obtain the representation of the wavemaker motion in the frequency domain X̂, the transfer
function of a piston wavemaker (as given, for example, in [10]) is applied:

TF =
η̂

X̂
= i

4sinh2(kh)

2kh+ sinh(2kh)
(27)

Notice that, similarly to η̂, also X̂ will be evaluated in for N finite frequencies.
Once the Fourier representation of the wavemaker motion is known, the corresponding

signal in the time domain is reconstructed as:

X(t) =

N∑
i=0

|X̂(ωi)|
(
cos

(
ωit+ ̸ X̂(ωi)

))
(28)

where ωi corresponds to i-th pulsation.

4.2 Errors Evaluation

In this section the metrics used to quantify the difference between the measurements from
the experiments and the results of the numerical simulations are presented. In particular,
the errors will be computed both in the time domain (with the integrated error and the
cross-correlation) and in the frequency domain (with the ISSP error).

The integrated error (ϵ1) is based on the absolute difference of the signals in the time
domain, which is integrated and evaluated as percentage with respect to the reference wave
elevation ηref :

ϵ1 =

∫
|η(t)− ηref (t)|dt∫

|ηref (t)|dt
(29)

The difference being computed at every singular point in the time domain, it may lead to
significant errors if even a small time shift between the two signals is present.

To avoid this discrepancy, the cross-correlation is used to obtain an estimation of the sim-
ilarity between the wave elevation signals. Given two signals, the cross-correlation between
them is defined as:

Cηη,ref (τ) = (η ⋆ ηref )(τ) =

∫ ∞

−∞
η̄(t)ηref (t+ τ)dt (30)
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where η̄(t) represents the complex conjugate of η(t) and τ is the lag. The value of the cross-
correlation is proportional to the similarity of the two signals, with the second one being
shifted in the time domain by τ . Following [2], the following normalization is then applied:

C̄ηη,ref (τ) =
1√

Cηrefηref
(0)Cηrefηref

(0)
Cηη,ref (τ) (31)

Consequently, for a complete similarity the maximum value should be reached for zero lag
and it should be equal to 1. Thus, the error is estimated as:

ϵ2 = 1−max{C̄ηη,ref} (32)

For what is above described, it can be interesting to consider the time lag for which the
maximum correlation is found τmax, since it corresponds to a phase shift between the signals.

Finally, for the frequency domain analysis the error is computed from the Fourier trans-
form of the wave elevation signal. For this purpose, the improved surface similarity param-
eter (ISSP) proposed by Kim et al [12] is computed:

ISSP =

√ ∫
|Fη(f)− Fη,ref (f)|2df∫

[|Fη(f)− F̄η,ref (f)|+ |Fη,ref (f)− F̄η,ref (f)|]2df
(33)

with Fη being the Fourier transform of η and Fη,ref that of the experimental wave elevation
and F̄ the mean value of F .
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5 Accuracy of the Models

5.1 Nonbreaking Waves

In order to evaluate the efficiency of each method, a convergence study is performed with
respect to the most relevant parameters. In particular, a special focus on the influence of the
spatial discretisation is first presented. Afterwards, the influence of the other parameters is
also discussed. The accuracy of each simulation is evaluated with the methods presented in
section (4.2).
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Figure 7: Experimental wave elevation (top) and comparison in time domain between the
different models over a 20Tp zoom (bottom)

Basing on the results that have been obtained and will be presented successively, Figure
(7) shows a qualitative comparison in the time domain of the three different models with
the experimental measurements. Here, the most accurate configuration (in terms of ISSP
error) is chosen for each model, in particular:

• HOS-NWT: 50 nodes per peak wavelength, M equal to 6, time tolerance fixed to 10−9
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• OceanWave3D: 50 nodes per peak wavelength, 15 vertical nodes, r fixed to 7, GMRES
tolerance 10−8, 200 steps per Tp

• IITM-FNPT: 50 nodes per peak wavelength, 20 vertical nodes, α fixed to 1.2, 200
steps per Tp

5.1.1 HOS-NWT

For HOS-NWT the method is tested for varying HOS order and number of points in the
x-direction, corresponding to the number of modes in the Fourier expansion. Regarding the
latter, the different values of Nx are chosen according to the ratio between the maximum
wavenumber kmax and the wavenumber corresponding to the predicted peak in the wave
spectrum kp. In particular, the analysis is performed for kmax equal to (5, 10, 15, 20, 25)kp,
which, from the wavemaker input (see Table (3)), one expects being around 1.07rad/m.
From the definition of the maximum wavenumber (Nx = Lxkmax/π + 1) this correspond to
(10, 20, 30, 40, 50) nodes per peak wavelength. It is to be said that, when trying to move
towards higher Nx, numerical instabilities occur. The HOS order, instead, is varied from 1
to 7. In this first part, the time tolerance is fixed to 10−4 and its influence will be discussed
later. The effect of the aliasing is not investigated in this study, as full dealiasing will be
applied. Moreover, the vertical number of nodes will be set to 9.
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Figure 8: ISSP error for varying horizontal discretisation and HOS order, time tolerance
fixed to 10−4

Figure (8) shows the results for the ISSP error. The left part of the figure gives the
convergence with respect to the horizontal discretisation Nx and on the right is the similar
study for the HOS order M . As it can be appreciated, the influence of the number of points
in the Fourier space is significant, with the error that reaches convergence for kmax = 20kp
(i.e. 40 nodes per peak wavelength). Regarding the influence of the HOS order, it is found
that the error tends to stabilizes after M = 3. This results is linked to the fact that, for
lower orders, the four-waves interaction are not considered.

A first conclusion can be drawn by looking at the results for the integrated error ϵ1 and
comparing them to the ISSP error in Figure (8). In fact, from Figure (9) one can see how the
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Figure 9: ϵ1 error for varying horizontal discretisation and HOS order, time tolerance fixed
to 10−4

the evolution of the error against Nx and M is analogous to that of the ISSP error. This is
due to the linearity of the Fourier transform, which implies that the numerators in Equation
(29) and (33) are strongly related between each other. In fact, the only difference (which is
responsible for the appreciable change of error values) is due to the different normalization.
Since this result is confirmed for all the other cases, the error ϵ1 will be no longer presented.

The cross-correlation error (Equation (32)) is then computed and results are presented
in Figure (10) similarly to the case of the ISSP error. It can be noticed that the trend of
the two errors is very similar. This is due to the fact that the time lag τmax for which the
maximum cross-correlation is found is practically constant and equal to 0s, meaning that
there is no appreciable phase shift between the numerical results and the experiments. The
only exception to this is the case for M equal to 1 for which τmax results in 0.09s (i.e.
0.045Tp). The variation of the time lag for maximum cross-correlation is shown in Figure
(11). No appreciable change is found with respect to Nx.

As already mentioned, the influence of the time tolerance used (i.e. 10−4) should be
checked. To do so, Nx and M are fixed to a value that is previously found to be converged
(40 nodes per peak wavelength andM = 6, respectively) and the ISSP error is then evaluated
for different time tolerances. The minimum tolerance considered is 10−9, since lower values
resulted in being too strict to successfully conclude the simulation.

The different errors computed are represented in Figure (12). The error seems to decrease
for tolerances stricter than 10−5. However, it must be precised that the overall variation
is negligible (the accuracy improves by around 0.5% between a time tolerance of 10−2 and
10−9). The optimal choice considering also the computational effort will be investigated
later, where the results with tolerance equal to 10−9, 10−7 and 10−4 are considered.
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Figure 10: ϵ2 error for varying horizontal discretisation and HOS order, time tolerance fixed
to 10−4
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Figure 11: Maximum time lag for cross-correlation for varying HOS order, 40 nodes per
peak wavelength

5.1.2 OceanWave3D

A similar study to that of the previous section is performed for OceanWave3D. Here, three
cases are considered (with increasing finite difference order), each one presenting the conver-
gence with respect to the mesh definition. The horizontal number of nodes is progressively
increased from 10 to 50 nodes per peak wavelength approximately; while in the vertical di-
rection from 7 to 15 points. Three different cases, depending on the value of r are presented
separately: 4-th order, 6-th order and 8-th order of finite difference accuracy. For this first
part, the GMRES tolerance is set to 10−8 and the timestep size is equal to 0.01s (200 steps
per Tp), since they both correspond to converged results.
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Figure 12: ISSP error for varying time tolerance, 40 nodes per peak wavelength and M
equal to 6
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Figure 13: ISSP error for varying mesh resolution, r fixed to 5, GMRES tolerance 10−8, 200
steps per Tp

Beginning with the 4-th order finite difference (i.e. r equal to 5), the evolution of the
error is represented in Figure (13) with respect to the horizontal and vertical number of
nodes on the left and on the right, respectively. It is noticeable that the error begins to
converge for 30 nodes per peak wavelength; while regarding the vertical discretisation the
results for 12 nodes can already be considered satisfactory. When looking at the cases for
higher finite differences orders (Figure (14) and (15) for r equal to 7 and 9, respectively), one
can deduce similar conclusions. It should be noticed that for r equal to 9 the results for 7
vertical nodes cannot be computed because the stencil is too large. As expected, increasing
the dimension of the stencil r improves the accuracy of the solution (especially from 5 to
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Figure 14: ISSP error for varying mesh resolution, r fixed to 7, GMRES tolerance 10−8, 200
steps per Tp
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Figure 15: ISSP error for varying mesh resolution, r fixed to 9, GMRES tolerance 10−8, 200
steps per Tp

7), with the effect on the efficiency (considering also the CPU time) that will be discussed
in the next section. For a more detailed discussion, Figure (17) shows the variation of the
cross-correlation error over the horizontal and vertical discretisation for 6-th order finite
difference scheme. Comparing this trend to that of the ISSP error (Figure (14)), one can see
that, especially for more refined discretisations, the convergence of the error appear similar.
The only case that presents the greatest phase shift is that with 10 horizontal nodes per λp,
for which τmax results in 0.03s, i.e. 0.01Tp (no appreciable variation is found with respect to
the vertical discretisation). Besides this, the value of the time lag does not vary greatly, but
it progressively decreases until it reaches zero for 50 nodes per peak wavelength, as it can be
seen in Figure (16). Finally, it is also found that, regarding the phase shift, the r parameter
stands of minor importance, since its variation does not influence the results. Therefore, the
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cross-correlation error for the other cases is not presented.
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Figure 16: Maximum time lag for cross-correlation for varying horizontal discretisation, 15
vertical nodes
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Figure 17: ϵ2 error for varying mesh resolution, r fixed to 7, GMRES tolerance 10−8, 200
steps per Tp

As explained, the previous result are obtained using a 4-th order Runge-Kutta scheme
with fixed timestep (0.01s, i.e. 200 steps per peak waveperiod) for the time integration. The
choice of the timestep size, thus, affects the accuracy of the results, as it is here investigated.
Having fixed all the other parameters, Figure (18) shows the evolution of the ISSP error
for different number of steps per Tp. The convergence seems to occur for timesteps smaller
than 0.02s (100 steps per Tp).

Finally, another parameter whose influence needs to be estimated is the GMRES toler-
ance, which defines the accuracy of the resolution of the Laplace problem. The tolerance is
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Figure 18: ISSP error for varying timestep size, r fixed to 7, 40 nodes per peak wavelength,
12 vertical nodes
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Figure 19: ISSP error for varying GMRES tolerance, r fixed to 7, 100 steps per Tp, 40 nodes
per peak wavelength, 12 vertical nodes

varied from 10−8, which was used for the previous study, to 10−1. As it is can be understood
by looking at Figure (19), the ISSP error seems to stabilize for tolerances stricter than 10−4,
ensuring the reliability of the previous results. Nevertheless, it should be noted that the
variation in the error is not significant. Similarly to the time tolerance for HOS-NWT, the
optimal choice of GMRES tolerance will be discussed in Section (6).
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5.1.3 IITM-FNPT

Moving forward, the influence of the mesh definition on the results is also studied for IITM-
FNPT. Here, two cases are presented, each one corresponding to a different value of the
parameter α which determines the distribution of vertical nodes. In particular, the con-
vergence over the number of horizontal and vertical nodes is first presented for α = 1.2,
followed by that for α = 2. In order to better visualize the difference, Figure (20) represents
the finite element mesh for the two different cases. As predictable from the definition of the
parameter (Eq (19)), a greater value of α corresponds to small vertical spacing for points
near the free-surface and large vertical spacing for points away from the free-surface. For
both cases, the horizontal discretisation is varied from 10 to 50 nodes per peak wavelength;
and the vertical from 9 to 15 nodes. Regarding the time integration, it is performed with a
RK4 scheme, with, for this first part, timestep size equal to 0.01s. Moreover, regridding is
applied every 10 timesteps, since for higher values numerical instabilities occur.

Figure 20: Finite element mesh for α = 1.2 (top) and α = 2 (bottom), 80 horizontal nodes,
9 vertical nodes

For the first case, the convergence of the ISSP error with respect to the domain discreti-
sation is shown in Figure (21). It can be seen how the error begins to stabilize for 30 nodes
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Figure 21: ISSP error for varying mesh resolution, α fixed to 1.2, 200 steps per Tp

per peak wavelength and 12 vertical nodes. Thus, comparing with the mesh refinement in
OceanWave3D, one can deduce that convergence is reached for similar refinement of the
grid.

Moving to the case with α = 2, whose ISSP errors are depicted in Figure (22), one can
appreciate the different behaviour especially with respect to the vertical discretisation, as
predictable. Here, in fact, the error does not seem to converge before 20 vertical nodes.
Therefore, one can deduce that the choice of α equal to 1.2 results being more accurate
in this configuration that represents propagation of waves in deep water. In fact, for this
type of waves the nodes distribution should not be too sparse at the bottom, as it is for α
equal to 2 (see Figure (20)). The results improve significantly when looking at the cross-
correlation error. The latter is presented in Figure (23) only with respect to the horizontal
discretisation, as it is found to have the most significant influence, both for the cases of α
equal to 1.2 (on the left) and 2 (on the right).
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Figure 22: ISSP error for varying mesh resolution, α fixed to 2, 200 steps per Tp
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Figure 23: ϵ2 error for varying horizontal discretisation, α fixed to 1.2 on the left and 2 on
the right, 200 steps per Tp

The considerable difference in the convergence trend if compared to the ISSP error sug-
gests that a phase shift between the numerical results and the experiments affects the results.
However, this influence changes considerably depending on the α parameter. Figure (24)
shows the variation of the time lag for the maximum cross-correlation for the different hor-
izontal discretisations, which is found to be the most significant parameter.
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Figure 24: Maximum time lag for cross-correlation for varying horizontal discretisation, 20
vertical nodes

As it can be seen, after a steep decrease between 10 and 20 nodes per λp, the phase shift
tends to stabilize. Some differences, as previously mentioned, are present between the two
values of α. In fact, if α is equal to 1.2, the value of time lag for maximum cross-correlation
settles at 0.03s (i.e. 0.02Tp) for the converged result of 50 nodes per peak wavelength and
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20 vertical nodes. Instead, for α equal to 2, it is found as 0.09s (i.e. 0.05Tp). Therefore, one
may conclude that the improvement on the accuracy given by setting α to 1.2 is also due to
a considerably smaller phase shift.
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Figure 25: ISSP error for varying timestep size, α fixed to 1.2, 40 nodes per peak wavelength,
15 vertical nodes

Finally, the influence of the timestep size should be studied. Figure (25) represents
the evolution of the ISSP error for increasing number of timesteps per peak waveperiod
(Tp = 1.937s). The length of the timestep is varied from 0.1s to 0.01s, corresponding
to 20 and 200 steps per waveperiod, respectively. Similarly to OceanWave3D, It can be
appreciated that the error tends to stabilize for the last two cases studied (100 and 200
steps per Tp). Therefore, they will be subject of an efficiency analysis in the section (6). It
should be noted that, for a fair comparison and to prevent numerical instabilities for larger
timesteps, the results here presented are obtained with a regridding process after every step,
decreasing the overall accuracy of the method.
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5.2 Breaking Waves

As for the previous case, in this first part a convergence study is performed with respect to
the discretisation in the Fourier domain and the HOS order for HOS-NWT and to the mesh
refinement for OceanWave3D. Regarding HOS-NWT, three breaking models are tested: the
Tian model only, the hyperviscous filter only and the combination of the two. OceanWave3D,
instead, is run using the smoothing technique presented in Section (2.6.2). Similarly to the
nonbreaking case, also the influence of the time tolerance for HOS-NWT, GMRES tolerance
and timestep for OceanWave3D is investigated.
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Figure 26: Experimental wave elevation (top) and comparison in time domain between the
different models over a 20Tp zoom (bottom)

Similarly to the nonbreaking case, a qualitative representation of the waves in the time
domain is here displayed. The configurations chosen, since they present the highest accuracy,
are:

• HOS-NWT; hyperviscous filter: 50 nodes per peak wavelength, M equal to 5, time
tolerance fixed to 10−9; a equal to 2
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• HOS-NWT; Tian model: 40 nodes per peak wavelength, M equal to 5, time tolerance
fixed to 10−9

• HOS-NWT; Tian hyperviscous filter: 50 nodes per peak wavelength, M equal to 5,
time tolerance fixed to 10−9; a equal to 2

• OceanWave3D; smoothing: 30 nodes per peak wavelength, 15 vertical nodes, r fixed
to 5, GMRES tolerance 10−8, 200 steps per Tp

5.2.1 HOS-NWT

Beginning with hyperviscous filter only, Figure (27) shows the evolution of the ISSP error
for increasing number of points in the Fourier space (on the left) and HOS order (on the
right). Note that, in this first section, the time tolerance is fixed to 10−4.
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Figure 27: ISSP error for varying horizontal discretisation and HOS order with hyperviscous
filter, time tolerance fixed to 10−4

The converging trend can be appreciated for both the parameters. However, one can see
that when the value of a is increased to prevent numerical instabilities, the ISSP error also
rises. This is due to the stronger dissipation applied by the filter (see Eq (24)). Besides
for this, the trends are comparable to those obtained for the nonbreaking case, even if, as
expected, the value of the error is overall grater. This similarity is also confirmed by the
absence of phase shift between the experimental signal and the numerical solution (equal
to 0.01s, i.e. 0.004Tp) for values of M greater than 1, as proved in Figure (28), where the
evolution of the cross-correlation error can be seen being generally analogous to the ISSP
error previously presented. This phase shift is consistent for all the cases tested and for all
the breaking models used for HOS-NWT. Thus, for the Tian and Tian hyperviscous models
the cross-correlation error will not be presented.

Next, the Tian model is used, with Figure (29) showing the ISSP error for increasing
number of points in the Fourier space (on the left) and HOS order (on the right). It should
be precised that the Tian model results effective up to 40 nodes per peak wavelength, while
for a more refined grid, numerical instabilities arise.
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Figure 28: ϵ2 error for varying horizontal discretisation and HOS order with hyperviscous
filter, time tolerance fixed to 10−4
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Figure 29: ISSP error for varying horizontal discretisation and HOS order with Tian model,
time tolerance fixed to 10−4

While for the HOS order the ISSP error reaches convergence similarly to the nonbreaking
case and the hyperviscous filter; regarding the horizontal discretisation, the error does not
stabilize. This is due to the above-mentioned upper limit of Nx. As expected, the value of
the error is greater to that obtained for the nonbreaking case.

Moving forward, the same study is performed with the combination of Tian model and
hyperviscous filter. The convergence of the ISSP error is depicted in Figure (30) with respect
to the number of points in the Fourier space and HOS order on the left and on the right,
respectively.

The results are comparable to those obtained with the hyperviscous filter only. It can
be noticed, anyway, how here the a parameter is increased to 3 in fewer cases, granting
higher accuracy. In particular, this difference occurs for 50 nodes per λp and fifth HOS
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Figure 30: ISSP error for varying horizontal discretisation and HOS order with Tian hyper-
viscous model, time tolerance fixed to 10−4

order, where the dissipation applied by the Tian model avoids having to use a stronger
filter. In any case, it is appreciable how this breaking model generally appears to reach
higher accuracy if compared to the hyperviscous filter only. However, a detailed comparison
between the two models will be investigated in Section (6).
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Figure 31: ISSP error for varying time tolerance with Tian hyperviscous model, 40 nodes
per peak wavelength and M equal to 5

Next, the time tolerance is varied from 10−9 to 10−2 in order to study its effect on the
error. This is done for the Tian model with hyperviscous filter, having fixed the number of
discretisation points to 40 nodes per peak wavelength and the HOS order to 5. Regarding
the range of tolerances, for values stricter than 10−9 numerical instabilities occurred. The
results for the ISSP error are shown in Figure (31). The trend looks similar to that found
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for the nonbreaking case and the same conclusion about its influence can be deduced.

5.2.2 OceanWave3D

The accuracy of OceanWave3D with respect to the mesh refinement is here discussed. The
breaking model applied is the smoothing technique described in Section (2.6.2). In this first
part, the GMRES tolerance and the timestep are, for the moment, fixed to 10−8 and 0.01s
(220 steps per waveperiod), respectively.

Figure (32) and Figure (33) show the results of the study for 4-th order finite difference
scheme (i.e. r equal to 5) for the ISSP and cross-correlation error, respectively. It is to be
said that for more accurate finite difference discretisations the smoothing appears to be not
sufficient and numerical instabilities occur.
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Figure 32: ISSP error for varying mesh resolution with smoothing technique, r fixed to 5,
GMRES tolerance 10−8, 220 steps per Tp

A convergence of the ISSP error can be appreciated for the vertical discretisation. Re-
garding the horizontal discretisation, instead, after a steep decrease of the ISSP error between
10 and 20 nodes per peak wavelength the convergence becomes less evident. In fact, for the
highest number of points the error appears to slightly increment. This may be due to the
effect of the smoothing technique, since the number of steps at which it is applied increase
greatly from 30 nodes per λp up to higher Nx. The more definite converging trend for the
cross-correlation error suggests that the application of the breaking model results in a signif-
icant phase shift. This is confirmed by the lag for which the maximum correlation is found,
shown in Figure (34): 0.01s for 10 nodes per peak wavelength against 0.08s for 50 nodes per
peak wavelength (considering 15 vertical nodes). The latter value is doubled if compared
to the nonbreaking case, confirming that the phase shift is induced by the smoothing tech-
nique. Besides the values, one can appreciate how the trend of τmax is opposite to in the
nonbreaking case, progressively increasing for greater values of Nx.
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Figure 33: ϵ2 error for varying mesh resolution with smoothing technique, r fixed to 5,
GMRES tolerance 10−8, 220 steps per Tp
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Figure 34: Maximum time lag for cross-correlation for varying horizontal discretisation, 15
vertical nodes

Moving on, the effect of the timestep size is here discussed. After having fixed the other
parameters, the evolution of the ISSP error is computed for different number of steps per
waveperiod. Unlike for the nonbreaking case, instabilities arise as the timestep size is greater
than 0.03s (around 80 steps per Tp). Figure (35) shows the results.

If compared to the nonbreaking case (Figure (18)), it can be seen how a larger number of
steps per waveperiod is required to obtain converged results. The results with 110 and 220
steps per Tp will be object of an efficiency analysis in Section (6). Similarly, the influence
of the GMRES tolerance is investigated and the evolution of the ISSP error is depicted in
Figure (36).
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Figure 35: ISSP error for varying timestep size with smoothing technique, r fixed to 5, 30
nodes per peak wavelength, 12 vertical nodes

The trend is here similar to that obtained in the nonbreaking case, with the ISSP error
that tends to stabilize for tolerances stricter than 10−3. Nevertheless, similarly to the
nonbreaking case, it should be stated that the total variation of the ISSP error is not
significant. The effect on the computational effort is discussed later, where the cases with
tolerances equal to 10−3 and 10−4 are considered.
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Figure 36: ISSP error for varying GMRES tolerance with smoothing technique, r fixed to
5, 220 steps per Tp, 30 nodes per peak wavelength, 12 vertical nodes
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6 Efficiency Comparison

In this section, the efficiency of the different models is investigated in terms of accuracy and
computational effort, similarly to what done in [7]. For each method, the optimal working
configuration is sought. In order to do so, several values of the ISSP errors are fixed and the
sets of discretisation parameters which reach them with the smallest CPU time are chosen.
Moreover, for OceanWave3D and IITM-FNPT the highest efficiency is looked for also in
terms of the parameters r and α, respectively and the timestep size. A similar study is also
performed with respect to the GMRES tolerance for OceanWave3D and time tolerance for
HOS-NWT.

6.1 Nonbreaking Waves

Beginning with the nonbreaking case, the previously presented convergence study is used in
order to select the most efficient choices in terms of horizontal discretisation and HOS order
for HOS-NWT and mesh refinement for OceanWave3D and IITM-FNPT. In particular, as
explained above, different values of ISSP errors are fixed and the set of parameters (in terms
of grid refinement) that allows reaching that value with the least computational effort for
each case is then sought. Note that, for IITM-FNPT and OceanWave3D, this is done with
α equal to 1.2 and r equal to 7, respectively. Tables (4) to (6) report the final configurations
that are found.

ISSP error Nodes per λp M
HOS-NWT

0.343 10 3
0.304 20 3
0.267 30 3
0.265 30 4
0.257 30 6
0.236 40 6
0.229 50 6

Table 4: Optimal choices for efficiency comparison for HOS-NWT

ISSP error Nodes per λp Vertical nodes
OceanWave3D; r = 7

0.301 20 7
0.277 20 9
0.257 30 9
0.247 30 12
0.247 40 12
0.246 40 15
0.248 50 15

Table 5: Optimal choices for efficiency comparison for OceanWave3D
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ISSP error Nodes per λp Vertical nodes
IITM-FNPT; α = 1.2

0.337 20 12
0.309 30 12
0.302 30 15
0.292 40 15
0.284 40 20
0.275 50 20

Table 6: Optimal choices for efficiency comparison for IITM-FNPT

Next, also the best choices for the other parameters previously introduced need to be
evaluated. This will be done with a series of comparisons where, for the different configu-
rations of Tables (4) to (6), the accuracy will be shown with respect to the computational
effort. Figure (37) presents the comparison between OceanWave3D with the three different
values of r, on the left, and IITM-FNPT with respect to α on the right. Each point in the
plot refers to one of the configurations listed in Table (5) and (6). The CPU time necessary
to simulate one peak waveperiod is depicted versus the ISSP accuracy (i.e. the complement
to 1 of the ISSP error).
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Figure 37: CPU time versus ISSP accuracy for OceanWave3D (left) and IITM-FNPT (right)
with different values of r and α, respectively

It can be seen how the results for 4-th and 9-th order finite differences show similar
efficiency up to the maximum accuracy reachable by the first. In any case, 6-th order scheme
presents overall higher efficiency and will, therefore, considered for the comparison with
the other methods. Regarding IITM-FNPT, it is here evident the improvement especially
in terms of computational effort due to setting α to 1.2 (for what previously discussed).
Having set the most efficient choices for the stencil dimension and the α parameter, a
similar investigation is performed with respect to the timestep size both for OceanWave3D
and IITM-FNPT. Again, in terms of mesh refinement, the configuration studied are the same
as in the previous analysis, listed in Table (5) and (6). Figure (38) shows the comparisons
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for OceanWave3D on the left and IITM-FNPT on the right.
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Figure 38: CPU time versus ISSP accuracy for OceanWave3D (left) and IITM-FNPT (right)
with different number of steps per peak waveperiod

For both the methods, it is appreciable how the case with 100 steps per peak period
presents a higher efficiency, as the computational effort is significantly decreased but the
accuracy is not. Therefore, this configuration will be fixed for the following comparisons. The
two last parameters whose effect needs to be studied are the time tolerance for HOS-NWT
and GMRES tolerance for OceanWave3D. A similar analysis as for the previous parameters
is performed and shown in Figure (39).
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Figure 39: CPU time versus ISSP accuracy for HOS-NWT (left) and OceanWave3D (right)
with different time and GMRES tolerance, respectively

Regarding HOS-NWT, the slight increase in accuracy does not justify using a time
tolerance smaller than 10−4, as it implies a significantly higher computational effort. Instead,
the two cases studied for the GMRES tolerance do not differ greatly, even if for a tolerance
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Figure 40: CPU time versus ISSP accuracy for the different methods in optimal configuration

equal to 10−4 the CPU time is reduced without affecting the accuracy of the results. For
both these tolerances, thus, the larger values considered results in being the most efficient
(because of their negligible influence on the accuracy as previously discussed)

Finally, since the optimal choices with respect to all the significant parameters are chosen,
the three models can be compared. This results are shown in Figure (40). It is to be said
that here, for HOS-NWT, a maximum timestep size of 0.02s (100 steps per Tp) is set for
a more fair comparison with the other models in terms of frequency sampling for the error
evaluation. However, it is important to precise that a lower computational effort could
be achieved without imposing a maximum timestep size. As it can be seen, IITM-FNPT
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Figure 41: CPU time versus ISSP accuracy for the different models for all cases tested
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presents a slightly lower efficiency in terms of accuracy and computational effort. Regarding
HOS-NWT and OceanWave3D, the latter is found to require competitive computational
effort up to the maximum accuracy it can reach (around 0.75). Nevertheless, HOS-NWT
results to reach significantly higher accuracy, approximately 0.77.

A more general comparison is depicted in Figure (41), where the CPU time of all the
simulations run for this study is plotted in a scatter diagram against the corresponding ISSP
accuracy. Similarly as for the optimal configurations, it can be seen how HOS-NWT is able
to reach highest accuracy; while if a less precise solution is sought the three methods present
closer efficiency.

6.2 Breaking Waves

Similarly to the nonbreaking case, the optimal configuration in terms of accuracy and CPU
time is sought for each method tested. First, basing on the results of the convergence analysis
in Section (5.2), the study is performed for the horizontal discretisation and the HOS order
for HOS-NWT and the mesh refinement for OceanWave3D. Different values of the ISSP
error are set and the configuration that achieves that with the least computational effort is
chosen. This is done separately for the three different breaking models studied (hyperviscous
and Tian hyperviscous for HOS-NWT and smoothing for OceanWave3D). The parameters
configuration resulting from this analysis is resumed in Tables (7) to (10).

ISSP error Nodes per λp M
HOS-NWT; hyperviscous
0.291 20 4
0.287 20 5
0.272 30 5
0.253 40 4
0.251 40 5
0.251 50 5

Table 7: Optimal choices for efficiency comparison for HOS-NWT with hyperviscous filter

ISSP error Nodes per λp M
HOS-NWT; Tian

0.309 20 4
0.301 20 5
0.263 30 5
0.252 40 4
0.247 40 5

Table 8: Optimal choices for efficiency comparison for HOS-NWT with Tian model

As for the previous case, the best choice of two other parameters (timestep size and
GMRES tolerance) should be investigated for OceanWave3D and of the time tolerance for
HOS-NWT. First, the timestep size influence for OceanWave3D is presented. As for the
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ISSP error Nodes per λp Vertical nodes
HOS-NWT; Tian hyperviscous

0.286 20 4
0.282 20 5
0.261 30 5
0.248 40 4
0.246 40 5
0.243 50 4

Table 9: Optimal choices for efficiency comparison for HOS-NWT with Tian hyperviscous
model

ISSP error Nodes per λp Vertical nodes
OceanWave3D; smoothing

0.275 20 7
0.270 20 9
0.270 30 9
0.267 30 12
0.266 30 15
0.272 40 12
0.272 40 15

Table 10: Optimal choices for efficiency comparison for OceanWave3D with smoothing tech-
nique

previous case, the cases studied are those with a length of 0.01s and 0.02s, here approxi-
mately corresponding to 110 and 220 steps per Tp, respectively. Figure (42) shows the CPU
time against the accuracy obtained. Similarly to the nonbreaking case, in this plot and
in the following of the same type each point represents one of the choices of discretisation
parameters of Tables (7) to (10).

It is appreciable how a higher computational effort does not always correspond to higher
accuracy. This is the direct reflection of the non perfect convergence discussed in Section
(5.2.2). Nevertheless, the smaller CPU time required for 110 steps per waveperiod also
implies a significant decrease in the accuracy, as could be expected by looking at the ISSP
convergence over the timestep size in Figure (35). Therefore, one can conclude that 110
steps per wavepriod are not sufficient to reach a converged numerical result. For this reason,
unlike for the nonbreaking case 220 steps per Tp will be chosen in the following.

The two last parameters here considered are the time tolerance for HOS-NWT and the
GMRES tolerance for OceanWave3D. For the purpose of this analysis, for HOS-NWT only
the Tian model with hyperviscous filter is presented, but similar conclusions are found for
the other breaking models. Figure (43) shows the efficiency comparison between the different
cases tested for HOS-NWT on the left and OceanWave3D on the right.

Similar conclusions to those drawn for the nonbreaking case can be obtained. As it
can be noticed, regarding the time tolerance for HOS-NWT, the choice of 10−4 presents
significantly less computational effort. At the same time, the accuracy of the numerical
solution dos not decrease greatly; thus this can be considered as an optimal configuration.
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Figure 42: CPU time versus ISSP accuracy for OceanWave3D with smoothing technique
with different number of steps per peak waveperiod
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Figure 43: CPU time versus ISSP accuracy for HOS-NWT with Tian hyperviscous model
(left) and OceanWave3D with smoothing technique (right) with different time and GMRES
tolerance, respectively

Similarly, for the GMRES tolerance in OceanWave3D, increasing the value to 10−3 improves
the required CPU time, without affecting the final error and it will, then, be considered in
the following study.

Having set the optimal choice for the parameters above treated, it is possible to visualize
a comparison of all the different methods and breaking models, as shown in Figure (44).
Like for the nonbreaking case, it should be noted that a maximum timestep size of 0.01s
(220 steps per Tp) is set for HOS-NWT for a fair comparison with OceanWave3D, but a
smaller CPU time could be achieved without this limitation.
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Figure 44: CPU time versus ISSP accuracy for the different models in optimal configuration

It is appreciable how OceanWave3D with the smoothing technique presents good results
in terms of computational effort, but considerably smaller accuracy than the other mod-
els. This may be related to the limited dimension of the stencil for the finite difference
discretisation achievable or to the phase shift induced by the breaking model, as discussed
in Section (5.2.2). Regarding the different breaking models tested for HOS-NWT, one can
see that they all present similar computational effort up to 0.75 ISSP accuracy. However,
the combination of the Tian model and the hyperviscous filter results in reaching a greater
value of maximum accuracy.
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Figure 45: CPU time versus ISSP accuracy for the different models for all cases tested

Similar conclusions to those just presented can be drawn looking at Figure (45), where
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the CPU time of all the cases tested (not only the optimal configurations) is plotted versus
the ISSP accuracy.
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7 Conclusion

In this study, an extensive comparison between the three models is presented. First, the
theoretical framework, including the numerical methods used for each models is detailed,
with a special focus on the techniques to prevent breaking events.

After having discussed the metrics used to compare the numerical results with the ex-
periments, a convergence study is performed with respect to the most relevant parameters
for each model. Regarding the spatial discretisation (number of points in Fourier space and
HOS order for HOS-NWT and mesh refinement for OceanWave3D and IITM-FNPT), the
convergence of the errors is used to draw several conclusions. First, it is found that the
ISSP error (Eq (33)) presents the same information of the integrated error expressed as in
Equation (29), but with an improvement related to the normalization. Moving on, regarding
the nonbreaking case, for HOS-NWT the number of horizontal discretisation points stand
of great importance; while for the HOS order the error stabilizes already after M equal to 3.
This is related to the fact that for smaller orders, the four waves interactions are not taken
into account, affecting significantly the accuracy of the result. OceanWave3D presents an
evident convergence over both the horizontal and vertical number of nodes for all the cases
tested. The influence of the order of accuracy of the finite difference scheme is also studied
by looking at the evolution of the error with respect to the mesh refinement, and is found
to present a considerable improvement in the solution accuracy between the 4-th and 6-th
order. For IITM-FNPT, the difference between the two cases studied for different values of
α is considerable. For α equal to 1.2, the convergence of the ISSP error is more clear and the
error stabilizes for the same mesh refinement as OceanWave3D. The results for α equal to 2
(less vertical spacing for nodes close to the free-surface) show that the ISSP error has issues
in reaching convergence. The study of the cross-correlation error presents interesting results
regarding the presence of a phase shift between the numerical solution and the experiments.
In fact, if the latter is not found for HOS-NWT (except for M = 1), a small value of time
lag for the maximum correlation results for OceanWave3D, even if it does not affect greatly
the accuracy of the solution, since it progressively decreases for more refined grids. Instead,
in IITM-FNPT, with α set to 2, τmax has a considerably greater values than in the other
models, indicating a phase shift that affects the accuracy of the solution. For the other pa-
rameters, the timestep size results in having a considerable influence on the ISSP error both
for OceanWave3D and IITM-FNPT; while the time tolerance in HOS-NWT and GMRES
tolerance in OceanWave3D appear to be less relevant. Regarding the breaking case, relevant
conclusions can also be deduced. First, for the models available in HOS-NWT, the Tian
model is slightly less efficient in terms of stability. The hyperviscous filter is able to reach
higher values of Nx and M , even if in some cases the filtering needs to be strengthened by
increasing a and, thus, increasing the error. The combination of the two above-mentioned
models appears to have a better stability and a clearer convergence trend. No appreciable
phase shift results for any of these models. The same cannot be said for the smoothing
technique of OceanWave3D, where a significant difference exists between the evolution of
the ISSP and cross-correlation error over the mesh refinement. Indeed, the time lag for the
maximum correlation presents an opposite trend to that of the nonbreaking case, increasing
for high Nx, when the smoothing is more consistently applied. Also, the dissipation induced
by the smoothing is not sufficient for finite difference accuracy orders greater than 4. It
is also found that smaller timestep sizes are required if compared to the nonbreaking case.
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Instead, not a great difference results for the convergence over the time tolerance (HOS-
NWT) or the GMRES tolerance (OceanWave3D). It should be precised that, in this work,
the influence of some parameters has not been taken in consideration. For instance, the
number of steps after which the regridding is applied in IITM-FNPT is here set as great
as possible until numerical instabilities occur. Similarly, the dealiasing parameter is always
taken as for full dealiasing.

Next, the computational effort is taken also into account and the optimal configuration
for each model is sought. The study is performed considering the selected configurations
of spatial discretisation basing on their efficiency for each model. Each parameter is, then,
studied separately. In this way, for the nonbreaking case it is found that α equal to 1.2 and
r equal to 5 present better results (both in terms of computational effort and accuracy) for
IITM-FNPT and OceanWave3D, respectively. Similarly, for both these two models, where
the timestep size is fixed in the time marching scheme, choosing 100 steps per Tp improves
the CPU time without affecting the accuracy. In an analogous way, it results that the
best choices for the time and GMRES tolerance are 10−4 and 10−3, respectively. Finally,
comparing the three models one can see how HOS-NWT is able to reach the highest accu-
racy without requiring significant computational effort. However, OceanWave3D presents
competitive CPU time for the range of accuracy it can reach. The results of IITM-FNPT,
instead, present both a higher computational effort and lower accuracy. Regarding the
breaking case, a first results is that the time marching scheme for OceanWave3D requires
a smaller timestep size to obtain satisfactory accuracy. On the contrary, no change in the
optimal choices for the time and GMRES tolerance is found with respect to the nonbreak-
ing case. The final comparison between the breaking models suggests that the smoothing
technique does not imply an increase in computational effort if compared to the nonbreak-
ing case. The same cannot be said for all the models tested for HOS-NWT. However, the
latter can reach significantly greater accuracy. Regarding the three breaking models used
for HOS-NWT, the combination of Tian model and hyperviscous filter results in reaching
slightly greater accuracy without affecting the computational effort. However, it should be
noticed that for all the models the sampling frequency for the error computation is chosen
as considerably high (100 steps per Tp for the nonbreaking case, 220 steps per Tp for the
breaking case). Interesting information, especially on the efficiency of the time integration,
could be obtained investigating other sampling frequencies.

The present work could be extended in order to better address the efficiency of numerical
solvers for ocean wave tanks simulations. Regarding the considered models, the influence of
the time integration scheme can be investigated in more details by extending the study of
the timestep size (for RK(4)) or time tolerance (for RK4(5)). Interesting conclusions could
also be deduced by evaluating the effect of the number of steps after which regridding is
applied in IITM-FNPT or of the dealiasing parameter in HOS-NWT. Next, the case of a
three-dimensional wavefield could lead to variations in terms of accuracy and computational
effort.
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