
HAL Id: hal-04322523
https://hal.science/hal-04322523

Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Obfuscation Padding Schemes that Minimize Rényi
Min-Entropy for Privacy

Sebastian Simon, Cezara Petrui, Carlos Pinzón, Catuscia Palamidessi

To cite this version:
Sebastian Simon, Cezara Petrui, Carlos Pinzón, Catuscia Palamidessi. Obfuscation Padding Schemes
that Minimize Rényi Min-Entropy for Privacy. ISPEC 2023 - The 18th International Conference
on Information Security Practice and Experience, Aug 2023, Coppenhagen, Denmark. pp.74-90,
�10.1007/978-981-99-7032-2_5�. �hal-04322523�

https://hal.science/hal-04322523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Obfuscation padding schemes that minimize
Rényi min-entropy for privacy

Sebastian Simon⋆ Cezara Petrui⋆ Carlos Pinzón†

Catuscia Palamidessi

Inria Saclay, France
Laboratoire d’Informatique de l’École Polytechnique (LIX)

[⋆] Authors contributed equally.
[†] Corresponding author: carlos.pinzon@lix.polytechnique.fr

Keywords: obfuscation, privacy , padding , Rényi min-entropy

Abstract

Consider a set of users, each of which is choosing and downloading one
file out of a central pool of public files, and an attacker that observes the
download size for each user to identify the choice of each user. This paper
studies the problem of padding the files to obfuscate the exact file sizes
and minimize the expected accuracy of the attacker, without exceeding
some given padding constraints. We derive the algorithm that finds the
optimal padding scheme, prove its correctness, and compare it with an
existing solution that uses a similar but different attack model. We also
discuss how the two solutions are related in terms of private information
leakage.

1 Introduction
Consider a set of users, each of which is choosing and downloading one file out
of a central pool of public files, and an attacker that observes the download
size for each user and is willing to identify the choice of each user. The files
are public, but the choices are private. The objective is to pad the files with
some small overhead to obfuscate the information gained by the attacker and
reduce his chances of discovering the choices of the users. This paper studies
the problem of minimizing the expected accuracy of the attacker by padding
the files without exceeding some given padding constraints.

On one extreme, if the files are not padded at all, the attacker might easily
map the observed download sizes with the original files; e.g., if there is just one
file of size 10.32Mb and the attacker observes that the network traffic of some

1

user corresponds to a file of size 10.32Mb, he will immediately know what file
was chosen. This can be prevented by padding several files to common sizes to
obfuscate the information gained by the attacker. On the other extreme, if all
files are padded to a common size, this common size should be large enough to
cover the largest file in the set, and, as a consequence, many small files will be
padded excessively, increasing the bandwidth use. The ideal solution lies be-
tween these two extreme cases. For this reason, this paper considers the problem
of maximizing privacy while respecting some flexible padding constraints, like,
for example, that no file can increase its size more than 10%.

The attacker we consider makes just one attempt to re-identify the file, and
to maximize his chances, he will of course guess a file that has the maximum
posterior probability given the observed (obfuscated) size. This model of attack
is known in literature as one-try attack [14], and it has been characterized in
information-theoretic terms using Rényi min-entropy. More specifically, entropy
in general represents the (lack of) information content of a discrete probabil-
ity distribution, and Rényi min-entropy is a form of entropy that emphasizes
the highest probability value. The prior and posterior entropies represent the
probabilistic knowledge of the attacker before and after he observes the obfus-
cated size, respectively. In particular, Rényi posterior min-entropy is related to
hypothesis testing and, as a measure, it closely corresponds to the Bayes error.
The difference between the prior and posterior entropies represents how much
the knowledge of the attacker (and hence his probability of success) increases
thanks to the observation, and it is, therefore, a measure of the efficiency of
the padding scheme. In literature this difference is known as Rényi min-entropy
leakage.

The padding problem considered in this paper might also apply to equiva-
lent scenarios in which an attacker exploits time side-channel information. For
illustration, consider an intelligence service that is surveiling people entering
and exiting a building. They can use the time each user took inside to infer the
type of service he received, e.g., whether he was at the bank, shopping, or at
the cinema in the mall. In this case, the users can waste some time inside the
building on purpose to confuse the observer. Equivalently, a server can delay its
responses in a planned manner to prevent an attacker from inferring the chosen
type of request. More generally, an algorithm can sleep on purpose to prevent
leaking information about the input, as exploited by timing attacks [13, 15].

1.1 Contributions
• We propose two algorithms that derive the optimal padding schemes, one

for the deterministic case, and one for the randomized case (PRP and
POP, defined in Section 2).

• We prove the correctness of the algorithms and test the implementations
against brute-force solutions using small synthetic datasets.

• Likewise, we compare our algorithms with an existing solution [11] that
uses an attack model based on Shannon entropy, and discuss how the two

2

approaches are related in terms of the type of private information leakage
that each attacker represents.

• The code is publicly available at [10]. It includes not only the algorithms
we propose, but also the reimplementation of the algorithms of [11] to
support flexible padding constraints, multiple files having the same size,
and sparse matrix representations.

1.2 Related Work
The model of attacker we use has been well investigated in the field of Quanti-
tative Information Flow (QIF), which is a branch of security aimed at studying
inference attacks, namely attackers that try to infer the value of the secret from
related observations. The QIF theory actually formalizes a variety of models,
each of them characterized by parameters that represent the capabilities and
the goal of the attacker. For a detailed coverage of the topic we refer to [1].

This paper is strongly related with the work of Reed and Reiter [11], in
which the authors consider the same problem with a different attack model,
based on Shannon entropy, and more specifically, on measuring the leakage in
terms of Shannon mutual information. Shannon mutual information is a well
known notion that has been shown to be very useful in the several scientific
fields. In security and privacy, however, it does not seem the right notion for
modeling the attacker. Indeed, its operational interpretation corresponds to an
attacker that can try to guess the exact secret by making an unbound number
of attempts, and his objective is to minimize the expected number of attempts
before he identifies it correctly. This seems a less natural model of attacker than
those of QIF (and hence than the one we use, based on Rényi min-entropy), and
it also sometimes leads to conclusions that are contrary to common sense. For
a detailed discussion about this issue, refer to [14].

Reed and Reiter [11] propose three padding algorithms, called PrpSh, PopSh
and PwoD (padding without a distribution), for finding padding schemes that
minimize Shannon leakage under different bandwidth constraints. These algo-
rithms do not support, however, multiple files having the same size nor flexible
padding constraints as defined in this paper. We re-implemented their algo-
rithms with these additional details before comparing them with our proposed
solutions, and we explained in terms of attack models and information leakage
the core difference between them.

In [4] they consider the BREACH/CRIME [7] security attack in which the
attacker observes sizes and can also control a malicious script that runs in the
browser of the victim. By exploiting the greedy mechanism of the Huffman
encoder in the compression stage of the cookies, the attacker is able to use
repeatedly the size information to discover the cookie secret and impersonate
the victim. As they show, random gaussian padding can be used and is better
than uniform padding to reduce the attacker’s probability of success from 1.0
to 0.0026. Although this paper is more related with security than privacy, it
shows how important padding can be to obfuscate information.

3

Lastly, one of the main conclusions in [16] is that the optimal way to reduce
information obtained by an attacker that monitors traffic is to modify the traffic
patterns so that they are confused with other patterns. We draw a similar
conclusion formally in our problem (Proposition 2), proving that it is optimal
to pad messages to reach the sizes other existing files.

2 Problem formalization
The collection of public files is denoted as E = {e1, e2, . . . , en}, where E is
sorted non-decreasingly by the sizes |ei| ∈ N. For the sake of generality, we allow
different files to have the same size, hence the set of file sizes S

def

:= {|e| |e ∈ E}
has m ≤ n unique elements, which we enumerate in increasing order as S =
{s1, s2, . . . , sm}.

A padding function or padding scheme is a function f : E → N respecting
f(ei) ≥ |ei| that tells to what size each file should be padded. The padding
constraints are expressed with the proposition ∀i, f(ei) ∈ [|ei|, bi], where each
[|ei|, bi] = {|ei|, |ei|+ 1, ..., bi} is an integer interval.

The sequence of users with their respective choices is modelled as a sequence
of i.i.d. samples coming from the marginal distribution of the files. File ei is
chosen with frequency pi ∈ [0, 1], where

∑n
i=1 pi = 1. We let X be a random

variable satisfying P(X=ei)
def

:= pi, thus, a sequence of users with choices can be
represented as a sequence of i.i.d. choices following the distribution of X.

The attacker will predict, upon seeing a download of size z ∈ Im(f) (where
the image Im(f)

def

:= {z ∈ N | P(f(X)=z) > 0} denotes the set of possible outputs
of f), that the secret value of X is the file ei that maximizes P(f(ei)=z). To do
this, he uses the public information he has access to and the information he can
infer. The files and their sizes before padding are public, and he can determine
the padding scheme by requesting each of the files himself, possibly multiple
times in case of a randomized padding scheme. In addition, considering the
worst-case scenario, we assume that he knows or has estimated the frequencies
pi with which files are chosen on average. With this information, the attacker
can always find a file ei that maximizes P(f(ei)=z) for the observed z, and his
expected probability of success is therefore∑

z∈Im(f)

max
i∈[1..n]

P(X=ei ∧ f(X)=z) =
∑

z∈Im(f)

max
i∈[1..n]

pi · P(f(ei)=z). (2.1)

The objective is to find a padding function f : E → N that minimizes
the accuracy of the attacker while respecting the given padding constraints.
In addition, two scenarios are considered separately: per-object-padding (POP)
refers to the case when f is deterministic, hence the files are padded once and
forever; per-request-padding (PRP) refers to the case when the padding is done
on demand and f is probabilistic.

4

2.1 Presentation in terms of privacy leakage
The objective of minimizing the attacker accuracy can equivalently be presented
in terms of minimizing privacy leakage. There are several definitions for leakage
I(|X|, f(X)) of a padding function f : E → N. Particularly, Rényi min-entropy
leakage [14], which we call Rényi leakage in this paper, is defined using Rényi
min-entropy H∞ as follows:

I∞(f)
def

:= I∞(|X|, f(X)) = H∞(|X|)−H∞(|X| | f(X)), (2.2)

H∞(|X|) = − log2 max
z∈Im(f)

P(|X|= z), (2.3)

H∞(|X| | f(X)) = − log2
∑

z∈Im(f)

max
i∈[1..n]

(pi · P(f(ei) = z)). (2.4)

The importance of Rényi leakage in more general contexts can be found in [9]
and [14]. Basically, Rényi leakage is a special case (α = ∞) of a family of
leakages Iα based on α-Rényi entropy Hα. Since Rényi-min entropy H∞(|X|) is
constant in regard to the padding-scheme, minimizing Equation (2.2) is equiv-
alent to maximizing Equation (2.4), which is in turn equivalent to minimizing
Equation (2.1). Therefore, Rényi leakage is in direct one-to-one correspondence
with the probability of success of the attacker.

Another important case (α = 1) is Shannon leakage, which is given by:
I(|X|, f(X)) =

∑
i,z pi P(f(ei)=z) log2

P(f(ei)=z)
P(f(X)=z) . With some effort, this leakage

can also be interpreted in terms of an attacker that we call Shannon attacker.
The Shannon attacker is assumed to have access to an oracle that answers queries
of the type “is the file in this set of files?” for each user, and his objective is to find
the right files using the minimal number of queries, as in a 20Q game. Although
the oracle assumption makes the Shannon attacker unrealistic, defenses against
him are useful against the Rényi attacker of this paper because, intuitively, the
more queries the Shannon attacker needs, the harder it is to guess the correct
file in a single try.

For this particular application, the direct pragmatic connection between
Rényi leakage and a simple adversary success makes it more appealing than the
Shannon attacker. The same argument is used in [3], whose privacy measure
is closely related with ours. More generally in the privacy community, leakage
functions are better described in terms of their associated attacker rather than
their information theoretic properties [2, 12].

2.2 Why not differential privacy?
Differential privacy [5], is one of the most prevalent formalizations of privacy.
For this particular problem, a padding scheme f satisfies ϵ-differential privacy
if and only if for all input files ei, ej ∈ E and all output sizes z ∈ Im(f), we
have P(f(e1)=z) ≤ exp(ϵ)P(f(e2)=z).

This notion of privacy represents an attacker whose success function is given
by how much more likely one input file is with respect to another one for a

5

given observation. However, this is excessively strong for the problem under
consideration. Indeed, as Theorem 1 shows, differential privacy can only be
achieved at the total detriment of bandwidth use.

Theorem 1. For any ϵ > 0, the padding scheme that satisfies ϵ-differential
privacy and minimizes bandwidth is the one that pads all input files to the size
of the largest one.

Proof. Fix ϵ > 0 and let ej
def

:= argmaxei∈E |ei| be the largest file in E. For all
sizes z < |ej |, we have P(f(ej)=z) = 0 because ej can not be padded to smaller
sizes than |ej |. Moreover, the differential privacy constraint forces every other
file ei ̸= ej to satisfy P(f(ei)=z) ≤ exp(ϵ)P(f(ej)=z) = 0 whenever z < |ej |.
In other words, all files must be padded to sizes at least as large as |ej |, i.e.
P(f(X) ≥ |ej |) = 1. Among all the mappings f that have this property, the one
that minimizes bandwidth is the one that pads all files exactly to the largest file
size |ej |, and it satisfies ϵ differential privacy trivially because it is a constant
function.

Theorem 1 is the reason why we exclude differential privacy from the analysis
and focus on the privacy notions discussed in the previous section. This theorem
is a direct consequence of the inevitable fact that padding can only enlarge files
and not reduce their sizes. Apart from putting in evidence the abusive overhead
required by differential privacy, this theorem also shows that its parameter ϵ is
irrelevant as a measure of privacy for the problem under consideration, making
it inappropriate.

2.3 Simplification of the output set
We conclude this section by proving that optimal padding functions always map
to sizes in S. This is a key-fact for the derivation of the algorithms and their
proofs. Intuitively, if a set of files can be padded to a common certain size z, but
can also be padded to z−1, we can pad them to z−1 and win some bandwidth
without leaking any additional information. This forces the optimal padding
functions to always pad to the sizes z for which it is not possible to pad to z−1
without sacrificing privacy, which are precisely the sizes in S. The same holds
true for padding schemes that minimize Shannon leakage, as shown in [11].

Proposition 2. For any padding-scheme f : E → N, there exists a padding-
scheme f∗ : E → S such that I(f∗) ≤ I(f). Moreover, P(f∗(X) ≤ f(X)) = 1,
hence f∗ uses less padding (bandwidth) than f .

Proof. Define f∗ as the composition f∗ def

:= g◦f , where g(z) = max {s ∈ S : s ≤ z},
that is, f∗(X) = g(f(X)). The function g is defined only for z ≥ minS and
f∗ is well-defined because the padding constraints force P(f(X) ≥ minS) ≤
P(f(X) ≥ |X|) = 1. By definition, g(z) ≤ z, thus P(f∗(X) ≤ f(X)) = 1. Let
us now show, regarding privacy leakage, that I(f∗) ≤ I(f). Let I∗xs denote
P(X=x ∧ f∗(X)=s) and Ixz denote P(X=x ∧ f(X)=z). We will show that the

6

accuracy of the attacker (Eq. 2.1) is smaller or equal for f∗ than for f . This
can be expressed as

∑
s maxx I

∗
xs ≤

∑
s

∑
z:g(z)=s maxx Ixz. On the left and

right-hand sides, we have summations on s ∈ S, so it suffices to prove that this
inequality holds for each fixed s. At each s ∈ S, since I∗xs =

∑
z:g(z)=s Ixz, the

inequality becomes maxx
∑

z:g(z)=s Ixz ≤
∑

z:g(z)=s maxx Ixz, which is necessar-

ily true. Indeed, letting x(s) def

:= argmaxx
∑

z:g(z)=s Ixz for the left-hand side, we
have for each z with g(z) = s that Ix(s)z ≤ maxx Ixz. □

Proposition 2 can be seen as an instance of the Data Processing Inequality,
which can be found as Theorem 8 of [6], or more generally for privacy contexts
in [8].

Corollary 3. A padding function that has minimal leakage must pad each file
to the size of another file in the initial set.

Having Corollary 3 in mind, the padding scheme f can be represented as
an obfuscation channel matrix P where pij = P(f(ei)=sj), in which case, the
problem can be specified as shown below, and the attacker accuracy becomes∑

j

max
i∈[1..n]

pi · pij . (2.5)

Problem input: (1) A set E of n files {ei |i ∈ [1..n]} with frequencies
pi, sorted sizes |ei| and set of unique sizes S = {s1, ..., sm}. (2) Padding
constraints of the form ∀i, sli ≤ f(ei) ≤ sri , parametrized with pairs of
indices li, ri ∈ [1..m].

Desired output: A padding function f : E → S in the form of a
channel matrix pij = P(f(ei)=sj) that minimizes Rényi leakage I∞(f) or
equivalently Eq. (2.5). Depending on the problem variant, f must be
deterministic (POP) or randomized (PRP).

3 Algorithms
In this section, we derive the algorithms PopRe and PrpRe that minimize the
Rényi leakage (2.2) for the POP and PRP cases respectively. They contrast
those for Shannon mutual information minimization found in the paper [11],
denoted here as PopSh and PrpSh. The complexities of these algorithms are
summarized in Table 1.

Algorithm PrpSh is an approximation algorithm and has a runtime com-
plexity that depends on the degree of accuracy imposed by the user and the
limit number of iterations iters allowed. Also, the complexities of the dynamic
programming algorithms correspond to the theoretical worst-case and might
overestimate the actual implementations. For instance, although PopRe has two
parameters varying in [1..n], not all combinations need to be calculated in a
top-down implementation.

7

Algorithm Minimizes WC Runtime complexity Memory
PopRe Rényi leakage O(n2 b̄) n b̄

PrpRe, PrpReBa Rényi leakage O(n b̄) n b̄
PopSh Shannon leakage O(n b̄) n b̄
PrpSh Shannon leakage O(iters · nm) nm

Table 1: Complexities, where b̄
def

:= (1/n)
∑n

i=1 ri − li + 1 is the matrix average
band size. For practical reference, with reasonable padding constraints, if the
files are diverse with a large and spread spectrum of sizes, one expects b̄≪ m ≈
n.

3.1 Per-object-padding scenario, PopRe
In this section we develop the algorithm that minimizes Rényi leakage in the
POP variation, in which the matrix P is constrained to pij ∈ {0, 1}. Before
describing the algorithm, we will prove Remark 4, which will be used as the
main update of the entries of the channel-matrix.
Remark 4. Let f be a Rényi
optimal padding-scheme and ei
be the file with the highest as-
sociated frequency pi, and as-
sume that pij = 1 for some
j ∈ [1..m]. Then there exists
a padding-scheme f∗ with the
same Rényi leakage such that
pkj = 1 for all k ∈ [1..n] such
that j ∈ [lk..rk].

...
e9

e10

e11

e12
...

· · · s10 s11 s12 s13 · · ·
1

1

1

1

1

1

0

0 0 0

0 0 0

0 0

0 0

0

...
e9

e10

e11

e12
...

· · · s10 s11 s12 s13 · · ·
1

1

1

1

1

1

0

0 0 0

0 0 0

0 0

0 0

0

Figure 3.1: Remark 4: if the file with max-
imal frequency is e11 and the left matrix (f)
is optimal, the right one (f∗) must be as well.

Proof. We consider the padding-scheme f to be represented as the channel-
matrix between the secrets and the observables. When we want to minimize
(2.5) we sum over each column of the matrix P . In particular, on the column
j we have maxa∈[1..n](pa · paj) = pi since pi is the highest frequency among the
frequencies of the files and pij = 1. Now, let us consider the padding-scheme f∗

whose matrix P ∗, consists on moving every 1 that we can to column j:

p∗ab =

pab if b ̸= j and a ∈ [1..n] such that j ̸∈ [la..ra]

1 if b = j and a ∈ [1..n] such that j ∈ [la..ra]

0 otherwise

On the column j of the matrix P ∗ we will still have maxa∈[1..n](pa · p∗aj) = pi
because the padding-scheme f∗ preserves the maximum on column j. Moreover,
on the rest of the columns, the maximum either decreases or stays the same since
we created more entries p∗ab = 0, which means that the product pa · p∗ab = 0.
However, we chose f to be the Rényi optimal padding-scheme and with the
remarks above, f and f∗ give the same leakage. □

8

Algorithm 1 Per-object-padding pseudocode. This implementation uses re-
cursion both for computation and reconstruction.

procedure Renyi POP ▷ Main function
memo← {} ▷ Empty map
pij ← 0 ▷ A matrix p full of zeros
renyi← Reconstruct(0, n)
return (p, renyi) ▷ Output matrix p and its renyi leakage

end procedure
procedure Reconstruct(a, b)

(renyi, k, a⋆, b⋆)← f(a, b)
for j = a⋆..b⋆ do pjk ← 1 end for
if a < a⋆ then Reconstruct(a, a⋆) end if
if b⋆ < b then Reconstruct(b⋆, b) end if
return renyi

end procedure
procedure f(a, b)

if (a, b) ∈ memo then return memo[(a, b)] end if
if a = b then return (0,∞, a, b) end if
best← (∞,∞,∞,∞)
imax ← argmaxi=a..b pi
for k = limax

..rimax
do

jmin, jmax ← range of files ejmin
..ejmax

that can be padded to size sk
a⋆ ← max(a, jmin)
b⋆ ← min(b, jmax)
renyi← f(a, a⋆)[0] + pimax + f(b⋆, b)[0] ▷ Index [0] is the renyi

component
this← (renyi, k, a⋆, b⋆)
best← min(best, this) ▷ Lexicographic (compares first by renyi)

end for
(renyi, k, a⋆, b⋆)← best ▷ Unpack tuple
memo[(a, b)]← (renyi, k, a⋆, b⋆)
return (renyi, k, a⋆, b⋆)

end procedure

9

Figure 3.1 depicts an example of a sub-matrix of P as described in Remark 4.
In the figure, we have exactly one entry equal to 1 in each line because the
channel-matrix is stochastic, and we are in the POP case. Additionally, the
quantity in (2.5) represents the sum of the maximum over columns where each
1 counts for the frequency of the file. Then, the update does not increase the
(2.5) because the 1 with maximal frequency dominates its column, and moving
all possible 1’s above or below it does not increase Rényi leakage.

Using Remark 4 we can divide the padding problem into sub-problems that
minimize (2.5) and leverage dynamic programming: ∀a ≤ b ∈ [1..n], we define

D[a][b] = min
P channel matrix

∑
j∈[1..m]

max
i∈[a+1..b]

(pi · pij),

i.e. D[a][b] gives the minimal leakage for the sub-problem that pads files from
ea+1 to eb, under the general constraints.

By convention, we consider D[i][i] = 0, which will be the base case. To write
the recurrence formula, we need to take the file eimax

with maximum frequency
pimax

, imax ∈ [a+1, b]. We go through every size index k ∈ [1..m] such that eimax

can be padded to the size of sk, and we update the channel-matrix according
to Remark 4, i.e. add 1’s on k-th column if we can (taking into consideration
the padding constraints) and complete the lines that have a fixed 1 with 0’s on
the remaining entries. Then, we apply the recurrence on the rows which are not
updated, i.e. from a to a∗

def

:= max(a,maxi∈[1..n]{i|ri < k}), and, respectively,
from b∗

def

:= min(k, b) to b. Hence,

D[a][b] = pimax
+ min

k∈[limax ..rimax]
(D[a][a∗] +D[b∗][b])

After applying the dynamic algorithm program with the aforementioned recur-
rence, we get the minimization of (2.5) in D[0][n], from which we can compute
the minimal Rényi leakage. If we want to recover the channel-matrix itself, in
D[a][b] we pass on the index k for which the maximum happens, as an argu-
ment. In case of a tie, we choose the smallest index k ∈ {1, . . . , n} in order
to reduce average padding. Hence, we know in each sub-interval [a, b] what we
pad everything to, so the information is enough to recover the channel matrix.
A pseudocode summarizing all the logic is shown in Algorithm 1. A concrete
optimized implementation can be found in [10].

e1

e2

e3

e4

e5

e6

s1 s2 s3 s4 s5 s6

1

1

1

1

1

1

0 0

0 0 0 0 0

0 0 0 0

0 0

0 0

0

Figure 3.2: PopRe on a dataset of 6 files.

In Figure 3.2 we depict the
channel-matrix of the files with
sizes S = {1000, 1050, 1100,
1110, 1120, 1140} and asso-
ciated frequencies {22%, 5%,
23%, 12%, 18%, 20%}. As
shown in the visual representa-
tion of the padding-scheme in the right, we observe that, for both of the existing
padded sizes, there are multiple files that are padded to the same element, mak-
ing them indistinguishable for an attacker. Moreover, the blue bars on the graph

10

indicate the frequencies of the files, and the red bars, the maximum frequency
among the frequencies of the files padded to each specific size. The red bars are
effectively highlighting the terms of the sum (2.5).

3.2 Per-request-padding scenario, PrpRe
In this section, we treat the case of Per-Request-Padding and provide an al-
gorithm for finding the probabilistic channel-matrix P which minimizes the
Rényi leakage. We will look at the joint distribution matrix I with entries
Iij = pi · pij ,∀i ≤ n, j ≤ m, for which

∑m
j=1 Iij = p1 for each i ∈ [1..n].

We proceed by finding iteratively, for each of the m columns, starting from
the last one, the Rényi optimal manner of setting the entries of I given the
padding constraints. Furthermore, we define the optimal distribution of pi across
the i-th row, 1 ≤ i ≤ n to be the way we fill in the entries pi1, . . . , pim such as
to obtain the minimum sum of the type (2.5) and preserve the relation pi1 +
...+ pim = pi.

The proof of our algorithm requires us to consider sub-problems in which the
sequence (pi)1≤i≤n is updated at each step of the algorithm, thus being different
from the initial set of frequencies associated to each file. Hence, we rewrite the
problem as a more general one in terms of a budget sequence (bi)1≤i≤n of length
n (initialized as (pi)1≤i≤n), which dictates the remaining value to be distributed
across each row i, for i ∈ [1..n]. The general problem is “Given a non-negative
budget sequence (bi)

k
i=1 of length k ∈ [1..n], find a solution matrix Ik×m that

minimizes Equation (2.5), under the padding constraints for rows i ∈ [1..k],
namely the set {[l1, r1], . . . , [lk, rk]} and

∑m
j=1 Iij = bi”.

We will design the algorithm to solve the general problem recursively by
returning the matrix I for the budget sequence {p1, . . . , pn} with n terms. The
recurrence relationship can be described using the following observation that is
used when creating the probabilistic channel-matrix for the padding-scheme f :

Remark 5. The solution Ik×m for a given (bi)
k
i=1 that minimizes Rényi leakage

satisfies the recurrence relationship

Iij =

bi if j = m and i ∈ [1..k], |ei| = sm

bi − b
′

i if j = m and i ∈ [1..k − 1], |ei| ̸ = sm,

m ∈ [li..ri]

I
′

ij otherwise

where I
′

(k−t)×(m−1) is the solution to the same minimization problem for the

sequence (b
′

i)
k−t

i=1 of length k − t, t = number of files from E which can be
padded to sm, such that for any i ∈ [1..k − t], it is defined as:

b
′

i =

max(bi − btmax , 0) if m ∈ [li..ri] and

btmax = max{bi||ei| = sm}
bi otherwise

11

Proof. If there are no files among {e1, . . . , ek} which can be padded to sm, we
set t = 0 and solve the minimization problem for the same budget sequence and
for the set of m− 1 sizes {s1, . . . , sm−1}.

If there are files that can be padded to sm, then due to the padding con-
straints, the element ei can only be padded to sm, so the entry Iim must
necessarily be equal to bi, for all i such that |ei| = sm. Let us denote by
T = {k − t+ 1, . . . , k} the set of indices satisfying |ei| = sm,∀i ∈ T and
btmax

= max{bi|i ∈ T}. Clearly, for every i ∈ T , Iij = 0,∀j ∈ {1, . . . , k − 1}.
On the m-th column of the matrix I, we have maxi∈[1..k] Iim ≥ btmax

.
In order to minimize the sum (2.5) and taking into consideration that the

maximum entry on column m is at least btmax
, we aim to distribute for every

i such that ei can be padded to sm and |ei| ̸ = sm, a quantity equal to btmax

(or, if bi < btmax , then we distribute the whole bi) on the entry Iim, so that we
preserve the maximum on this last column to be btmax

. This way, we can assure
that, among the other columns, we’ll have to distribute a smaller fraction of
bi, which means that the maximum on each column between 1 and m − 1 will
decrease, and so will (2.5).

The problem reduces to find the optimal sub-matrix I
′

(k−t)×(m−1) to com-
plete the first k − t rows of I, and with the aforementioned remark, we can
actually consider I

′
to be the solution given the updated sequence (b

′

i)1≤i≤k−t

which is defined, for every i such that file ei that can be padded to sm, as either
0, if bi ≤ btmax

, or as bi − btmax
, if bi ≥ btmax

. When we reconstruct the matrix
I, on the m-th column we will have the value I

′

im+ btmax or I
′

im+ bi (depending
on whether bi is smaller, respectively larger, than btmax).

Now, let us show that, for the sub-matrix I
′
, we have 0’s on every entry of

the m-th column. By definition, I
′

must be a Rényi optimal solution for the
updated sequence of b

′

i’s. Using Proposition 2, there exists a Rényi optimal
padding-scheme f

′
which maps ei, i ∈ [1..k − t]→ {s1, . . . , sk−t}, for any set of

files {e1, . . . , ek−t} with the associated frequencies {b′1, . . . , b
′

k−t}. Consequently,
for every i ∈ [1..k − t],P(f ′

(ei) = sm) = 0⇒ I
′

im = 0. □

Therefore, we have proved that the matrix I can be recursively expressed
using the sub-matrices obtained when we update the budget sequence accord-
ingly, at each step decreasing by 1 the number of columns and by at least 1
the number of rows of the matrix returned from the algorithm, until we reduce
a problem to finding the Rényi optimal scheme for a budget sequence with a
single element. Since we want to minimize (2.5) in the case of n files with fre-
quencies {p1, . . . , pn} and the associated set of sizes {s1, . . . , sm}, we proceed
the induction on the number of rows and columns as described in Remark 5 and
eventually fill in all the entries of the solution In×m. The channel-matrix P is
then computed as pij = Iij/pi, and this is the output of PrpRe.

This algorithm is presented in Algorithm 2 in the form of pseudocode, and
it is implemented in [10] with some optimizations.

12

Algorithm 2 Per-request-padding pseudocode.
procedure Renyi PRP
∀i, bi ← pi ▷ budget array
I ← Joint prob. matrix of zeros
for j=m, m-1, ..., 1 do

tmax = argmax{i ||ei|=sj} bi
if btmax

> 0 then
jmin, jmax ← range of files ejmin ..ejmax that can be padded to size

sj
for i = jmax, jmax − 1, ..., jmin do

I[i, j]← min(btmax
, bi)

bi = bi − I[i, j]
end for

end if
end for
P ← channel matrix after dividing each row i of I by pi
return P

end procedure

3.2.1 Bandwidth minimization

Once PrpRe has found a channel matrix that minimizes Rényi leakage, it is still
possible to use heuristics to search for other channel matrices with the same
(minimal) leakage but with less bandwidth use. We call PrpReBa to be the
algorithm that runs PrpRe and the bandwidth reduction heuristics afterwards.

Let the list C of maximums on each column after running PrpRe, i.e. C =
{maxi∈[1..n] Iij |j ∈ [1..m]}, where Cj = maxi∈[1..n] Iij for every j ∈ [1..m]. De-
fine a move to be a change in the matrix I performed on two of the entries of the
matrix at line i, for some i ∈ [1..n] such that (Iia, Iib) becomes (Iia−α, Iib +α)
while keeping the entries of I positive, i.e. α ≤ Iia.

Now, we will describe an update on the line i, which will consist of a series
of moves and will return a new matrix I∗. We start with I∗ to be the matrix
I, but with 0’s on the i-th line. Since the sum on row i is equal to pi, we start
with this quantity and go through the columns in order from j = 1 to j = m.
For each column, we set:

Iij =

{
Cj if Cj +

∑j−1
k=1 Iik ≤ pi

pi −
∑j−1

k=1 Iik otherwise

4 Experiments and Comparison
Several experiments were carried out for three distinct purposes, namely, (1) to
test the correctness of the implementations against brute-force algorithms for
small sized problems, (2) to corroborate the direct link between Rényi leakage

13

and the success rate of an attacker and (3) to compare the runtime, bandwidth
and leakages of all the algorithms on a public dataset. The code of all the
experiments is available in [10].

4.1 Brute-force tests for correctness
To complement and corroborate the theory developed in this paper, all the algo-
rithms were tested against brute-force implementations for small datasets (with
at most 10 elements). More precisely, for each randomly generated test case
of file sizes and frequencies, we explored (exhaustively) all the POP padding
schemes satisfying the constraints, and chose among them, the ones that mini-
mized Rényi leakage, Shannon leakage or bandwidth, with the purpose of com-
paring them with the solutions returned by our algorithms.

We ran ten thousand experiments (code available in [10]), all corroborating
that: among all POP schemes, PopRe achieves minimal Rényi leakage, PopSh
achieves minimal Shannon leakage, and PrpRe leaks at most the Rényi leakage
of PopRe.

4.2 Attacker test for illustration

0k 2k 4k 6k 8k 10k
0.3%

0.4%

0.5%

0.6%

0.7%

Number of users

R
at

e
of

su
cc

es
fu

l
at

ta
ck

s

PrpRe
Theoretical optimum

Figure 4.1: Attacker’s success conver-
gence.

We simulated the attacker de-
scribed in this paper by Equa-
tion (2.1), who always guesses the
original file with maximum prob-
ability given the priors and the
padding scheme. Figure 4.1 shows
that as the number of user in-
creases, the success rate of the
attacker against the padding pro-
posed by PrpRe approaches the ex-
pected theoretical minimal possible
success rate. This is a direct conse-

quence of the law of large numbers as well as the equivalence between minimizing
the expected success of the attacker (2.1) and the Rényi leakage, via Eq. (2.5).

4.3 Dataset tests for comparison
We used the dataset of NodeJS, proposed originally in [11]. This dataset consists
of a list of 423,450 javascript packages provided by NPM for browser and nodeJS
applications, each with its associated file size and access frequency, as of August
2021. Taking into account the large number of files and the availability of the
access frequencies, we used the NodeJS dataset to benchmark the algorithms.

We used two versions of the NodeJS dataset: the large NodeJS dataset is the
original dataset with 423,450 files, and the small consists of only the 1000 most
frequently accessed files. The small NodeJS dataset allowed us to benchmark
and compare the algorithms with large complexity, which timed-out on the

14

large dataset. In all experiments, we parametrize the padding constraints with
a single constant c > 0 that represents the constraint |X| ≤ f(X) ≤ (1+c) · |X|.

0% 5% 10%

4

5

6

7

8

Allowed padding c

R
én

yi
le

ak
ag

e

PopRe
PopSh
PrpRe
PrpSh

0% 5% 10%

6

8

10

Allowed padding c

Sh
an

no
n

le
ak

ag
e

PopRe
PopSh
PrpRe
PrpReBa
PrpSh

Figure 4.2: Rényi and Shannon leakage on the small dataset.

Figure 4.2 depicts the variation of privacy leakage as a function of c on the
small dataset. The trend is approximately equal in the large dataset, except that
PopRe times out. The Rényi plot does not include PrpReBa to reduce redun-
dancy, as it coincides with PrpRe. In the figure, we can appreciate the expected
trend that larger c allows for more padding and less leakage of privacy, both
in Rényi and Shannon definitions. It can also be verified that the algorithms
tuned to minimize Rényi leakage, have a very small (but not minimal) Shannon
leakage, and vice-versa. For instance, the differences between PopRe and PopSh
in both leakages are inferior to 2%. This is a consequence of the information
theoretical connection between the two types of leakage.

The bandwidth increase generated by the padding of the files can be analyzed
in Figure 4.3. For reference, the average file size in the dataset, weighted by
frequency is 52.5 kb, so 1% increase, means around 5.3 additional kilobytes.
Several observations can be made out of Figure 4.3. First, as anticipated, the
larger the c, the larger the paddings on average. Second, the algorithms do not
pad as much as they are allowed. Instead, when 10% is allowed, the optimal
paddings lie at around 2% for the small dataset and 4% for the large dataset.
For this particular example, the algorithms used more of the available padding
on the large than in the small dataset, but we did not explore in depth in our
experiments whether this pattern holds in general. Third, the improvements of
PrpReBa over PrpRe can be corroborated, and estimated to approximately 20%
less bandwidth use with the same Rényi leakage. Lastly, it appears empirically
that the solutions that minimize Rényi leakage use less padding on average than
those that minimize Shannon leakage.

Furthermore, the box plots in Figure 4.3 show that the padding use (with
respect to the average file size) is most often below its average, meaning that
there are a few files that contribute significantly more than the others to band-
width excess. These files must be the largest, as they are the files for which the
additional bandwidth can be the largest compare, even possibly exceeding the
average file size. Note that the computation of confidence intervals can not be
made for privacy leakages (Figure 4.2), as they are global guarantees of privacy
that do not make sense for individual files.

15

0% 5% 10%
0%

1%

2%

Allowed padding c

P
ad

di
ng

us
ed

PopRe
PopSh
PrpRe
PrpReBa
PrpSh

0% 5% 10%
0%

2%

4%

Allowed padding c

P
ad

di
ng

us
ed

PopSh
PrpRe
PrpReBa

Figure 4.3: Bandwidth increase on the small (left) and large (right) datasets.
The top plots show expected values and the bottom plots show, in addition,
confidence intervals for a single random request. For each box, the body (Q1
and Q3 quartiles) corresponds to 50% confidence and the whisker (5% and 95%
quantiles) to 90%.

0% 5% 10%
10−1

101

103

Allowed padding c

R
un

ti
m

e
(s

ec
on

ds
) PrpReBa

PrpRe
PrpSh
PopSh
PopRe

0% 5% 10%
100

102

104

Allowed padding c

R
un

ti
m

e
(s

ec
on

ds
) PrpReBa

PrpRe
PopSh

Figure 4.4: Runtime plots on small (left) and large (right) datasets. The plots
ignore the 7 additional seconds needed for JIT compilation.

Figure 4.4 depicts the runtime of the algorithms under analysis. We refer
the reader to Table 1 about the runtime complexities for a richer analysis of
the plots. The analysis could have been even richer, if we included confidence
intervals as in Figure 4.3, but we did not do it because of time constraints (the
execution of PopSh in the large dataset is in the order of several hours of CPU
time), and because the added value in this case is very little, as we already have
a theoretical derivation of the complexities.

The left plot in Figure 4.4 does not have a clear tendency of longer executions
for more relaxed padding constraints (higher c, thus also higher b̄), meaning that
for small datasets, all algorithms are suitable. In this regime, the runtime is not
yet affected significantly by the growth of b̄, possibly due to large constants that

16

are masked by the complexity class and implementation details, especially for
PrpReBa. Nevertheless, the difference between PopRe versus PrpRe and PopSh is
already visible, and indeed, PopRe times out (several hours) for the large dataset.
The right plot highlights the scalability of the algorithms. For all values of c
plotted in this graph, the runtime for PrpRe is under 7 seconds, which makes it
the fastest algorithm. PrpReBa peaks at c = 10% with around 3 minutes while
PopSh needed 15 minutes. In this regime, the effect of increasing b̄ via c on the
runtime is clear.

5 Conclusion
We designed and proved the optimality of several algorithms (PopRe, PrpRe,
PrpReBa) that minimize the expected success rate of an attacker. The algorithms
were compared with existing solutions (PopSh, PrpSh) that consider a different
attack model. The comparison was done both numerically via experiments and
theoretically via privacy leakage.

Prioritizing scalability, we recommend using either PrpRe or PrpReBa for the
PRP problem, as they are much faster and provide protection against a more
reasonable attacker than the existing solutions (PopSh, PrpSh). Nevertheless,
for the POP problem, we recommend any of either the existing solution PopSh
or our algorithm PopRe that minimizes Rényi leakage, because even though our
attack model is more realistic, the complexity of PopSh makes it more practical.

In general terms, the two attack models are correlated in the sense that
the optimizing against one of them results in a strong, though not optimal,
protection against the other one (with empirical differences of less than 2%).
In more detail, however, the Rényi attacker is more realistic than the Shannon
attacker, and the padding schemes that minimize Rényi leakage seem to use less
bandwidth in practice, making our proposed algorithms even more appealing.

Acknowledgements
This work was supported by the European Research Council (ERC) project
HYPATIA under the European Union’s Horizon 2020 research and innovation
programme. Grant agreement n. 835294.

References
[1] Alvim, M.S., 0001, K.C., McIver, A., Morgan, C., Palamidessi, C., 0001,

G.S.: The Science of Quantitative Information Flow. Information Security
and Cryptography, Springer (2020)

[2] Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith,
G.: Measuring information leakage using generalized gain
functions. In: Proceedings of the 25th IEEE Computer Se-
curity Foundations Symposium (CSF). pp. 265–279 (2012).

17

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/CSF.2012.26,
http://hal.inria.fr/hal-00734044/en

[3] Cherubin, G.: Bayes, not naïve: Security bounds on website fingerprinting
defenses. Proceedings on Privacy Enhancing Technologies 2017(4), 215–
231 (oct 2017). https://doi.org/10.1515/popets-2017-0046, https://doi.
org/10.1515%2Fpopets-2017-0046

[4] Degabriele, J.P.: Hiding the lengths of encrypted messages via gaussian
padding. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1549–1565 (2021)

[5] Dwork, C.: Differential privacy. In: International colloquium on automata,
languages, and programming. pp. 1–12. Springer (2006)

[6] Espinoza, B., Smith, G.: Min-entropy leakage of channels in cascade. In:
International Workshop on Formal Aspects in Security and Trust. pp. 70–
84. Springer (2011)

[7] Gluck, Y., Harris, N., Prado, A.: Breach: reviving the crime attack (2013).
Dostupné také z: http://css. csail. mit. edu/6 858 (2015)

[8] M’rio, S.A., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring
information leakage using generalized gain functions. In: 2012 IEEE 25th
Computer Security Foundations Symposium. pp. 265–279. IEEE (2012)

[9] Palamidessi, C., Romanelli, M.: Feature selection with rényi min-entropy.
In: IAPR Workshop on Artificial Neural Networks in Pattern Recognition.
pp. 226–239. Springer (2018)

[10] Pinzón, C., Petrui, C., Simon, S.: min-leakage-padding. https://github.
com/caph1993/min-leakage-padding (2022), accessed: August 2022

[11] Reed, A.C., Reiter, M.K.: Optimally hiding object sizes with constrained
padding (2021). https://doi.org/10.48550/ARXIV.2108.01753, https://
arxiv.org/abs/2108.01753

[12] Romanelli, M.: Machine learning methods for privacy protection: leakage
measurement and mechanisms design. Ph.D. thesis, Institut Polytechnique
de Paris; Università degli studi (Sienne, Italie) (2020)

[13] Schindler, W.: A timing attack against rsa with the chinese remainder the-
orem. In: Cryptographic Hardware and Embedded Systems—CHES 2000:
Second International Workshop Worcester, MA, USA, August 17–18, 2000
Proceedings 2. pp. 109–124. Springer (2000)

[14] Smith, G.: On the foundations of quantitative information flow. In: de
Alfaro, L. (ed.) Proceedings of the 12th International Conference on Foun-
dations of Software Science and Computation Structures (FOSSACS 2009).
LNCS, vol. 5504, pp. 288–302. Springer, York, UK (2009)

18

http://hal.inria.fr/hal-00734044/en
https://doi.org/10.1515%2Fpopets-2017-0046
https://doi.org/10.1515%2Fpopets-2017-0046
https://github.com/caph1993/min-leakage-padding
https://github.com/caph1993/min-leakage-padding
https://arxiv.org/abs/2108.01753
https://arxiv.org/abs/2108.01753

[15] Song, D.: Timing analysis of keystrokes and ssh timing attacks. In: Proc.
of 10th USENIX Security Symposium, 2001 (2001)

[16] Wright, C.V., Coull, S.E., Monrose, F.: Traffic morphing: An efficient
defense against statistical traffic analysis. In: NDSS. vol. 9. Citeseer (2009)

19

	Introduction
	Contributions
	Related Work

	Problem formalization
	Presentation in terms of privacy leakage
	Why not differential privacy?
	Simplification of the output set

	Algorithms
	Per-object-padding scenario, PopRe
	Per-request-padding scenario, PrpRe
	Bandwidth minimization

	Experiments and Comparison
	Brute-force tests for correctness
	Attacker test for illustration
	Dataset tests for comparison

	Conclusion

