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Abstract

With the recognized crisis of credibility in scientific research, there is a growth of reproducibil-
ity studies in computer science, and although existing surveys have reviewed reproducibility
from various perspectives, especially very specific technological issues, they do not address the
author-publisher relationship in the publication of reproducible computational scientific articles.
This aspect requires significant attention because it is the basis for reliable research. We have
found a large gap between the reproducibility-oriented practices, journal policies, recommen-
dations, publisher artifact Description/Evaluation guidelines, submission guides, technological
reproducibility evolution, and its effective adoption to contribute to tackling the crisis.

We conducted a narrative survey, a comprehensive overview and discussion identifying the
mutual efforts required from Authors, Journals, and Technological actors to achieve reproducibil-
ity research. The relationship between authors and scientific journals in their mutual efforts to
jointly improve the reproducibility of scientific results is analyzed. Eventually, we propose rec-
ommendations for the journal policies, as well as a unified and standardized Reproducibility
Guide for the submission of scientific articles for authors.

The main objective of this work is to analyze the implementation and experiences of repro-
ducibility policies, techniques and technologies, standards, methodologies, software, and data
management tools required for scientific reproducible publications. Also, the benefits and draw-
backs of such an adoption, as well as open challenges and promising trends, to propose possible
strategies and efforts to mitigate the identified gaps. To this purpose, we analyzed 200 scientific
articles, surveyed 16 Computer Science journals, and systematically classified them according
to reproducibility strategies, technologies, policies, code citation, and editorial business.

We conclude there is still a reproducibility gap in scientific publications, although at the
same time also the opportunity to reduce this gap with the joint effort of authors, publishers,
and technological providers.
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1 Introduction

Reproducibility is a broad and complex topic strongly related to the history of science and knowl-
edge [1] reflected in the cumulative technological and scientific development of humanity [2]. Such
development has been based on the evolutionary capacity of human beings to build new knowledge
from previous discoveries and achievements, transmitting this knowledge to new generations in a
continuous cycle of improvement. The evolution of Science through the reproducibility of knowledge
could be metaphorically compared to the natural mechanisms of DNA replication [3] transmitted
from generation to generation in a continuous cycle of refinement. Within these reproducible mech-
anisms, scientific journals play a significant role in the communication, divulgation, corroboration,
validation, and acceptance of reliable and trustworthy knowledge.

The reproducibility of knowledge has recently become relevant to the scientific community given
that there is a growing concern for ethics and transparency in the research results in scientific
publications in the so-called reproducibility crisis [4, 5]. In addition, with the boom in artificial
intelligence/machine learning (AI/ML), publications have evolved towards data-centric and model-
centric developments that force journals to adapt their publishing business models to new dynamics
accelerated by technological changes [6].

In response to these developments, several recent articles have hypothesized what the future of
academic publishing will be like [7, 8] [9], analyzing important changes, proposing technological
tools [10, 11] and identifying significant gaps in publishing policies [12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24]. These articles account for policies implemented by publishers and their evolution,
which are crucial for understanding their evaluation processes oriented to the Reproducibility of
knowledge.

This paper analyzes the journal policies concerning the reproducibility of knowledge addressed to
trustworthiness and transparency through a survey of computer science journals indexed in SCO-
PUS& WoS. This survey identifies recent advancements in computational reproducibility and poli-
cies, develop strategies that engage with the reproducibility crisis, and analyze future perspectives in
computer base scientific publications. In particular, the role of stakeholders [25] in the reproducibility
of computational scientific articles, especially ML and AI-related projects, is explored to understand
better the relationship between authors and scientific journals driven by advanced cloud-computing
technologies. By reviewing the most promising trends, this paper broadens the landscape [8] of pos-
sibilities for advances in reproducibility from both technological and methodological points of view,
addressing the gap in effective journal policies that guarantee the reproducibility of computational
works.

A wide variety of scientific journals deal with different topics or specialize in various disciplines
and fields of knowledge. In several cases, these are subjects based completely on theory or physi-
cal experiments. Therefore, this article delimits its scope to specifically analyze scientific journals
of computer science, especially the management and reproducibility of scientific articles based on
software and data, where the objects to be replicated are information (bits), highlighting that many
scientific disciplines converge in the computational field to solve their problems and build up their
knowledge base.
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Figure 1 summarizes the structure of this paper, where three aspects are analyzed: efforts required
by authors (Section 5.1) and by publishers (Section 5.2), and the technological evolution required
to reproduce results (Section 2).

The combined efforts of these three actors are required to close the reproducibility gap. Our sys-
tematic literature is a PRISMA-based review (see Appendix A.1). We discuss the corresponding
definitions, difficulties, and measures related to Reproducibility, which allows us to define the techno-
logical evolution as necessary to reproduce results and the fundamental strategies of reproducibility
in Section 2. Section 2.4 presents a landscape of existing tools, data management platforms, and
techniques that are helpful in reproducible research. Section 2.6 introduces the role of publishers in
reproducible research, including new types of publications with code, and discusses the problem of
evaluating research artifacts. Section 3 surveys 16 computer science journals and provides insights
about experiences implementing data-code sharing policies based on the reviewed reproducibility
platforms and technologies. The methodology that we followed is described in Appendix A.2.

Section 4 includes our technological discussion of the topics presented before. Section 4.2 focuses on
and highlights the shared responsibility between authors and publishers supported by technological
evolution. Section 5 asses and analyzes the combined efforts of these three actors required to close the
reproducibility gap. The efforts required by authors in Section 5.1 and by publishers in section5.2.
Important dilemmas that emerge are addressed in sections 4.1 5.3. Under the possibility of regarding
reproducibility as a service provided by trusted third party, considering software as valuable research
artifacts, and how to reward authors.

Section 6 concludes the paper.

1.1 Definitions

Several works [26, 27, 28, 29, 30, 31] have addressed reproducibility from different points of view,
as [32] reproducibility is considered a fundamental part of the scientific method. However, to our
knowledge, no works have holistically reviewed the different dimensions and strategies of repro-
ducibility in computer science, i.e., to consider their essential participation within an end-to-end
data science project/experiment life cycle. This life cycle begins from scientific research and ends in
mass industrial production for final customers. The life cycle also incorporates the responsibilities of
the main stakeholders [25, 33, 34] in this process (e.g., journals, authors, industry, and the scientific
community).

The report [35] from the National Academies of Sciences, Engineering, and Medicine (NASEM)
is a reference reproducibility study that gathers contributions from relevant specialized researchers.
It focuses on strategies for obtaining consistent computational results using the same input data,
computational steps, methods, code, analysis conditions, and replicability to get consistent results
across studies. In NASEM’s definitions, reproducibility involves the original data and code, whereas
replicability is related to the collection of new data and similar methods used in previous studies.

The simplest definition of reproducibility extended and used in the different works is the one proposed
by ACM in version 1.1 of their Artifact Review and Badging report1, as shown in Figure 2.

Figure 4 shows the four definitions concerning the team, method, code, metadata, and setup ele-
ments.

1https://www.acm.org/publications/policies/artifact-review-and-badging-current
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Reproducibility (different team, same experimental setup): the experiment is done with different
equipment, different environment, same code/algorithm. Repeatability (same team, same exper-
imental setup): the experiment is done by the same team, same environment (software/hardware),
same code/algorithm. Replicability (different team, different experimental setup): the experiment
is done with different equipment, different environment, different code, same algorithm. Reusabil-
ity (different equipment, different and partial experimental configuration): the experiment is carried
out with different equipment, different environments, different codes, and the algorithm partially
implemented.

There is still some discussion, in some cases even confusion, about the definitions [36] even from a
taxonomic point of view [37, 38]. A very different interpretetion of reproducibility is presented in
[39] where it is a continuous improvement process rather than an achievable objective. However,
following the discussions with the National Information Standards Organization (NISO), ACM ac-
cepted the recommendation to harmonize its terminology and definitions with those widely used
in the community of scientific research. In this way, it interchanged the terms reproducibility and
replicability with the existing definitions proposed by ACM to ensure consistency.

In this article, we specifically discuss the reproducibility of complex ML/AI data science projects. A
scientific publication in ML/AI can range from effectively a model developed in an experiment by a
single researcher for a tiny device to large implementations of Distributed Big Data supercomputing
developed by large consortiums of universities, governmental, or research institutions.

1.2 Types of Reproducibility

Defining what reproducibility is as important as determining the types of reproducibility, considering
the nuances that conceptually appear when studying the various cases and possibilities. The term
reproducibility is acceptable in the case where the same input can lead to statically equivalent same
results. It is also important to note that reproducibility in data science does not necessarily imply
obtaining the same numerical result from the same numerical input.

Previous works [40, 31] have defined three degrees of reproducibility: R1 (Experiment, Data,
Method), R2 (Data, Method), and R3 (Method). It is only sometimes possible to obtain the same
numerical result from different realizations of an experiment. In that case, one can consider the
following definitions [41] :

• Experimental reproducibility: similar input (data) + similar experimental protocol → similar
results

• Statistical reproducibility: same input (data) + same analysis → same conclusions (indepen-
dently from (random) sampling variability)

• Computational reproducibility: similar input (data) + same code/software + same software
environment → exact same bit-wise results

1.3 Side difficulties to achieve reproducibility

Several difficulties identified in our review are not related to the actual shared source code used
to reproduce an experiment. Rather, they involve external considerations such as dependency on
3rd-party libraries, complex and uncontrolled software dependencies, the quality of the writing in
scientific articles, the documentation of the software, sustainability for the long term [42], repro-
ducibility, and the reward for the career advancement of the researchers [43].
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Complex and uncontrolled software dependencies With the increasing demand for function-
alities, the code has become more complex, relying on several 3rd party software dependencies.
These include libraries, packages, or complete frameworks. Changes from different releases (or even
from version to version) and irregular maintenance or support lead to what has been described as
dependency hell. This irregular maintenance represents one significant contemporary challenge for
obtaining reproducible results from software made from different components that are sometimes
obsolete. Using package managers, virtual environments, and container tools, keep an up-to-date list
of dependencies, and perform continuous testing [44], are recommended to mitigate this problem.
With these strategies, the management of dependencies can be simplified, and projects can then be
run in a reproducible manner across different configurations and systems.

Low writing quality The impact of the writing quality in scientific articles and the associated
documentation of the software has already been studied [45]. In practice, however, these aspects
are sometimes overlooked. One can easily identify articles with confusing writing that is unnec-
essarily overloaded with complex academic jargon. Such writing is very difficult to interpret and,
consequently, very hard or even impossible to reproduce.

Compilation and infrastructure setup. In applied computer science, significant time is generally
spent compiling source code, debugging it, and configuring the running platform. The time spent
configuring is comparable to the effort to solve the scientific problem. If building and running the
program is too time-consuming, the software could be de facto considered as nonreproducible.

Float point operations. Given their deterministic nature, computer systems should theoretically
reproduce any numerical result per se. However, in practice, point floating operations can give
slightly different numerical results in different systems [46, 47]. This aspect needs to be taken
into account in the reproducibility assessment. Float point operations errors are also analyzed by
Jezequel [48] on numerical reproducibility with the IEEE 754 encoding.

Adapted operating systems. Replicated environments require installing the exact version and its
respective dependencies to obtain the equivalent result, and doing so is very difficult with no isolated
systems. Conda resolves this difficulty at the Python level by creating isolated environments (env);
Equally, the same mechanism is applied at the operating system level in ”NixOS/Guix:a Purely
Functional Linux Distribution [49]. One benefit to reproducibility is that Nix creates packages that
are isolated from each other. These packages ensure that the environments are reproducible and
have no undeclared dependencies. For example, BioNix [50] is based on the characteristics of Guix.

Lack of academic reward. One major problem in reproducibility concerns the career advancement
[51] of researchers in academia and how their work is acknowledged and eventually rewarded [52, 53].
Traditionally, recognition and prestige have been associated with the number of publications and
citations [54] in high-impact factor publications and have been decided according to metrics such as
the h-index-h, Altmetrics, CiteScore, the Clarivate Analytic Journal Impact Factor (JIF), the Source
Normalized Impact per Paper (SNIP), the SCImago Journal Rank (SJR), and the proposed Scientific
Impact Factor (SIF) [55]. The abuse of these metrics to decide career advancement promotes
behaviors in scientists and journals that are detrimental to reproducibility, such as reticence or
reluctance to publish code and data in articles or to split a single research into several non-significant
articles because of the high pressure to publish. Much of the effort required to perform quality and
reproducible research is not usually reflected in traditional metrics [56]. In particular, the rewarding
of computer science publications is limited to granting reproducibility badges [57, 58]. Currently,
at least 138 computer science journals award reproducibility badges 2.

2https://cos.io/our-services/open-science-badges/
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Figure 1: This diagram summarizes the structure of this paper, where three aspects are analyzed:
efforts required by authors and publishers and the technological evolution required to reproduce
results. The combined efforts of these three actors are required to close the reproducibility gap.

Moreover, some of the current incentives produce perverse behaviors in a hyper-competitive environ-
ment [59] which certainly goes against ethics and scientific transparency. They have also promoted
the rise of predatory journals [60] based solely on Article Processing Charges (APC), articles of
low-quality review standards, uncorroborated, or even false claims.

1.4 Measure and Evaluate Reproducibility

Reproducibility can be measured from different points of view, including the type of reproducibility
which is evaluated (bitwise or statistical), the type of data [62] and field of the research [15]. It
has already been shown in multiple works [24] that executing the same code on a different machine
might not necessarily produce the same numerical results, but one can establish that a result is
statistically equivalent to other [63, 64].

The survival analysis proposed in [24] permits to extract new insights that better explain past
longitudinal data and extend a recent data set with reproduction times, taking into account the
number of days it took to reproduce an article [65].

This point is certainly important because it is imperative to measure reproducibility to evaluate
the degree and percentage of reproducibility of an article. As will be seen in the artifact evaluation
section 2.8, there is a wide disparity among journals/conferences in the criteria and policies for
describing and evaluating artifacts partly as a result of the difficulty in measuring reproducibility.

2 Reproducibility Strategies and Technological evolution

Motivated by the great reproducibility challenges [66, 67], there is extensive literature on data
science projects, including current approaches for executing big data science projects [68], and the
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Figure 2: Definition of Reproducibility, Replicability, Repeatability, and Reusability (4R) [61]. Dif-
ferent degrees of reproducibility can be considered according to the characteristics of the particular
experiment or project.

(a) Basic block Software/Data and Hard-
ware/Environment Reproducibility.

(b) System/Flow Reproducibility.

Figure 3: Generalization of an architecture allowing for reproducible projects or experiments. It is
made of basic blocks, interconnected to build complex systems, applications, and workflows.
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Figure 4: A classification of Repeatability, Reproducibility, Replicability, and Reusability (4R) [61]
according to the characteristics a project or experiment.

Figure 5: General description of an editorial process for the publication of a scientific article with
code and the involved actors: authors, editors, reviewers, and readers.
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best coding practices to ensure reproducibility [69]. Different strategies have been proposed [70] to
tackle the problem of reproducibility of scientific works, specifically in ML/AI.

Given that the size and scope of data science projects that can range from small projects of the
Internet of Things (IoT) [71] to very large high-end distributed HPC [72] as complex infrastructure
required for example for the recently popular Large Language Models (LLM), different strategies
are required to address the complexity of each project/experiment specifically.

In this section, we survey the most relevant characteristics that can be considered as general re-
producibility strategies [32], such as the use of open source software, open repositories, and open
data formats, the use of well-established methodologies and following good practices, or system
architectures which are typically used in systems dedicated to run ML/AI applications.

We classify the strategies identified in the literature into four main classes: software and data,
environment, system data management and workflows, and methods. Each strategy can be part
of a more complex one. For example Workflows can be themselves made of Containers, and Code
publications strategies require the Open code/data repositories strategy.

1. Software and data reproducibility

• Adoption of free and open source software

• Tools with the potential to be used as reproducibility tools. For example, notebooks.

• Standardized automation benchmarks, open dataset formats, state of the art model base-
lines.

2. Environment reproducibility

• Software reproducibility: containers and virtualization

• System architecture: monolithic, microservices, server-less functions

• Hardware reproducibility, including ambient configuration. For example, Infrastructure
as Code.

3. System and workflow reproducibility

• Data science project-life cycle management tools

• Metadata and provenance (lineage and traceability)

• Reproducibility as a Service. This includes 3rd-party specialized and trusted entities that
certify reproducibility. They typically also offer services for the execution of algorithms
on the infrastructure they provide.

4. Methodological reproducibility

• Adaption of good practices and methodologies

• Teaching and reproducibility culture

• Performing evaluation specifically for research code and data artifacts

• Publications with code (journals and conferences)
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2.1 Open Source software and open repositories

One could think that uploading code and data to a public repository and labeling it as open-source
software could be a sufficient guarantee of reproducibility and transparency in research [34, 73].
There have been objections to this approach [74], as well as proposals for evaluating the repro-
ducibility level [75]. Others have proposed concrete solutions to the problem is reproducibility and
transparency of scientific software [76, 77, 78]. It cannot be ensured that code will not be modified
after publication3, or that the code is executed in exactly the same environment, dependencies, and
parameters. In many cases, the full reproduction of the work cannot be achieved and often requires
contacting the authors to obtain detailed information. It might happen that even the authors them-
selves cannot replicate the experiment due to changes in their own research infrastructure, lack of
documentation, or being outdated as the project evolves [79].

As significant examples of these repositories and open source communities, we could cite, for exam-
ple Github, Bitbucket, Gitlab, Zenodo, the Open Science Framework 4, OpenAIRE (Open Access
Infrastructure for Research in Europe), COAR (Confederation of Open Access Repositories), the
French open document repository HAL, EOSC (European Open Science Cloud), HuggingFace, the
Harvard DLhub 5, Dataverse 6, among many others.

2.1.1 FAIR data

Data in reproducible research should be Findable, Accessible, Interoperable, and Reusable (FAIR).
Indeed, an open-source code can very well end up being non-reproducible without proper access to
the data.

Findable: Metadata is assigned a globally unique and persistent identifier. For example, the Min-
imal Viable Identifiers (minids), or the Software Heritage SWHIDs; Accessible: The metadata is
retrievable by its identifier using a standardized communication protocol; Interoperable: Metadata
uses a formal, accessible, shared, and widely applicable specification for knowledge representation;
Reusable: metadata is described in detail with a plurality of precise and relevant attributes.

The FAIR principles [80] applied to data allow promoting the reproducibility of the scientific publica-
tions focusing specifically on its R (Reuse) aspect. However, each research work is a particular case.
Compliance with the FAIR principles is a real challenge that is usually only partially achieved [81].
These principles aim at categorizing the data in a more extensive and systematic way [80], as a
mean to improve research data services. Also, they promote a convenient tripartite categorization
of research data artifacts.

Many data science projects and research labs have started to adopt the FAIR principles, but there
are discrepancies in how to implement it, from considering how to handle big data and using cloud-
native repositories [74], as well as smaller scale data science projects that require an affordable
means of sharing [82]. Each team or laboratory ends up establishing its own means to comply with
the guiding principles. Therefore, it becomes a challenging task to determine the degree of FAIR
compliance and, to a certain extent, audit it.

3Indeed, the history of a repository in Github can be altered with a hard push command or using the corresponding
tools provided by GitHub.

4https://osf.io
5https://www.dlhub.org/
6https://dataverse.org/
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2.2 Open data formats and benchmarking

There are cases in which it is not viable to publish datasets and codes because they contain sensitive
data (for example, medical data corresponding to individuals) or simply because it is under industrial
secret. In these cases, the assessment of the reproducibility of the methods is compromised [62].
However, is in developing the concept of Federated Learning [83, 84] as a novel paradigm based on
decentralized and private data for the shared training of models.

However, these exceptions are scarce and, in general, it is possible to approach open science by the
use of open datasets, standardized formats, baselines, and benchmarks [85], allowing the scientific
community to check the results published methods reliably.

Even when data can not be made available because of confidentiality reasons, one can rely on
benchmarking and comparing results without necessarily accessing the data itself. There are several
recent tools for this purpose [85], such as DataPerf, Mlperf, Collective Mind [86], ReQuEST [87] or
MLCommons 7 with MLcube8 among others. They attempt to determine the state of the art in
certain disciplines by comparing the performances. Competitions such as Kaggle or BRATS (brain
tumor segmentation) [88] challenge and others publish open datasets and have become a reference
for the industry to evaluate and compare models.

2.3 System architecture

In terms of architecture for ML/AI systems, one can find two major trends: the deployment of
microservices and the use of serverless functions.

Microservices allow the building of scalable and flexible software systems for which each compo-
nent works independently and can be reused in different contexts. Because many applications of
ML/AI require large resources in terms of computations and storage, they are usually deployed as
a distributed system. The fact that different modules can work autonomously contributes to the
reproducibility and understanding of the system, compared to monolithic ones [89].

In particular, to reproduce scientific experiments, microservices can help improve the portability
and reusability of the software. By dividing the components of an experiment into microservices,
one can increase the flexibility and modularity of the software, making it easier to adapt the code
for new tests or experiments and lessening the dependency on software specific to a development
environment.

Also related to isolation, Serverless Computing is a popular cloud-based computing model [90] where
the cloud provider manages the server infrastructure and platform resources, allowing developers to
focus on application logic. Depending on the provider, they can also be referred to as lambda-
functions9.

The use of these serverless functions is beneficial for reproducibility in computer science as it reduces
the complexity and variability of the underlying infrastructure, and it enables greater modularity
and automation when developing applications and services.

7https://mlcommons.org
8https://mlcommons.org/en/mlcube/
9Note that, despite their name, they are totally unrelated to lambda calculus!
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2.4 Tools and platforms

This section surveys tools and platforms that are commonly used in ML/AI applications and how
they contribute to reproducibility. Specifically, we focus on containers and cloud computing and the
Infrastructure as Code (IaC) technique.

2.4.1 Notebooks

In data science, the use of notebooks has been popularized because of the opportunity to incorporate
executable code, rich visualization, and documentation in the same document. It has become a
common practice to publish and share work and a step forward for reproducibility. However, it
has been shown [91] that this approach has some deficiencies, such as the lack of version control.
Very recent studies [92] have also studied the low degree of reproducibility of Jupyter notebooks in
biomedical publications.

Several solutions have been proposed to address these challenges [93], including the use of Python
scripts and the adoption of best practices for documentation, version control or additional packages as
ReproduceMeGit tool to analyze the reproducibility of ML pipelines in Notebooks [94] and Osiris [95].

2.4.2 Containers and cloud computing

Advances in cloud computing and containerization have undoubtedly contributed to the reproducibil-
ity of large distributed systems.

These systems are complex, made of several interacting components [96, 97] along a pipeline. It
is required to have control over the execution environment in order to not only reproduce the
experiments but even trust them at all.

Given a code, the associated data, and the execution pipeline, one should be able to obtain the
same results over and over again. To achieve this, the pipelines, dependencies of the software, and
the environment need to be perfectly defined. Virtual machines and lightweight containers such as
Docker help by defining and fixing the execution environment [98]. One could summarize these two
concepts as

• Virtualization = data + code + environment,

• Cloudcomputing = data + code + environment + resources + services.

We address the topics on lightweight containers such as Docker, the MLOps methodology, the
management of scientific workflows, and techniques such as IaC in the following.

2.4.3 Docker containers

Since its appearance in 2007, Docker containers have quickly become popular in computer systems
and have become a fundamental tool for reproducibility. Its lightweight nature allows having several
containers dedicated to small microservices on the same machine, with limited consumption and
sharing of resources. This is a major advantage with respect to full virtual machines such as VMWare
or Hyper-V. The light containers eventually allow for better reuse, and many infrastructures are
nowadays migrating to containers, e.g. RE3 [99].

Docker is one of the most efficient and widely used tools with applications for reproducibility nowa-
days, but, at the same time, we identify some of its limitations [100] to this purpose compared to
container alternatives such as for example, Singularity Containers for HPC.
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The emergence of containerization technologies such as Docker and orchestrators such as Kuber-
netes [101] has allowed the rapid development and automation [99, 102] of pipelines of experiments,
thus making the reproduction of complex and computationally intensive experiments possible. In-
deed, they can be divided into different functional blocks.

We can cite Repo2Docker [103], which with Binder, can fetch a notebook for a given repository,
create a proper execution environment, and run it inside a container. This makes the code publicly
available for anyone to reproduce the results.

Specifically for HPC, there are initiatives such as The Extreme-Scale Scientific Software Stack (E4S),
a community effort to provide open-source software packages for developing, deploying, and running
scientific applications on High-Performance Computing (HPC) platforms. As an important contri-
bution to the reproducibility of such a complex, E4S builds from source and provides containers of
a wide collection of HPC software packages.

Many scientific experiments are made up of pipelines that concatenate several processes [104]. In
terms of reproducibility over time, highly specialized platforms have been developed to manage these
complex workflow management systems [105] (e.g. watchdog [106]), tools [107], roadmaps [108] and
general frameworks are proposed [109]. They allow researchers can focus on solving their specific
scientific problems rather than the underlying infrastructure, networking, or other technical specifics
[110]. Despite the great step forward, many interoperability and reproducibility difficulties still per-
sist [111, 112] considering the immense possibility of languages, open or private infrastructures that
are currently available or under development in the ecosystem of ML/AI data science technologies.

2.4.4 Workflow management systems

Scientific workflow management systems are useful for managing complex, cloud-distributed work-
flows [113] and automating repetitive processes [114]. They also enable detailed documentation and
workflow sharing with other researchers, thus helping improve the reproducibility of results and
speeding up scientific research [115].

Formally, the workflows are represented as Direct Acyclic Graphs (DAG) [116], where a task starts
in a particular node to be processed, and then transferred to the next one in the chain until the
final result is available in the last node. As pointed out in Section 2, it is required that the pipeline
of the workshop and the node themselves follow well-established reproducibility principles to obtain
reliable results, including access to the source code running the computations, along with an accu-
rate description of the environment, the use of FAIR data, and the use of open data formats for
interoperability, among others.

Each scientific community has developed its own workflow managers. We can cite some well-known
ones, such as Taverna (bioinformatics, cheminformatics, and ever social sciences) or the Galaxy
project (bioinformatics), OpenAlea (Botanics), Chimera (cheminformatics), or Pegasus (physics
and bioinformatics), Knime(semantic workflow), Wings(graphical workbench). Pegasus was the
workflow management system used by LIGO for the first detection of gravitational waves, certainly
a paramount hit in physics.

The criteria to establish the reproducibility of a given pipeline can vary much from community to
community. Although the basic principles remain (see Section 2), there are specificities depending on
the field. We invite the reader to check the work of Cohen-Boulakia and co-authors, who conducted
a study [114] analyzing three cases of use of in-silico experiments in the domain of biological sciences
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with Taverna, Galaxy, OpenAlea, VisTrails, and Nextflow, proposing different criteria and discussing
about these reproducible environments based on docker, Vagrant, Conda, and ReproZip.

The significant increase in articles on AI/ML inevitably forces an adaptation towards the manage-
ment of both data and software because both are a source and contribution to knowledge. Therefore
it is necessary to analyze tools, infrastructures, and technologies that have evolved to support these
requirements. In this sense, AIOps/MLops evolves from the DevOps/DevSecOps (Development -
Operations) concept to cover several of these aspects of reproducibility management infrastructures
for computer-based scientific articles.

Transferring knowledge and prototypes from the academy to the industry is, most of the time,
challenging [117]. There are very well-specified methodologies for the development of software in
the industry, such as DevOps, which include CI/CD (Continuous Integration/Continuous Delivery).
However, in the academic environment, these practices are not necessarily followed. In part, this is
explained by the lack of career reward pointed out in Section 1.3.

MLOps [118] can be considered the natural evolution of the DevOps best practices components
adapted to the particular needs of ML-based software development [119]. In general terms, within
data science projects MLOps tries to harmonize the practices of two environments with very different
characteristics, such as academic/research environments with ML production environments for a
final client, where reproducibility plays a very important role. It is an end-to-end process from the
research model to the final model, exploited by the end customer or reproducibility reviewer.

There are few works that deal with MLops from the point of view of reproducibility. Among
these, [120] does an excellent analysis of the reproducibility of various MLops tools.

Other articles made a benchmark for different MLops features [121] and products available in the
open source such as private code [122], which is equally important when data and software manage-
ment is required by a journal. Let us mention here the most relevant ones, from our review of the
literature:

• Neptune. A metadata store for any MLOps workflow. It was built for both research and production
teams that run a lot of experiments 10.

• Weights&Biases. A machine learning platform built for experiment tracking, dataset versioning, and
model management 11.

• Comet. An ML platform that helps data scientists track, compare, explain and optimize experiments
and models across the model’s entire lifecycle 12.

• Sacred + Omniboard. Open-source software that allows machine learning researchers to configure,
organize, log, and reproduce experiments 13.

• Tensorboard. A visualization toolkit for TensorFlow 14.

• Polyaxon. A platform for reproducible and scalable machine learning and deep learning applications 15.

• ClearML. An open-source platform, a suite of tools to streamline your ML workflow 16.

10https://neptune.ai/
11https://wandb.ai/
12https://www.comet.com/
13https://github.com/IDSIA/sacred
14https://www.tensorflow.org/tensorboard
15https://polyaxon.com/
16https://clear.ml/
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• Pachyderm. An enterprise-grade, open-source data science platform that makes it possible for its users
to control an end-to-end machine learning cycle 17.

• MLflow. An open-source platform that helps manage the whole machine learning lifecycle. This
includes experimentation but also model storage, reproducibility, and deployment 18.

• DVC (Data Version Control). It is a very popular tool in MLops and in the data science environment
because it allows the versioning of training, testing and validation datasets in a very simple format 19.

• NextFlow. In terms of reproducibility, it allows Docker and Singularity containers technology for the
creation of workflows. 20

• Collective Knowledge [123] is an initiative that, based on its experience trying to reproduce hundreds
of experiments, came to identify common patterns that are repeated from project to project. In a
certain sense, it is a unifying proposal within the wide variety of existing MLOps solutions and seeks
to resolve persistent integration issues.

With the emerging Internet of Things (IoT) technology and the advances in smaller devices with
significant computing power, simplified ML models at the edge are possible with TinyMLOps [71].
Significant reproducibility challenges appear considering the strong restrictions of energy consump-
tion, limited computing capacity, and heterogeneity between different devices and technologies. Also
considering that you can no longer containerize/virtualize with Docker.

2.4.5 Workflow languages

Despite the efforts to unify existing workflows, each community has kept its own particularities,
including the language to define the pipelines [114]. This fragmentation [124] makes it harder for
integration and interoperability between different academic groups. Indeed, some of the groups use
a very particular language for their workflows.

There are initiatives such as SHIWA (SHaring Interoperable Workflows for Large-Scale Scientific
Simulations on Available DCIs) [125] which try to provide a solution to this problem of interoper-
ability. Multiple organizations and providers of workflow systems have also jointly worked to propose
the Common Workflow Language (CWL) [126] with the aim of standardizing the pipelines around
a common language.

Those specifications propose a conceptual workflow language to describe high-level scientific tasks,
with the aim of promoting workflow specification portability and reusability and addressing the
heterogeneity of workflow languages.

2.4.6 Infrastructure as code (IaC)

Much attention is paid to source code and containerization in order to address reproducibility, but
unfortunately, not that much to hardware [127]. With the rise of cloud computing technologies, the
possibility of replicating the exact execution environment for an experiment is viable. Indeed, for
reproducibility purposes, it is a requirement to define the characteristics of the hardware, such as the
type of CPU, TPU, GPU, memory amount, or network architecture. This is especially important
for a large distributed system as, for example, HPC applications.

In this respect, IaC provides several advantages towards reproducibility in computer science. One of
the main benefits is that IaC allows researchers to accurately define and control their infrastructure in

17https://www.pachyderm.com/
18https://mlflow.org/
19https://dvc.org/
20https://www.nextflow.io/
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a format that can be easily stored, versioned, and shared, making it easy to reproduce experiments
and obtain the same results at each execution. Defining infrastructure as code discharges from
manually configuring infrastructure resources and allows researchers to easily version and share the
infrastructure configuration with other colleagues. According to the Octave 2022 report [128], the
Hashicorp Configuration Language (HCL) programming Terraform languages were widely used by
developers in 2022, indicating that IaC practices are becoming quite popular for Github projects.

Additionally, IaC can help improve consistency and accuracy by ensuring that all instances of the
infrastructure are created and configured identically. This helps ensure that the test conditions are
the same each time an experiment is performed. IaC in the academic environment can significantly
help in many aspects, such as the quality of the software developed, and is a step forward in the
reproducibility of scientific research. As a recent example, Adorno-Gomes and Serodio [129] managed
to define a complete experiment with IaC from a unique high-level code with Pulumi [130].

2.4.7 Provenance and Metadata Traceability of Artifacts

Provenance refers to the way in which the origin [131] of the artifacts of an experiment is documented
in metadata. Provenance documentation is a commonly used technique to improve the reproducibil-
ity of scientific workflows and research artifacts. There are numerous articles proposing tools such as
ProvStore [132], ReproZip [133], MERIT [134], CAESAR [135], Provbook [107] in several different
disciplines and research areas [136], demonstrating how it can help improve traceability, linage and
transparency of results.

The PROV standards allow the task to be carried out (see Openprovenance21, for example. However,
it is not yet complete and does not allow it to be generalized to multiple cases and languages. The
foregoing requires the use of permanent, Unique Identifiers and tools that manage this aspect in
order to have correct traceability of data sources and artifacts, even using new technologies such
as blockchain [137] InterPlanetary File System (IPFS) [138] to achieve traceability and lineage of
Software or code snippets.

2.4.8 Reproducibility as a Service (RaaS)

The Reproducibility as a Service (RaaS) concept was proposed in 2021 by Wolsin [139]. An strategy
based on RaaS takes advantage of the availability of cloud computing technology to offer repro-
ducibility services. This include the reproduction and research artifacts after the execution of the
software in the controlled environment and its evaluation, validation, and certification (related to
this, see Section 2.8 about code review). Also, granting reproducibility badges, tracking the prove-
nance of software, or assigning persistent identifiers to the software at different granularity levels.
Another responsibility of RaaS is to manage the underlying architecture if a way that makes it easier
for authors to share and execute their code depending on the chosen complexity, from baremetal
infrastructure to fully managed services. Figure 6 shows how a SaaS architecture is organized in a
complex system.

Crick and co-authors proposed [140] to make a first approach to the offer of reproducibility services
for journals/conferences from an empirical and quantitative point of view. They presented a cyber-
infrastructure and the associated workflow for a reproducibility service as a high-level technical
specification without delving into technical details. On the other hand, the work of Demchenko [126]
addresses the topic of provisioning on demand of research environments and introduces the concept

21https://openprovenance.org/store/)
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Figure 6: Representation of a RaaS-managed cloud infrastructure. The description layers, mi-
croservices, the serverless approach, and taking care of the granularity of the software help the
reproducibility of a complex system.

of Platform Research Infrastructure as a Service (PRIaaS) with the aim to ensure data quality and
support effective data sharing.

For example, the IPOL journal [141] also partially meets the attributes of what can be considered
as a RaaS tool, together with the article, makes available a technological platform for the creation
and execution of online demos (simplified demonstrations of algorithms).

Equally, among other existing reference platforms, we could mention CodeOcean, Chameleon, and
Whole Tale. They allow code to be executed in a wide range of languages, but they are still
maintained at the demo level with certain technical restrictions to offer the mentioned features.
They start to be actively taken into account by publishers.

2.5 Good practices and data management methodologies

Agility and security are among the many quality attributes of software [142], even though the
majority of them are not specifically designed for reproducibility in computer science. However,
data project management methodologies and well-known best practice guides are applied widely
across the AI/ML industry to improve reproducibility.

Several studies [66] and best practices guides [143] have proposed different tools for the management
of data science project artifacts [121] as well as methodologies. For example, Goodman et al. propose
ten simple rules to achieve reproducibility, and The Turing Way handbook also provides a relevant
compilation of good practices [144] to reproducible, ethical, and collaborative data science projects.

There is a consensus that one of the main factors limiting the success of data science projects is the
lack of reproducibility in the management platforms [8, 145, 146]. From the many methodologies
available, the most popular are CRISP-DM [147], KDD, SEMMA, Microsoft TDSP, Agile DS Life-
cycle, Domino, DS Lifecycle, IBM FMDS, RAMSYS, and MIDST, among others. These are widely
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used in the industry, especially CRISP-DM.

Certainly, as observed in the scarce literature, there is not a standard or unified methodology that
is focused on reproducibility for data management itself. So far, only good practices, recommenda-
tions [148, 149, 150, 151], and guides from different fields of computer science of different needs are
available.

2.6 Scientific publishers and reproducible research

Historically one of the main forms of communication, recognition, socialization, and validation before
the scientific community are the articles published in journals and conferences [79]. Publishers de
facto become auditors of the scientific activity, and indeed, the metrics (Impact Factor and others)
that they have established are the typical indicators that are used to evaluate researchers in their
career and their advancement. Publishers have, therefore, a responsibility to assure the scientific
integrity of the work they make public, along with their own interest in maintaining their own
reputation. This includes not only avoiding fraud but also establishing clear quality criteria. In
scientific publications, reproducibility is fundamental since it allows others to verify if the same or
equivalent results are obtained when repeating the experiment, thus allowing them to potentially
refuse a paper containing wrong or inaccurate claims. As pointed out by Heesen [152], the work that
is not widely shared is not really scientific work.

In the following, we discuss two significant initiatives which have been put into practice by publish-
ers: the possibility of associating code with the publications and the proper evaluation of software
artifacts.

2.7 Publications with code

Associating source code with a particular publication is gaining great popularity in the scientific
and technical community [153]. It allows for greater transparency and reproducibility, essential to
guarantee the quality and reliability of the results [154]. However, the reproducibility aspects of
this practice are evaluated in the Dataverse repository [155], Figure 5 describes a typical editorial
structure for publishing articles with code, which, as will be seen later, is not so easy to implement
by the Journals considering technical and economic aspects.

Many conferences have started to request that the source code be given and made public. Others
go one step further and perform an exhaustive evaluation of the artifacts. For example, Checklist
NeuroIPS[156]: It is a widely recognized checklist for the reproducibility assessment of conference
papers.

From many examples, one might include here Code Ocean, used by IEEE’s publishers after the
integration of the CodeOcean’s platform as a Computational Research Platform, Whole Tale [157]
allowing researchers to create and share scientific narratives that include data, code, and runtime
environments [158, 159], Binder as a platform that allows users to create and share code execution
environments online, making it easy to reproduce and distribute results, PapersWithCode with
open resources on ML, ReproducedPapers with open teaching and structuring machine learning
reproducibility [160], or the ReScience Journal [161] which replicates computations from inde-
pendent open-source implementations of original research and the advanced Chameleon22 large-scale
edge to cloud tool [162].

22https://www.chameleoncloud.org/
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Unfortunately in many cases, this is limited to providing a non-persistent link [163, 164] to the
source code repository in public platforms (see Section 2.1). Moreover, each journal sets its own
strict criteria, formats, and procedures for authors. Aspects such as consistency, reproducibility,
and reusability cannot be properly tracked or audited by other teams and research over time, thus
limiting their impact [165].

2.8 Review of Research Artifacts

To begin with, it must be understood that for different reasons [166] an article is not 100% repro-
ducible, but rather certain elements (e.g. computational artifacts, pseudocode, algorithms, demos)
that the author decides to share and considers sufficient grounds to legitimize his results.

The evaluation criteria to accept articles for publication is traditionally well defined for scientific
journals. They are based typically on originality, novelty, or overall scientific interest. However,
when considering a publication not only as the article but also all major research artifacts, including
source code, the criteria is relaxed, if considered at all. When the evaluation takes into account
the associated source code, it is required to establish the proper evaluation criteria for peer review
[167].

Conferences have started to publish guides containing checklists for the evaluation of artifacts and
to grant the so-called reproducibility badges [57, 168] if the conditions are met. Among the most
important conferences, we can cite the checklist of NeurIPS 2019 23, the ACM reproducibility badges
24, as well as other initiatives such as the Unified Artifact Appendix and the Reproducibility Checklist
25, the CTuning artifact evaluate 26 or the Empirical Evaluation Guidelines SIGPLAN NISO RP-
31-2021 27, among others.

Following several of the published guides, recently, the SC23 supercomputing conference (one of the
most important conferences in HPC) [115] adopted the Reproducibility Initiative where accepted
papers with available artifacts were acknowledged with the corresponding ACM badges. The use of
blockchain technology for artifact traceability has also been proposed [169, 138].

CTuning has participated in the artifact evaluation task for different ACM conferences [170] and
has defined a more detailed Unified Artifact Appendix and the Reproducibility Checklist based on
the previous evaluation experience in ACM ASPLOS, MLSys, MICRO, and SCC’23 conferences.

Other specialized scientific journals have already implemented specific criteria to a greater or lesser
degree. For example, Table 6 in the Appendix summarizes the checklist for Artifacts Descrip-
tion/Artifacts Evaluation (AD/AE) reproducibility [171, 172] for a data science experiments and
projects of different publishers.

Finally, reproducibility-certifying agencies are starting to offer their evaluation as a service in differ-
ent disciplines working with sensitive or confidential data, outsourcing this function as a trusted third
party. Recently Cascad [173] has been proposed in the field of Economics and Management [169].

From our review of the data above, we observe that the existing criteria are still quite varied, not
standardized, complex for the authors to fulfill, and time-consuming on the reviewer’s side.

23https://nips.cc/Conferences/2019/CallForPapers
24https://www.acm.org/publications/policies/artifact-review-badging
25https://ctuning.org/ae/checklist.html
26https://ctuning.org/ae/reviewing.html
27https://www.sigplan.org/Resources/EmpiricalEvaluation/
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Table 4 is an extensive summary of the reproducibility strategies and technologies that have been
reviewed in this work. However, it needs to be analyzed how they are implemented according to
the reproducibility policies of the different scientific journals. Our survey tries, from an empirical
point of view, to provide insights on the application of these strategies directly from participating
journals.

3 Survey in Computer Science Journals

The increasing number of published articles in computer sciences, as well as and the fast development
of new and innovative AI/ML methods, pose several challenges to publishers. The reproducibility,
legitimacy of the works, and adapting the policy of the journal and the procedures of evaluation of
the works is challenging [174].

Several papers [175] have explored the effectiveness of journal policies regarding open source code and
data sharing to validate the research procedures in an attempt to mitigate the reproducibility crisis.
Likewise, other studies address solutions, platforms, technologies, mechanisms, and procedures for
the reproducibility of scientific articles that have been proposed to deal with the problem from the
perspectives of the different actors involved: authors, publishers, industry, and scientific community.
For example, the work of Gomes et al. [166], as well as Baker et al. [43], focus on the barriers
why authors might reluctant to share code and data in their publications and why that would be
pertinent.

From another point of view, the reproducibility culture has also been analyzed in previous works [176,
58, 177, 178, 179], and along with the culture, it has been discussed how to teach reproducibility in
academic environments to young students and as seen in previous sections incentives [59], Massive
Open Online Courses (MOOC)2829, good practices in the way of measuring and rewarding repro-
ducibility, such as novel badging mechanisms, new measurement indices of valuation and code/data
citation 30 [180], the Scientist Impact Factor (SIF) for reputation and impact of researchers [55], or
applying statistical methods a mean to measure impact [181]. However, all these elements have not
been analyzed as a whole as part of an articulated, agreed-upon Reproducibility policy in publishers.

Moreover, the experience, opinions, and results of journals implementing and adapting their poli-
cies with a strong focus on reproducibility have not yet been surveyed. Therefore, we surveyed
SCOPUS-indexed journals specialized in computer science to know from them as a primary source
of information about their experience in the application of reproducibility policies, insights, and the
difficulties and successes derived from their policies.

In subsection 3.1 we explore which aspects were previously surveyed by other authors, including
especially relevant questions. Subsection 3.2 presents our survey, along with the answers, which
eventually leverages the discussion at Section 4.

3.1 Previous work

From the existing literature one can conclude that there is still incipient and timid progress toward
implementing sharing and open science policies in scientific works [182, 79]. The traditional peer
review scheme is maintained, with slight variations, and it is, in general, limited to encouraging the
publication of the source code and data in software repositories [183, 184]

28https://www.fun-mooc.fr/en/courses/reproducible-research-methodological-principles-transparent-scie/
29https://www.coursera.org/learn/reproducible-research
30https://datacite.org/
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For example, The Diamond OA Journals Study [185] makes a general survey; in our case, the
results of its question 41 are highlighted. To the question “Do you have any policy or practice to
stimulate open sharing of research data?” 42% of the respondents declared to have policy or practice
to stimulate open sharing of research data. The study finds that an equal number of respondents
who did not have an established policy and an additional 15% answered “Unknown”. However, the
factors that explain the adoption of open-data policies are not analyzed and it only focuses on other
aspects of the publishing business.

Question 54 asked “Does the journal require linking to data, code, and other research results?”.
Although there is not much information available from journals about requiring links to data, code,
and other research outputs in DOAJ, from the survey data the study found that nearly half of
respondents reported not requiring this, against 24.8% who do. For more than 25% the answer was
“No” or “Unknown”.

The above questions are certainly limited to code-sharing policies in journals, but do not delve into
actual reproducibility policies through article automation, evaluation, and preservation of repro-
ducibility technologies. This represents a dilemma that is discussed in Section 5.3.

In the article [186], 318 biomedical journals were manually reviewed to analyze the journal’s data
sharing requirements and characteristics A total of 11.9% of journals analyzed explicitly stated that
data share a total of 11.9% of journals analyzed explicitly stated that data sharing was required as a
condition of publication. A total of 9.1% of journals required data sharing but did not state that it
would affect publication decisions. 23.3% of journals had a statement encouraging authors to share
their data but did not require it. A total of 9.1% of journals mentioned data sharing indirectly, and
only 14.8% addressed protein, proteomic, or genomic data sharing. There was no mention of data
sharing in 31.8% of journals. Impact factors were significantly higher for journals with the strongest
data-sharing policies compared to all other data-sharing criteria. Open-access journals were not
more likely to require data sharing than subscription journals.

Another contribution by Konkol et al. from the point of view of the analysis of reproducibility
technologies for Publishing computational research [187] concludes that still, publishing reproducible
articles is a demanding task and not achieved simply by providing access to code scripts and data
files. Several platforms were analyzed, including Whole Tale, ReproZip, REANA, o2r, Manuscripts,
Gigantum, Galaxy, eLife RDS, Code Ocean, Binder and its limitations as well, the facilities it offers
for authors. The previous article is complemented by the work of Willis [188], who made an analysis
of technical aspects and use of some of these technological infrastructures and repositories around
seven reproducibility initiatives designed by journals to improve computational reproducibility.

In the work of Malik [172], the technical difficulties are discussed, but also the benefits of imple-
menting Artifact Description and evaluation policies for presenting scientific articles to journals and
conferences.

The percentages of implementation of concrete reproducibility policies remain low. However, there
is ongoing open discussion on the efforts and contributions that can be made by each of the actors in
the reproducibility research ecosystem. In our case, this work analyzes the problem from the point
of view of practical implementation of policies by publishers, based on your opinion and experiences
with the following research questions: What is the best way reproducibility policy mandatory, or
instead an incentive policy for authors and reviewers, to allow publishers improve the quality and
impact of their publications? What type of technological infrastructure best supports these types of
reproducibility policies?
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Figure 7: Do you want to be mentioned in the acknowledgment section as a Survey participant?

Figure 8: Respondent’s role in the scientific journal.

3.2 Survey and Results

Following the methodology described in section A.2 and considering the literature mentioned above
and the technologies discussed in Section 2.4, a series of reproducibility-oriented questions were
carefully designed for the evaluation of reproducibility policies and their implementation. This is
the base of the brief gap analysis we do in Section 5.4, where the answers are analyzed and discussed.

In the following we present the questions of the survey and the results.

Question 1. Do you want to be mentioned in the acknowledgment section as a Survey
participant?

Despite having a policy of sharing and publishing code and data implemented at some level, some
publishers refrained from being mentioned, probably due to not being able to match several items.
Indeed, the survey asked for very specific questions about the implementation of infrastructures
and technical details. Some publishers requested to be considered as anonymous in this question.
Figure 7 shows the results.

Question 2. Respondent’s role in the scientific journal

The answers came from a variety of different roles, with a slight predominance of Editors in Chief,
Figure 8.

Question 3. Do you have a Reproducibility policy or similar in your guidelines for
authors?
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Figure 9: Do you have a Reproducibility policy or similar in your guidelines for authors?

Figure 10: How do you think the reproducibility policy requirements should be?

A large majority (75 %) of the respondents indicate that they do have a reproducibility policy, as
shows in Figure 9.

Related to this, in Figure 10 we can observe that there is a significant percentage (41.7%) of journals
which request reproducibility as an essential condition for publication and thus make it mandatory.
This decision has important consequences and, in general, it is counterproductive for almost all
journals to add extra requirements for the publication because it reduced the publication rate31).
On the other hand, it improves the overall quality of the publications.

Question 4. If you wish, you can indicate the link to the policy of the scientific journal
or guides for authors.

Nine journals provided a link to their reproducibility policy, Table 1.

Question 5. How do you think the reproducibility policy requirements should be?

In this question we asked about what should be the most significant requirements for a reproducibility
policy, regardless whether the journal actually implemented them or not. The results are given in
Figure 11, with a variety of different preferences and showing, in any case, gradual interest towards
making them mandatory.

Question 6. Do you follow any guide or checklist for the evaluation of research artifacts?

31See https://scholarlykitchen.sspnet.org/2018/09/25/does-adopting-a-strict-data-sharing-policy-affect-submissions/
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Journal Policy Link

IPOL https://tools.ipol.im/wiki/ref/software_

guidelines/

ACM Transactions on
Graphics

https://www.replicabilitystamp.org

GigaScience https://academic.oup.com/gigascience/pages/

editorial_policies_and_reporting_standards?

login=false#Reporting%20Standards

Anonymous https://www.springer.com/journal/12532/

submission-guidelines#Instructions%20for%

20Authors_MPC%20Reviewing%20Guidelines

Optical Memory and Neu-
ral Networks (Information
Optics)

https://www.pleiades.online/en/journal/

optmem/authors-instructions/

Information Systems (El-
sevier)

https://www.elsevier.com/journals/

information-systems/0306-4379/

guide-for-authors

http://doi.org/10.13140/RG.2.2.34277.22243/

1

Science of Computer Pro-
gramming

https://www.journals.elsevier.com/

science-of-computer-programming/

call-for-software/a-new-software-track-on-original-software-publications-science-of-computer-programming

INFORMS Journal on
Computing

https://pubsonline.informs.org/page/ijoc/

datapolicy;
https://pubsonline.informs.org/page/ijoc/

softwarepolicy

JETAI https://authorservices.taylorandfrancis.

com/data-sharing-policies/open-data/

Table 1: The nine journals who answered question #4 about their policy, and the links they provided.
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Figure 11: How do you think the reproducibility policy requirements should be?

If so, which one?

The responses were very varied, which shows the lack of standardization in this matter. The problem
of the evaluation fo the research artifacts has been extensively studied, yet without much agreement
or formalization. See Figure 12.

Question 7. Journal access modality

Most of the journals answered that their publication modality was open-access, Figure 13.

Question 8. What is the range of your APC (Article Publication Charges)?

The ACP are very relevant for the discussion about how the reproducibility costs are shared between
authors, publishers, and technology providers (see Section 5.1). Free publication costs predominate
in the responses. In addition to question #7, it is an indicator that the business model of these
journals is based on open platforms and repositories.

Question 9. Preferred sharing method

This question confirms that free open platforms are used to share the code, and the number of
journals that owe third parties, or have their own technological storage infrastructure, is very low.
See Figure 15 for the results.

Question 10. How compliant is your publication of software and data policy with
FAIR-TLC?

The answers indicate the increasing level of implementation of the reproducibility policies, consid-
ering that most of the articles are accessible and reusable, but still low in the other attributes.
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Figure 12: Do you follow any guide or checklist for the evaluation of research artifacts? If so, which
one?

Figure 13: Journal access modality.

Figure 14: Which is the range of your APC (Article Publication Charges)?
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Figure 15: Preferred method to share research artifacts.

Figure 16: How compliant is your publication of software and data policy with FAIR-TLC?

This could be explained because the use of open repositories limits the journals to offer the other
attributes satisfactorily. Figure 16 provides the results.

Question 11. Reproducibility validation method

The results (Figure 17) show that the traditional peer review model for article validation and ac-
ceptance is maintained, compared to other more automated forms of reproducibility validation.
Therefore, validating the legitimacy of an article rests on one or two experts as well as their own
available testing resources.

Question 12. If you request to share the source code. What platforms or repositories
do you recommend for sharing code? If others, you can write those you recommend

The results (Figure 18) describe show that Github if the preferred specialized platform, although
more for developers than for publishing research results. Zenodo, on the other hand, allows the
citation of code and data through its identifiers, but remains a simple non peer-reviewed reposi-
tory. There is therefore still a significant lack of automation in the policies of code and data for
reproducibility purposes, to validate the legitimacy and quality of the articles.

Question 13. In the case you request reproducible research artifacts, which format is
preferred?

The majority of the journals indicated that indeed they request the software and data artifacts, but
as supplementary material (58.3%), with a large majority (50%) that request a link to the source
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Figure 17: Reproducibility validation method.

Figure 18: If you request to share source code, what platforms or repositories do you recommend
for sharing code?
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Figure 19: In the case you request reproducible research artifacts, which format is preferred?

Figure 20: Which do you think would be the best way to reward the authors to submit reproducible
articles?

code. Figure 19 shows the results.

Question 14. Which do you think would be the best way to reward the authors to
submit reproducible articles?

Most of the answers (Figure 20) indicate that for most of the journals (46.2%) the preferred way to
reward authors is to grant reproducibility badges, followed by a 38.5% of the answers which claim
that the best way would be to offer free access to the journal or discounts.

Question 15. Which do you think would be the best way to reward the reviewers of
reproducible articles?

The answers to this question (Figure 21) do not show a strong preference for any of the options,
being the most preferred to offer free access to the journal or discounts, offering the reviewers being
part of the editorial board of the journals, or even considering that it should be a voluntary task.

Question 16. Would you like to share briefly your view on the impact of implementing
a reproducibility policy in the journal? For example, in terms of APC or other costs,
the quality, citation impact, credibility of articles, or any other topic you would like to
address.

This was an open questions to obtain from direct insights from the publishers. In the following we
present their answers:
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Figure 21: Which do you think would be the best way to reward the Reviewers of reproducible
articles?

• Observed average 15% increase in citations after one year, 33% after two years.

• It’s a great selling point and definitely has increased our visibility and content reuse.

• We strongly encourage the authors to use Zenodo/Github as the repository for the code used
in their experiments. We feel that both the reproducibility of the work and the ability of other
to build upon it has a positive impact on science as a whole.

• Credibility of the results is the main impact. However, software evaluation adds time and
complexity to our reviewing procedure.

• It has a deep impact on the credibility and citation of any article. I consider that our repro-
ducibility initiative should be encouraged by most of journals. However, the most important
issue is to encourage the authors to adopt a reproducibility-centered research methodology from
the very beginning of their research.

• As an author, I always submit my articles with a reproducibility appendix, and I always design
my experiments to be fully automatic and reproducible from scratch, including the automatic
generation of all data tables and figures in the articles. On the other hand, as editor, I am
encouraging this same approach among our authors, and most authors who have published
reproducible papers in our reproducibility section are adopting this approach. However, it de-
mands extra effort and a lot of discipline, and for this reason, not all authors are probed to
do it. For this reason, our reproducibility initiative rewards the authors with a second article
(reproducible paper).

Finally, there is a long walk to achieve most of the authors adopt a reproducibility-centered
approach. It is absolutely necessary that PhD supervisors adopt and encourage this approach
among their students. A very good way of achieving it is teaching all MSc and PhD students to
design and implement reproducibility protocols and submitting reproducibility appendixes with
all their papers.

• We do not have APC. In most cases, as much of the generated information has normally
already been paid by public institutions.

• Higher Impact Factor since the policy has been in place

• Unfortunately, we do not implement a reproducibility policy in the BSR journal, but I would
like to know more about it. On the other hand, I am not fully for the transparent publication
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of the data and software since it may violate privacy and licensing.

• APC for original software publications is less than half of the APC for research papers. Original
Software Publications are currently the strategic focus of our journal.

• Surprisingly, authors are fine with our repository and requirements. We have not had any
pushback. It does add editorial work and slows down the final acceptance. See the Github
IJOC platform for how it works. https://github.com/INFORMSJoC”.

• This is very new to us - we have only introduced it this year - to start on Sept 1st. We expect
it to improve the reputation of the Journal and thus its attractiveness to researchers.

From this answers and insights, we shall in the following discuss on the technological possibili-
ties available to address the reproducibility problem, and about the shared responsibility between
authors, publishers and technology providers, including a brief gap analysis.

4 Reproducibility technological Discussion

As pointed out by several of the works we have reviewed here, reproducibility comes with great
benefits for both authors and journals. Let us briefly summarize them.

• Greater credibility and recognition [52]: reproducibility increases the credibility of the
research and, therefore, can increase the recognition of the authors and the influence of their
work in the scientific community.

• Research results are accurate and reliable to the extent that reproducibility is guaran-
teed. This is fundamental in the Scientific Method.

• Increased visibility and impact [189]: the attention of the scientific community is attracted
when articles are reproducible, thus increasing the visibility and the impact of the research.

• Facilitate collaboration and reuse [145]: results obtained from reproducible experiments
allow other researchers to build on them, which promotes collaboration and reuse of findings.
Eventually, it allows for faster scientific advancement.

• Increase credibility and confidence in the results [150]: reproducibility allows the results
obtained in an investigation to be verified and validated, increasing the confidence in its validity,
following ethic directives [190], and transparency.

In the following, we shall discuss from the point of view of technological evolution based on the
strategies presented as a reproducibility fundamental lever and support, how these interrelate into
different challenges, problems, and solutions that have been proposed, and how they relate to these
benefits. In particular, we discuss the problem of the responsibility of authors and publishers, such
as their efforts towards reproducibility, the possibility of understanding reproducibility as a service,
and finally, the impact of considering software as an important research artifact and the reward to
researchers.

4.1 Dilemma: virtualization solution or dependency

As described in the technological evolution subsection 2.4, many of the reproducibility tools and
platforms (eg, Workflows) proposed so far are completely based on container technology; this strong
trend leads us to discuss and draw attention to the benefits and drawbacks of relying exclusively on
this technology.
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It could be stated that Docker or, in general, lightweight virtualization, is the holy grail of repro-
ducibility, and, as will be seen, many solutions are based on this technology. With the popularization
of agile methodologies and as shown by the landscape and the containerization strategy, many of
the reproducibility problems try to be solved with docker [191, 100], which leads us to question if
there is an abuse of lightweight virtualization. As suggested, Docker is practical light and facilitates
many processes that in the past were tedious; however, it is not a tool specifically designed for
reproducibility, and it cannot be used indiscriminately to hide bad practices.

The possibility of packaging, freezing, and porting a code to any infrastructure and maintaining
stable functionality over time make it attractive in the scientific world; however, as stated in [192],
this indiscriminate use brings great inconveniences, we will discuss in the following.

At this point, it is necessary to analyze in depth the problem of reproducibility, repeatability,
containers, and development. The problem is that two characteristics are desirable in systems, but
actually, they are antagonists. On the one hand, we want robust systems that will not break after
an update. The classic example is a Python program that uses PyPI packages that, even if the user
sets the versions in a virtual environment, the libraries may not be available in a particular version
of Python. In that case, many system designers opt for virtualization.

The containers ensure reproducibility given that the complete environment is fixed. However, if
proper attention is not paid to the maintenance of the container, it might end up facing security
problems given that if the environment is simply fixed and not updated, the libraries will stop
receiving bug fixes and security updates.

Docker is certainly a useful tool that allows to fix the execution environment, but still maintenance
is required. Regular automatic testing is recommended.

4.2 The shared responsibility between authors and publishers

As presented in Sections 2.4 and 2.6, complying with the criteria for reproducibility implies some
costs, as well as the shared responsibility and pooling between authors and scientific journals. It
also needs a commitment to transparency and reproducibility [17]. Despite the analysis of the
reproducibility stakeholders in [25, 33, 34], the roles and relationship between authors and publishers
are still diffuse and at least questionable: indeed much of the reproducibility burden relies on the
authors. Authors have a responsibility to provide detailed information about the methods and
techniques used in their research, as well as to make public the data and codes that were used to
generate the results. They must also ensure that their results are replicable and thus they can be
verified by peers.

On the other hand, publishers have the responsibility to establish clear policies and guidelines [79]
for the submission of scientific articles, as well as looking for the transparency and reproducibility
of the results.

Indeed, guaranteeing and legitimizing the reproducibility of scientific work in ML/AI implies assum-
ing significant economic and time costs [193] depending on the size and complexity of the research
project. These cannot be assumed only by the researcher.

4.2.1 Reproducibility Cost

Estimating the cost of reproducibility is not easy because it can be considered from the execution of
a simple container on a personal laptop to a distributed execution of software in the cloud, with the
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market costs per hour of CPU, GPUs and storage depending on each provider and their business
model (for example, GCP, Amazon, Azure, Oracle, and others).

Existing virtualization and containerization techniques and cloud computing infrastructure are key
elements in this problem [98]. Therefore, the costs associated with cloud computing become relevant
concerning reproducibility.

It is essential to highlight these associated costs [194] and the implications for the scientific parties
that have a role in the reproducibility of the scientific work. One can describe the main technological
costs for the reproducibility of computational projects/experiments as follows:

CR = CHD + CHC + CRC ,

where CR is the total reproducibility cost, CHD the cost of hosting data, CHC the cost of hosting
code, and CRC the cost of running code.

The problem of increasingly complex research projects is not specific to computer science but com-
mon to other disciplines, especially when they combine different fields. Let’s mention briefly the
case of bioinformatics as an example. The researchers need to have not only knowledge of Biol-
ogy but also the skills to operate the software and the data formats of the research artifacts, as
well as the running environment. Typically, specialized expertise is required in Python, R [195],
diverse operating systems, and database management and complex platforms such as, for example,
Galaxy [196].

IaC, virtualization and containerization, and cloud computing approach help address this divisional
responsibility in a simplified manner. They allow to track the steps followed by the author so
other researchers can repeat and reproduce the experiment in the same environment. However, this
still requires a high level of computing skills, which should not necessarily be assumed only by the
authors. In Section 5.2.1, we discuss the Reproducibility as a Service (RaaS) strategy, which could
be applied to manage this shared responsibility.

5 Reproducibility efforts of authors and publishers

5.1 Effort of authors

In the case of the authors, it should be understood that for several of the reasons discussed, in
most cases, a scientific article cannot be reproduced in its entirety (100%). The authors generally
choose to reproduce only parts of the algorithms, demos, or data, which is essential to support the
conclusions.

Therefore, it is the authors’ effort to seek 100% reproducibility of their work or to fully clarify the
reasons that prevented reaching this objective, complying with the policies and requirements of the
journals/conferences.

5.1.1 Articles Submission Reproducibility Guide for Authors

From our analysis of the shared responsibility between authors and journals and the most recent
technological advances in computing, we shall discuss the efforts required by each of these two actors.

It is still very difficult for journals and authors to close the gap in a mutual effort, and it is even
harder when the authors must comply with article submission guidelines between different journals.
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Figure 22: Proposal for a future editorial process on which the article and code are published as a
whole, and third-parties certify reproducibility.

An article composed of theoretical and computational parts can only be reproduced in a certain per-
centage and certain components that only the author is responsible for defining and specifying with
the greatest of details and following a standard guide that avoids reprocessing between publishers.

MICRO2023 is a recent experience towards unified EA (artifact evaluation) guides and procedures32,
which allow speed up the AE process. A conference where artifacts can be complex and time-
consuming to evaluate and 25% of the submitted artifacts were awarded the artifact reusable badge.
In this context, practices were developed such as Reviewers performed an initial ’smoke-test’ (for
example, installing the artifact, or resolving access/environment/setup issues) and also reviewed the
key claims of the paper and the artifact. Likewise, two surveys were carried out consulting authors
and evaluators to seek feedback on the AE process. Important insights are derived from this survey,
especially in enabling authors and reviewers to faster iterate on artifacts efficiently, seamlessly, in
reasonable time. For example Reviewers provided suggest that requesting authors to prepare a
subset of simulations (and/or representative checkpoints) would be a good practice. Results ”will
appear in the ACM/IEEE MICRO 2023 conference front-matter”33 and support a trend towards
improvements to the process and clearer and standardized instructions preferable to most subjective
assessment of other experiences.

Therefore, in addition to standardizing the different evaluation and description guides of Artifacts
(see Table 6), we propose to incorporate a mandatory and standardized unified guide between
journals where the author contributes the effort to comply and assess the level of reproducibility of
their scientific article (see Table 2).

32https://ctuning.org/ae/micro2023.html
33https://www.linkedin.com/pulse/micro-2023-artifact-evaluation-report-56th-ieeeacm-symposium-fursin-bsgwe/
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ITEM OPTIONS

Article based on Software/Data? yes/no

Programming languages used (e.g., Python, C++)

Contains instructions for reproducibil-
ity

(e.g., complete, verified)

Badges, Certified third-party Repro-
ducibility Evaluators

(e.g., ACM badge, Ctuning)

Infrastructure Reproducibility Re-
quired/Trusted third-party RaaS
Operator

(e.g., Docker containers, MLflow,
CodeOcean, Chameleon)

Repository (e.g., Zenodo, Software Heritage)

Unique persistent citable identifiers of
Software/Data Artifacts

(DOI, SWID, BlockchainID)

Percentage of reproducibility of the Ar-
ticle

(%)

Reproducible components (e.g. DEMO,virtual infrastructure, fig-
ures, tables, Backend, Frontend, Mi-
croservices, Lambda functions)

Component Reproducibility degree (R1,R2,R3,R4)

Non-reproducible components (Why) (e.g., proprietary software, sensitive
data, distributed project)

Table 2: Proposal of a reproducibility checklist guide for authors. We propose to incorporate a
mandatory and standardized unified guide between journals where the author contributes the effort
to comply and assess the level of reproducibility of the scientific article.
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5.2 Efforts of publishers

In the case of journals, given the wide typology of submitted articles and the reproducibility costs,
it is economically unfeasible that they have their own reproducibility infrastructure, which explains
the current tendency to rely on third trusted parties. In the following, we shall discuss how the
Reproducibility as a Service (RaaS) methodology could help discharge authors from the burden
that implies running code and maintaining a complex reproducibility infrastructure, as well as the
opportunity of considering a software more valued research artifacts and thus properly rewarding
authors. Finally, we provide a brief gap analysis from the results of our survey in Section 3.2.

5.2.1 Reproducibility as a Service

As pointed out in Section 4.2, reaching reproducibility might require for some projects a large tech-
nological investment, which should not be assumed only by the authors but shared with publishers
and offered by specialized third parties. Here, we will focus on a particular strategy, Reproducibility
as a Service (RaaS) [139], which might be helpful to this purpose.

As introduced in Section 2, RaaS is an approach to address non-reproducibility in scientific research
by providing access to tools and resources that researchers and industrial actors to replicate exper-
iments and data science projects. Also, to facilitate, manage, or overcome many of the limitations
and barriers that we have identified in our review of the literature.

According to Brundage and co-authors [197], one could label as RaaS any 3rd-party service made
of tools that allow the reproducibility of scientific work. Their proposal is to use the existing
cloud computing tools to offer a service that fills the gap between two major requirements to achieve
reproducibility. On one hand, the actions taken by researchers who want to facilitate reproducibility.
They provide a detailed procedure that allows to obtain the result artifacts, as well as the exact
execution environment. On the other hand, the actions taken by publishers or the industry validate
reproducibility.

Moreover, there are trusted third parties that deal with big data projects and confidentiality is-
sues of sensitive datasets. They aim to reduce the need for the strong computing skills typically
required to work in complex AI/ML data science projects. Cloud Native-based RaaS [139] adds an
additional standardized layer with simplified interfaces for IaC, virtualization, and cloud computing
(see Figure 6). As examples of these tools, we can cite Invenio 34, Eprints 35, or DSpace 36, among
others.

Although not particularly adapted to complex workflow systems and user interactivity, a good
example of the relationship between a journal and a third party that offers reproducibility services
in the cloud is the partnership between IEEE and Code Ocean37. The code from IEEE articles can
be browsed, discovered (assigned a DOI), run, modified, and eventually built the researcher’s work
on the cloud without any complex setup.

5.2.2 Software as a valuable research artifact and reward to authors

As presented in Section 1.3, traditionally, the published article has been considered the most impor-
tant and rewarded [180] research artifact, leaving aside Software production. Universities, research

34http://invenio-software.org
35http://www.eprints.org
36http://www.dspace.org
37https://codeocean.com/signup/ieee
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centers, and evaluation committees usually consider the number of articles published in high-impact
factor journals and the number of citations and sometimes as the major criterion to hire a researcher
for increasing the salary and career evolution, among other incentives. Consequently, researchers
typically do not invest large resources in the reproducibility of the results, the quality of the produced
software, or even the possibility of publishing the software itself.

Many research projects are based on software contributed by others, including libraries, applications,
or complete frameworks, and in many cases, there is no explicit recognition of the authors of the
third-party software. The recent incident about the vulnerability in the log4j library [198] is a good
example of a widely-spread software used by hundreds of companies, not necessarily acknowledging
the library’s authors.

The lack of incentives for researchers and software developers to produce quality and reproducible
software has a clear negative impact [199] on the development of Open Science. Fortunately, the
criteria to evaluate researchers are evolving in parallel in the right direction. For example, CNRS (the
Center for National Scientific Research) in France announced in 2022 changes in their evaluation
policy to include SW projects as an equally valid element to evaluate scientific production. The
reproducibility tools provided by journals and conferences are fundamental for traceability, thus
allowing the proposal of new metrics specific to software.

Different works [180, 200] have focused on analyzing the citation of scientific software and data
publishers [174] as a natural need to implement FAIR and paper-with-code strategies. To this
purpose, FORCE11 (The Future of Research Communications and e-Scholarship) [200] provides
guidelines for the citation of software and data.

Software needs to be properly cited and preserved. These two requirements are certainly not easy
to fulfill, given their dynamic and changing nature. Indeed, millions of software repositories are
constantly being updated at every instant in Github and other repositories.

The Software Heritage project, supported by UNESCO, is one important step forward in both
citation and perpetual preservation of software via proper identifiers, such as the SWHID [201].
Zenodo also provides a Digital Object Identifier (DOI) and Chameleon a QR-code to reference the
code. It is also a great source of information to determine the provenance of software contributions.

Regarding using badges as an incentive for authors reproducibility, it must be observed that they
really impact the researcher’s reputation in the same way as the popularized and mature badge
system awarded in e-learning by important companies, academies, to certify technical skills[202]
published on reputable platforms such as Credly38 and easily shared on Linkedin39, which allow the
candidate to reinforce their CV and demonstrate to the employers in a competitive labor market.

As pointed out by Dozmorov at al. [181], Github is, at the moment, the most complete database to
measure the impact of software. Interestingly, they concluded that the number of forks as a measure
of software impact is not correlated with the number of citations associated with a scientific paper.
This finding, at first counter-intuitive, shows that citation indices (such as the h-index and others) do
not fully explain the true impact of the scientific work and the associated software. The consequence
is, therefore, that producing quality software is neither properly promoted nor taken into account
for the career advancement of researchers.

There is, therefore, a need for metrics that are specific to software, beyond indirect measures such
as the number of forks or stars in public repositories. Strategies such as RaaS and more adapted

38https://info.credly.com/
39https://www.linkedin.com/

37

https://info.credly.com/
https://www.linkedin.com/


metrics such as the Scientific Impact Factor (SIF) [55] could be of great help rather than the H-index
or impact factor of the journal (FIJ) discussed in Section 1.3.

Finally, our recommendation is depicted in Figure 22, where there are incentives for all the actors,
including 3rd-parties that implement permanent and long-term reproducibility infrastructures that
support the publishing business.

5.3 Dilemma: reproducibility sharing policies

At this point an important clarification must be made, journal reproducibility policies should not
be confused with traditional open access and open science initiatives. It could even be considered
as an open topic that requires standardization. In [79] Stodden makes a first approximation from
the analysis of Data and Code Policy Adoption by Journals, and then in [182] [184] analysis of
journal policy implementation and effectiveness for computational reproducibility, however a clear
concept of ”reproducibility policies” is not consolidated. This leads us to consider that journals face
an important dilemma in defining their internal policy of just limiting themselves to a code and data
sharing policy or going further in defining veritable and strict automation tools and reproducibility
evaluation article reproducibility policy.

5.4 Brief gap analysis

We provide a small gap analysis of the level of implementation of reproducibility policies that we
observed from our survey. We intended to bring together all the elements of analysis. We include
technological aspects, as well as the efforts required by both authors and publishers to help close or,
at least, reduce the reproducibility gap. Aspects such as the standardization and implementation of
reproducibility policies, adaptation of business models, and association with specialized third parties
are considered. These recommendations come from analyzing the answers in our survey (Sec. 3.2).

Table 3 shows the journal policy evaluation gap in identified key aspects, indicating the survey
question that helps evaluate the percentage of implementation of the reproducibility policies. With
this table, each journal is evaluated in terms of its reproducibility policies and the effort it must
make in the key aspects identified.

It can observed from the answers that there is a low percentage of implementation of reproducibility
policies, as well as the low use of technological tools for automation, validation and sustainability of
reproducibility in the long term (longevity of reproducibility).

This is explained because there is still no consensus and standardization on what should be a good
reproducibility policy for journals, as well as the lack of a developed and mature market of trusted
specialized RaaS services.

To determine the gap, we used the following qualitative ranking:

• High: when there is a complete lack of accomplishment or implementation of the criterion

• Intermediate: when there is the presence of an initiative with immature development of the
criterion

• Low: when there is a complete and functional implementation of the criterion

Unfortunately there is a large gap in the implementation of some aspects, mainly those related
to automation, establishing reproducibility policies, management of repositories, and the use of
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Journals Reproducibility Features Survey questions Gap level

Automatic Validation and Execution Tool 11, 12, 13 High

Author Incentives 14 Intermediate

Reviewer Incentives 15 Intermediate

Reproducibility Policy 3, 4, 5, 6, 16 High

Managed Repository 9 High

Article/Data/Software Persistent Unique Identifier 9 High

Business Model Oriented to Reproducibility 7, 8 Intermediate

FAIR-TLC 10 Intermediate

Table 3: The gap in the implementation of the journal policies policies, along with the related
survey’s questions.

persistent identifiers for the research artifacts, including software. Other aspects such as orienting
the business model towards reproducibility itself or the use of FAIR data seem to be more developed.

Despite the observed gap, there is an opportunity to reduce the reproducibility gap with the common
efforts of authors, publishers, and technological providers. See tables 2, 3 and 4 for more details.

6 Conclusion

We have presented a PRISMA-based systematic review of the existing literature on techniques and
platforms which can be used in computer science and machine learning projects, putting the focus on
reproducible research. In order to clarify what reproducibility is, we have also reviewed the different
definitions in the literature, which after the NASEM report have been de facto standardized.

The main difficulties reported by researchers when trying to reproduce the work of their peers have
been enumerated. We analyzed also the problem of how to measure objectively the reproducibility,
especially in the case where the experiment not necessarily gives the same results each time it is
repeated, but statistically equivalent.

From our discussion we have identified what we consider are the most important reproducibility
strategies, such as the use of open source repositories or the use of FAIR data, or following method-
ologies which have been proven to be relevant to achieve reproducibility.

In this work, we have intended to address the problem of the credibility crisis specifically in computer
science including ML/AI projects, from diverse reproducibility stakeholder points of view. We
establish insights from the best practices, frameworks, methodologies, and technologies available at
the moment.

In computer science, the variety of languages, new developments, platforms, frameworks, hardware,
and architectures on which the code of scientific articles can be run are vast. In some cases, it
requires third-party proprietary software and data, which is why means a significant challenge for
publishers. Implementing reproducibility policies supported by RaaS or similar methodologies can
certainly help reduce the reproducibility gap on publications.
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Summary of strategies for reproducibility

Type Strategy Papers Examples

(1)Sof
Open Source Software, Open sci-
ence, repositories, FAIR

[80, 165, 34,
74, 76, 77,
75, 73, 78]

Github, Gitlab, bitbucket, Zen-
odo, softwareheritage, dataverse,
Huggingface

CSharing/Documentation tools [91, 93, 94,
95]

Reprozip, Notebooks, CRAN,
Rmarkdown,

Open data formats, Baselines,
SOTA Benchmarks

[203, 88, 86] JSON, XML, MLperf, Data-
perf, Kaggel, Brats,CM, ML-
cube, MLdev

(2)Env
Container/ virtualization/
Cloud

[98, 100, 191,
204]

Docker, Vmware, singularity,
AWS, GCP, AZURE, ORACLE,
BioNix/ Guix

Architectures [89, 90] monolithic/ microservice/
serverless/cloud/hybrid

IaC-Infrastructure as a Code [127, 128,
129, 130,
101]

Terraform, pulumi, kubernetes
CloudFormation, Ansible, pup-
pet

(3)Sys
Cientific Workflows and MLOps
tools BPML CWL languages

[118, 126,
114, 113,
120, 99, 112,
106, 125]

Taverna, Galaxy, VisTrails,
Nextflow, Neptune, Weight,
Comet, Omniboard, Mlflow,
TensorBoard, Polyaxon,
ClearML, Valohai, Pachyderm,
Kubeflow, Verta.ai, SageMaker,
DVC, kheOps, RE3, Hyperflow,
watchdog ,SHIWA

Metadata and Provenance
(Traceability Lineage Logging
Monitoring)

[132, 131,
134, 136,
135, 84, 138,
137, 107]

MERIT, ROVPY, PROV-
NEO4J, PROV-DB, CON-
NECTOR, NOWORK-
FLOW, GIT2PROV,Provbook,
blockchain, SWHID, DOI

RaaS-Reproducibility as a Ser-
vice

[139, 126,
157]

Whole Tale, chameleon, CodeO-
cean, IPOL

(4)Met
AE/AD Peer Code Reviews [167, 171,

172, 156,
168, 115, 23]

reviewcommons, ArVix, Peer
Community In (PCI), SIG-
PLAN, Ctuning, NeuroIPS,
Badging

Publications with code [154, 153,
163, 155]

Some Journals(nature), Confer-
ences(ACM,IEEE), runmycode

Policies, Good Practices, Gen-
eral frameworks, Recommenda-
tions, Methodologies Life Cycle
Management

[125, 147,
142, 144,
144, 109, 58,
179, 42, 149,
148, 177,
150, 151]

NASEM, DevSecOps, AIOps,
MLops, CRISP-DM, KDD,
SEMMA, Turing way, Teaching
Culture Reproducibility, Journal
Reproducibility Policies

Table 4: Strategies for Reproducibility.
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We conclude that the high cost of guaranteeing the reproducibility of a software project is not
properly rewarded at this moment to the reproducibility stakeholders. Considering the costs in own
infrastructure that would be required, one still needs to take into consideration business models that
encourage investment by third parties in infrastructure and thus guarantee longevity and perennity
in the reproducibility of scientific publications.

It is, therefore, necessary to share the efforts among the different actors. A mutually-beneficial
relationship must be established between authors, reviewers, and publishers to balance the benefits
and costs that authors and scientific publishers eventually assume. There are not standardized
Description/Evaluation standards in this regard and, in many cases, authors reported that it is very
tedious to meet the requirements of each different publisher. Therefore, some authors are discouraged
from improving the quality of their papers in the so-called publish or perish race. Moreover, some
publishers (excluding those under the diamond model) are in a position of power over the authors
who are charged significant article processing charges.

It is convenient to define a new metric equivalent of the Impact Factor, which could be used specifi-
cally for software. This could help properly reward the effort of software developers by acknowledging
them clearly as co-authors of the scientific work and measuring the real impact of their contributions
in reproducible computer science projects.

Our survey shows a growing concern about the reproducibility and how their policies can get into
it. This reflected in the comments provided by the journals and the initiatives they want to push
forward. Therefore, clearly defined and long-term plans are required to achieve a sustainable re-
producibility model where each stakeholder obtains a benefit. For the moment, the traditional peer
review evaluation methodologies are preferred. The responsibility of the validation is mainly on
the expertise of the reviewers chosen by the editors and the few functional tests to the artifacts
that they can do with their limited testing infrastructure. It also indicates that, in computer science
journals indexed in SCOPUS, there is a low level of formal implementation of reproducibility policies
supported by their own reproducibility platforms.

We conclude that it is imperative to bring together coordinated efforts to agree on standardized
guides for authors for the submission of articles, unified reproducibility policies and artifact evalu-
ation criteria from editors, supported by the reproducibility strategies and technological evolution
discussed in this article. Consequently, there is a promising future with opportunities and potential
to reduce the reproducibility gap identified with the joint effort of all actors involved to ensure
reliability and trustworthiness in the knowledge conveyed by computer science-based publications.
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[33] Sebastian Stefan Feger and Pawe l W. Woźniak. Reproducibility: A Researcher-Centered Def-
inition. Multimodal Technologies and Interaction, 6(2):17, February 2022.

[34] Malcolm Macleod and the University of Edinburgh Research Strategy Group. Improving the
reproducibility and integrity of research: what can different stakeholders contribute? BMC
Research Notes, 15(1):146, April 2022.

[35] Committee on Reproducibility and Replicability in Science, Board on Behavioral, Cognitive,
and Sensory Sciences, Committee on National Statistics, Division of Behavioral and Social
Sciences and Education, Nuclear and Radiation Studies Board, Division on Earth and Life
Studies, Board on Mathematical Sciences and Analytics, Committee on Applied and The-
oretical Statistics, Division on Engineering and Physical Sciences, Board on Research Data
and Information, Committee on Science, Engineering, Medicine, and Public Policy, Policy and
Global Affairs, and National Academies of Sciences, Engineering, and Medicine. Reproducibil-
ity and Replicability in Science. National Academies Press, Washington, D.C., September
2019.

[36] Hans E. Plesser. Reproducibility vs. Replicability: A Brief History of a Confused Terminology.
Frontiers in Neuroinformatics, 11:76, January 2018.

[37] Bakinam T. Essawy, Jonathan L. Goodall, Daniel Voce, Mohamed M. Morsy, Jeffrey M.
Sadler, Young Don Choi, David G. Tarboton, and Tanu Malik. A taxonomy for reproducible
and replicable research in environmental modelling. Environmental Modelling & Software,
134:104753, December 2020.

[38] Michael A. Heroux, Lorena Barba, Manish Parashar, Victoria Stodden, and Michela Taufer.
Toward a Compatible Reproducibility Taxonomy for Computational and Computing Sciences.
Technical Report SAND2018-11186, 1481626, October 2018.

[39] Jimmy Lin and Qian Zhang. Reproducibility is a Process, Not an Achievement: The Replica-
bility of IR Reproducibility Experiments. In Joemon M. Jose, Emine Yilmaz, João Magalhães,
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vaux, Alban Gaignard, Konrad Hinsen, Pierre Larmande, Yvan Le Bras, Frédéric Lemoine,
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PRISMA

Step Num items Condition

Identification SCOPUS (413) TITLE ( reproducibility ) AND PUBYEAR >
2019 AND PUBYEAR < 2024 AND ( LIMIT-
TO ( SUBJAREA , ”COMP” ) )

Identification WoS (371) TI=(reproducibility) and 2023 or 2022 or 2021
or 2020 (Publication Years) and Multidisci-
plinary Sciences or Computer Science Inter-
disciplinary Applications or Computer Science
Theory Methods or Computer Science Infor-
mation Systems (Web of Science Categories)

Deleting re-
peated

(144) Repeated articles

Screening (80) Main theme reproducibility

Included (60) Systematically classified

Table 5: The PRISMA screening was used in this review to select recent relevant articles related to
reproducibility in scientific research.

A.2 Journals Survey

To avoid bias in the research and not only address journals that are known to apply reproducibility
policies, e.g. (IEEE with CodeOcean 40, ACM with reproducibility Badges 41, Journal Nature42 ),
a request for participation was sent to several journals specialized in computer science.

Information was voluntarily requested through a 16-question form from a list of 500 journals spe-
cialized in computer science, scopus indexed from Q1 to Q4 in the period from July 1, 2023 to
September 1, 2023. Although the question was very precise, they were left open to comments.

A.3 Classification of reproducibility criteria.

Table 6 shows the classification of reproducibility criteria for Artifacts Description (AD) and Arti-
facts Evaluation (AE).

Criterion Description Type

Results Documented result and analysis Experiment
Analysis Supported claims Experiment
Justification Justified method, metrics, datasets Experiment
Workflow Summarized experiment execution and configura-

tions
Experiment

Workflow execution Tracked execution with configuration Experiment

40https://innovate.ieee.org/ieee-code-ocean/
41https://www.acm.org/publications/policies/artifact-review-badging
42https://www.nature.com/nature-portfolio/editorial-policies/reporting-standards
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Hardware Specified hardware Experiment
Software Documented software dependencies. Experiment
Citation Export Reference automatically generated Experiment
Code repository Shared code in repository Experiment
Code metadata Code metadata included Experiment
Code license Code license included Experiment
Code citeable Code (DOI) or (PURL) assigned. Experiment
Hypothesis Documented hypothesis Method
Prediction Documented predictions Method
Setup Documented parameters and conditions, statistical

significance of results.
Method

Problem description Clearly described problem Method
Outline Conceptually described method Method
Pseudo code Documented pseudo code Method

Data repository Data shared in accessible repository Data
Data metadata Metadata included in the datasets Data
Data license Licensed data Data
Data citeable DOI or P-URL of data assigned Data

NEUROips Checklist [156]

Model and algorithms Clarified mathematical models, algorithms, settings
- assumptions explained - algorithm complexity an-
alyzed

Experiment

Theoretical claim Clarified claim statements - fully proven claims Method
Datasets Relevant statistics, details of train/validation/test

split, explanation of excluded data and preprocess-
ing, link to downloadable version of environment and
dataset, description of quality Control methods

Data

Code Specified dependencies, Training code, evaluation
code, README file with results table, pre trained
models

Experiment

Rxperimental result Selection method, range, specification of best hyper-
parameters, exact number of training and evaluation
runs, clear definition of metrics and results statistics,
description of results with trend and central varia-
tion, average energy cost, results runtime.

Method

SIGPLAN

Clearly stated claims Explicit claims, appropriately scoped, recognize lim-
itations

Method

Suitable comparison Compare with the appropriate baseline, comparison
is fair

Method

Principled benchmark choice Appropriate and fair use of non-standard suit, using
applications instead of kernels

Method

Adequate data analysis Sufficient number of trials, appropriate summary of
statistics, data distribution reported

Method
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Relevant Metrics Direct and appropriate proxy metrics, successful in
measuring all effects

Method

Appropriate and clear Experi-
mental Design

Enough information to repeat, reasonable platform,
Consider all key design parameters, open workload
generator, evaluated in test set

Method

Appropriate presentation of re-
sults

Clear summary of results, appropriate truncate axes,
ratios plotted correctly, appropriate level of precision

Method

Ctuning

Abstract Clearly stated the problem, solution and supporting
results?

Method

Algorithm Is it a new algorithm? Experiment
Program Are any benchmarks used? Method
Compilation Does it require a specific compiler? Experiment
Transformations Does it require a program transformation tool? Experiment
Binary Are binaries included? Experiment
Model Are specific models used? Experiment
Data set Are specific data sets used ? Experiment
Run-time environment Are there any OS-specific artifact? Experiment
Hardware Is specific hardware required? Experiment
Run-time state Is the state sensitive to run-time? Experiment
Execution Is the software running under specific conditions? Experiment
Metrics How are the metrics evaluated? Experiment
Output What is the output? Experiment
Experiments How to prepare and reproduce results? Method
Disk space How much disk space is required? Experiment
Workflow How much time is needed to prepare the workflow? Experiment
Time evaluation How much time is needed to complete the experi-

ments?
Experiment

Publicly available Data
Code licenses Is the software under any licenses? Data
Workflow frameworks Are workflow framework used for automation? Method
Archived Is the software archived and make it public? Data
Description
Access Does the system describe how reviewers will access

the research artifacts?
Data

Hardware dependencies Does the system describe any specific hardware and
specific features?

Experiment

Software dependencies Does the system describe OS and software packages
required to evaluate your artifacts?

Experiment

Data sets Are there any third-party data sets used in your
packages?

Data

Installation Does the system describe the setup procedures? Method
Experiment workflow Does the system describe how the workflow is imple-

mented and executed?
Experiment

Evaluation and expected result Does the system describe how to reproduce the key
results from the paper?

Method
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Experiment customization Does the system provide special instructions to cus-
tomize and tune the experiments?

Method

Notes

NISO

Artifact Available A DOI or URL link to the repository along with a
unique identifier for the object is provided

Data

Artifacts Evaluated-Functional the artifacts are documented, consistent, complete,
exercisable, and include appropriate evidence of ver-
ification and validation.

Method

Artifacts Evaluate-Reusable Artifacts associated with the paper are of a quality,
documented and well-structured that significantly
exceeds minimal functionality to the extent that
reuse and re-purposing is facilitated.

Method

Open Research Objects (ORO) A DOI or URL link to the repository along with
a unique identifier for the object is provided for
Functional + placed on a publicly accessible archival
repository.

Method

Research Object Reviewed
(ROR)

The results of the article have been obtained inde-
pendently in a study by a team or reviewer other
than the authors, without the use of artifacts pro-
vided by the authors.

Method

Results Replicated (RER) ROR + ORO + without the use of artifacts provided
by the authors, the main results of the article were
obtained independently in a subsequent evaluation
by a reviewer or team other than the authors,

Method

Results Reproduced (ROR-R) ROR + ORO + the main results of the article have
been obtained in a subsequent evaluation carried out
by a reviewer or team other than the authors, using,
in part, artifacts provided by the author.

Method

FAIR-TLC[80]

Findable Data must have rich and accurate metadata that al-
lows for easy discovery and identification

Data

Accessible Data must be available and accessible for free or
through clear and well-defined mechanisms

Data

Interoperable Data must be structured and organized in a coherent
way so that it can be combined, integrated, and used
in conjunction with other data

Data

Reusable The data must be made available under a clearly
specified open license that allows its use and reuse
by other users

Data

Traceable The data must be accompanied by information that
makes it possible to trace its origin and the way in
which it has been modified or processed. This in-
cludes provenance information

Data
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Licensed The data must have a license or a legal agreement
that specifies the terms and conditions for its use
and reuse

Data

Connected The data must be linked to other related data sets
and relevant resources, such as scientific publica-
tions, source codes, and documentation, among oth-
ers

Data

Table 6: Classification of reproducibility criteria for Artifacts Description (AD) and Artifacts Eval-
uation (AE).
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