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a b s t r a c t 

The land cover data presented here is a reconstruction of 

the past landscape (1993) at Very High Resolution (VHR) 

for the city of Poitiers, France. This reconstruction is based 

on multiple sources of images and data. We combined the 

strengths of both mono-temporal and multi-temporal classi- 

fications. Orthophotos were created at a spatial resolution of 

0.5 m using aerial raw images from the French National Ge- 

ographic Institute (IGN), taken during two aerial missions in 

July and August 1993. These orthophotos were merged at a 

spatial resolution of 5 m to conduct a first object-based clas- 

sification using Landsat-5 TM images. The goal was to iden- 

tify croplands, grasslands, coniferous and deciduous forests, 

urban areas, water bodies, and shadows. This learning-based 

classification employed a dataset consisting of 1371 polygons 

and demonstrated strong classification performances, achiev- 

ing an overall accuracy of 86.31% and a kappa index of 0.832. 

On the other hand, mono-temporal classifications at a 0.5 m 

spatial resolution were carried out on each orthophoto to 
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extract trees and herbaceous vegetation, especially in urban 

contexts. As mono-temporal classifications contained less in- 

formation, we used a larger number of polygons for the 

learning step: 3849 and 5173 polygons for the northern and 

southern classifications, respectively. The segmentation step 

performed better in urban areas compared to rural areas. 

Consequently, the performance of classifications was evalu- 

ated separately for both contexts. Urban areas exhibited ex- 

cellent performances, achieving kappa indices of 0.897 and 

0.881 for the northern and southern classifications, respec- 

tively, whereas only tree vegetation was accurately detected 

in rural areas. To compensate for the lack of information 

such as buildings, railways, or roads, we modified the BD 

Topo R © dataset from IGN. This land cover map provides highly 

detailed information, facilitating the understanding of urban 

sprawl and changes in urban and rural vegetation surround- 

ing the city of Poitiers. Due to these reasons, this freely ac- 

cessible map can be utilized by researchers, land managers, 

and private companies for addressing urban and ecological 

challenges. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Computer Science, Earth Sciences 

Specific subject area Remote sensing, GIS, Land Cover Map 

Data format Raw and analysed data (vector in Shapefile & Raster in format TIFF) that can 

be used on GIS or remote sensing software. Raster can also be opened with 

image readers. 

Type of data Vector and Raster 

Data collection Orthophotos were acquired from raw images of French National Geographic 

Institute (IGN) using the ERDAS Imagine software 

( https://hexagon.com/products/erdas-imagine ). Landsat images were 

downloaded on United States Geological Survey (USGS) website 

( https://earthexplorer.usgs.gov/ ). 

The reference data and manual corrections were made with the QGIS software 

( www.qgis.org ). Object-based classifications were performed using Orfeo 

Toolbox ( www.orfeo-toolbox.org ) using Random Forest classifications. 

Data source location Poitiers is an important historical metropolis of the west of France (46.34 °N, 

0.20 °E) with 131,499 inhabitants (census in 2017). The area of the land cover 

map is about 225km ². 
Data accessibility All data are freely available in Zenodo: https://zenodo.org/record/8220468 

doi: 10.5281/zenodo.8220468 

Related research article Morin, E., Herrault, P. A., Guinard, Y., Grandjean, F., & Bech, N. (2022). The 

promising combination of a remote sensing approach and landscape 

connectivity modelling at a fine scale in urban planning. Ecological indicators, 

139, 108930. 

https://www.sciencedirect.com/science/article/pii/S1470160x22004010 

. Value of the Data 

• The Geographic Object-Based Image Analysis (GEOBIA) method used here demonstrates the

powerful combination of i) multi-temporal classification using satellite images to differentiate

croplands from grasslands for example and ii) mono-temporal classification to recover small

objects like hedgerows or isolated tree in urban and rural areas. 

http://creativecommons.org/licenses/by/4.0/
https://hexagon.com/products/erdas-imagine
https://earthexplorer.usgs.gov/
http://www.qgis.org
http://www.orfeo-toolbox.org
https://zenodo.org/record/8220468
https://doi.org/10.5281/zenodo.8220468
https://www.sciencedirect.com/science/article/pii/S1470160x22004010
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• This land cover map is valuable for Poitiers that have been experienced a strong expansion

of its urban areas since 1993 showing now a High-Speed-Railway, more housing areas, larger

industrial areas, and larger surrounding towns. Such a map allows to monitor the landscape

through time, representing thus a useful data in land management. 

• As land cover changes is crucial to land management, this map will help to understand

changes from 1993 to now for urban, agricultural issues but also their impact on ecologi-

cal processes. Data will be easily used in GIS applications for any users. 

2. Data Description 

The land cover analysis of Poitiers in 1993 used aerial images at a Very High Resolution (VHR)

and Landsat-5 TM images at High Resolution (HR). In addition, training and validating polygons

were created to conduct learning-based classifications (i.e., Random Forest classification) et eval-

uate their performance ( Figs. 1–6 ). 

Digital aerial images were provided by the IGN, contained a NIR, red and green channel and

were acquired in summer 1993 over the area of interest. They were acquired during two differ-

ent missions: 20 tiles for the north of Poitiers were taken on 16 August 1993 and 30 tiles for the

south of Poitiers were taken on 28 July 1993 ( Table 1 ). It is important to note that different date

acquisition can influence spectral information due to phenological variation of the vegetation.

Orthorectification was conducted on each tile using ERDAS IMAGINE version 2015 (Appendix A).

The images were projected into the Lambert-93 (EPSG: 2154) projection based on the RGF93

geoid (IAG GRS 1980 ellipsoid) and were resampled to a spatial resolution of 0.5 m. Then, mo-

saics were performed from these orthorectified tiles for each mission (Northern and Southern
Fig. 1. Distribution of the training polygons for the multi-temporal classification. 
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Fig. 2. Distribution of the validating polygons for the multi-temporal classification. 

Fig. 3. Distribution of the training polygons for the mono-temporal classification on northern images. 
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mages). The topographic correction, radiometric calibration, atmospheric and anisotropy correc-

ion were not performed because the needed parameters (e.g., atmospheric composition, aerosol

ypes) were not available. Even though the pre-processing step is not optimal as in many other

onditions or studies, the main objective was to get reliable information to conduct a classifica-

ion on these images. 

We used multi-temporal Landsat scenes to catch variations of vegetation. Landsat images

ave been widely used to consider the multi-seasonal variation of spectral information of vege-

ation due to the different phenology of plant species [18 , 23] . We used seven Landsat Thematic

apper 5 scenes acquired between January 1992 and August 1993 ( Table 1 ) to differentiate,

or example, cropland from grassland or deciduous from coniferous. The satellite images were
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Fig. 4. Distribution of the validating polygons for the mono-temporal classification on northern images. 

Fig. 5. Distribution of the training polygons for the mono-temporal classification on southern images. 

Fig. 6. Distribution of the validating polygons for the mono-temporal classification on southern images. 
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Table 1 

Characteristics of used images. 

Type Date Path Row Spatial resolution Spectral resolution 

Orthophoto 

(Northern images) 

08/16/1993 / / 0.5 m G/R/NIR 

Orthophoto 

(Southern images) 

07/28/1993 

Landsat 5 TM 01/22/1992 200 28 30 m B/G/R/NIR/MIR 

Landsat 5 TM 02/23/1992 

Landsat 5 TM 03/10/1992 

Landsat 5 TM 04/11/1992 

Landsat 5 TM 05/13/1992 

Landsat 5 TM 07/16/1992 

Landsat 5 TM 08/20/1993 
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loud-free and were converted to reflectance values and rescaled from 0 to 255 (8 bits) for each

pectral band. 

The OTB open-source project [9] was used to conduct the remote sensing analyses and QGIS

roject [17] was used for the remote sensing and GIS analyses. 

. Experimental Design, Material and Methods 

.1. Steps of multi-temporal classification 

Two classifications were conducted successively using multi-temporal data to get the main

and cover categories and using mono-temporal data to extract small vegetation elements such

s isolated trees or hedgerows. To identify the main objects such as impervious areas, forests,

rasslands, or croplands, the two orthophotos were merged and resampled to a spatial resolution

f 5 m using bilinear method to facilitate the segmentation. The following algorithms were used

rom the OTB project [9] . 

.1.1. Segmentation 

The segmentation is an important step of the object-based classification as its results influ-

nce the classification accuracy ( [8] ; Jian [11 , 21] ). The objective is to create groups of spatially

lose pixels with similar radiometric characteristics [1 , 4] . We used the MeanShiftSegmentation

lgorithm, this procedure contains four steps: i) a smoothing step facilitating the segmentation,

i) the segmentation step creating segments, iii) the merging step that fusion small segments to

imilar neighbour objects, iv) the vectorization step to convert pixel segments into vector seg-

ents and calculate mean and standard deviation of each raster band within segments [9] . The

patial radius and the range radius manage the smoothing effect and the capacity to preserve

dges between objects. These parameters should not be too high to avoid under-segmentation

nd not too low to avoid over-segmentation. The minimum segment size avoids very small ob-

ects. In addition, the spatial resolution of the input image impacts the segmentation step. For

he LargeScaleMeanShift algorithm, we selected a spatial radius of 5 pixels, a range radius of 15

ixels and a minimum segment size of 12 pixels. 

.1.2. Feature extraction 

The feature extraction allows to distinguish categories during the classification step. Thus,

egments must contain information related to spectral, texture, 3D or geometric characteristics

15 , 20] . For each segment, we computed the mean and standard deviation value of the NIR, Red

nd Green channel of the orthophoto, the mean value of raster bands of Landsat images (i.e.,

lue, Green, Red, NIR, MIR channel) (Appendix B). To improve the detection of water, the mod-

fied normalized difference water index (MNDWI) [22] was calculated for the 7 Landsat scene
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Table 2 

Training dataset used for the multitemporal classification. 

Dataset Category Number of polygons 

Training dataset 

Impervious surface 195 

Cropland 156 

Grassland 160 

Coniferous 152 

Deciduous 157 

Water 23 

Shadow 49 

Total 892 

Validating dataset 

Impervious surface 80 

Cropland 137 

Grassland 101 

Coniferous 25 

Deciduous 91 

Water 21 

Shadow 24 

Total 479 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and their mean value were computed within segments. Moreover, the number of pixels of each

segment was extracted for the classification step. 

3.1.3. Random forest classification 

Random forest has been introduced by Breiman [2] as an ensemble of classification methods.

This approach uses classification and regression trees (CART; [3] ) where each tree gives a classi-

fication to identify the most prevalent class. Then, an out-of-bag (OOB) error is calculated to es-

timate the rate of misclassified samples. This learning approach is widely used in remote sensing

classification for its capacity to manage many variables, its stability and robustness. Moreover,

there is few parameters to tune which are i) the number of trees within the forest and ii) the

depth of each tree. The number of trees in the forest was set to 250 and the depth of tree to 7,

corresponding to the square root of the number of variables (i.e., 49; Appendix B) [18] . 

3.1.4. Training and validating polygons 

The selection of training and validating polygons is crucial for the classification accuracy. The

best classification accuracy is obtained when statistics of categories show low intra-class vari-

ation and high inter-class variation. Thus, they must represent statistical variation within each

class. Training and validating polygons were chose across all the studied area, to avoid spa-

tial autocorrelation, which can have an influence on the evaluation of classification accuracy

( Fig. 1 ; [12] ). From the segmentation, we selected segments by photointerpretation (based on

the orthophotos and Landsat images) to construct the training dataset. Seven target classes were

identified for the classification: Impervious surface contained buildings, roads, bare soils; crop-

land contained annual crops; grassland contained meadows and herbaceous vegetation; conifer-

ous forest; deciduous forest; water contained the main water bodies and courses; and shadow

( Table 2 ). The number of polygons was roughly based on the relative importance of each cate-

gory considering the classification objectives. 

The evaluation of classification accuracy is based on the number of pixels well assigned. Thus,

we designed validating polygons with similar area corresponding to approximately 12 pixels

( Fig. 2 ; [18] ). To evaluate the global performance of the classification, the overall accuracy and

the kappa index were computed. Three metrics were also calculated at the class-level: the pre-

cision (also called Producer’s accuracy), the recall (also called User’s accuracy) and the F-Score

(which is the harmonic mean of the precision and the recall). 
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.2. Steps of mono-temporal classifications 

We conducted classifications at VHR from orthophotos to a 0.5 m of spatial resolution using a

imilar workflow as previously. However, each of the original orthophoto were treated separately

ecause of their spectral differences induced by their acquisition condition, in order to increase

he classification performances. Conversely, the main information for the multi-temporal clas-

ification was contained in the Landsat images, so the differences between the two orthopho-

os were negligible. Consequently, two classifications were realized (i.e., Northern orthophoto &

outhern orthophoto). Due to the nature of the input data, this procedure was highly similar

o the method proposed by Morin et al. [14] . This approach was mainly developed for highly

eterogeneous and complex landscapes such as the urban environment. 

.2.1. Segmentation 

This segmentation step aims to create appropriate segments for small objects such as the

anopy of a tree. For the LargeScaleMeanShift algorithm, we selected a spatial radius of 5 pixels,

 range radius of 28 pixels and a minimum segment size of 60 pixels. A large value of the range

adius induces a strong smooth effect facilitating the segmentation that is particularly interesting

or very high resolution images. Moreover, the minimum size of 60 pixels is a good compromise

or detecting isolated trees and avoiding oversegmentation. 

.2.2. Feature extraction 

There are some limits to conduct a classification only from the spectral information of a

ono-temporal image. For example, the absence of the height of each object can impedes the

dentification of vegetation strata. However, textures have been used with success to distinguish

egetation strata or urban objects [5 , 7 , 13] . Textures have been described as the smoothness, the

egularity, or the coarseness of an image (Gonzalez & Woods 2002). This aspect of an image can

e statistically captured from a grey level co-occurrence matrix [10 , 16] that represent the spatial

omogeneity around the pixels using a specific size of moving window. The matrix quantifying

he variation in grey levels is then used to compute the textures. Thus, spectral and texture

nformation were calculated to improve the classification accuracy. The Normalized Difference

egetation Index (NDVI) [19] was computed, a widely used index to detect vegetation in re-

ote sensing applications. The brightness was calculated as the mean of NIR, Red and Green

and. In addition, four Haralick’s textures were computed from the brightness using the Haral-

ckTextureExtraction algorithm with a window size of 7 × 7 pixels: Energy, Entropy, Correlation,

ontrast . The average of the NIR, Red, Green, the NDVI and the four texture was included within

egments as well as the standard deviation of the Green and the four textures (Appendix B). Seg-

ents were filtered before the classification to remove the shadow segments which showed a

rightness value lower than 95 for the Northern orthophoto and 80 for the Southern orthophoto.

.2.3. Random forest classification 

We used the Random Forest algorithm for the two classifications. For the parameter values

f the TrainVectorClassifier algorithm, we chose a value of 250 for the number of trees and a

alue of 4 for the depth of tree (i.e., the square root of the number of the input variables) [18] .

 stratified subsampling followed by a cross-validation process was also used by dividing the

raining dataset into five roughly equal subsets to conduct 5 different classifications using the

ectorClassifier algorithm [6 , 14] . Then, these classifications were merged with a majority voting

i.e., FusionOfClassifications algorithm). The overall accuracy and the Kappa index were computed

o estimate the global performance of the two classifications. The precision, recall and F-Score

ere calculated for each land cover category. 

.2.4. Training and validating polygons 

The herbaceous vegetation, the wooded vegetation and the artificial area were the three tar-

et categories. Because less information was available compared to the first classification that

sed a multi-temporal approach, a cross validation process with a larger number of training
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Table 3 

Training and validating polygons used for each mono-temporal classification. 

Training polygons 

Orthophoto Category Number of polygons 

Northern images Artificial area 882 

Herbaceous vegetation 875 

Wooded vegetation 903 

Total 2660 

Southern images Artificial area 1252 

Herbaceous vegetation 1081 

Wooded vegetation 1645 

Total 3978 

Validating polygons 

Orthophoto Category Number of polygons 

Northern images 

Rural context Artificial area 200 

Herbaceous vegetation 200 

Wooded vegetation 200 

Total 600 

Urban context Artificial area 216 

Herbaceous vegetation 148 

Wooded vegetation 225 

Total 589 

Urban & rural context Artificial area 416 

Herbaceous vegetation 348 

Wooded vegetation 425 

Total 1189 

Southern images 

Rural context Artificial area 125 

Herbaceous vegetation 144 

Wooded vegetation 391 

Total 660 

Urban context Artificial area 130 

Herbaceous vegetation 195 

Wooded vegetation 210 

Total 535 

Urban & rural context Artificial area 255 

Herbaceous vegetation 339 

Wooded vegetation 601 

Total 1195 

 

 

 

 

 

 

 

 

 

 

segments were chose ( Table 3 ; Figs. 3 , 5 ). To estimate the accuracy of each classification, we ran-

domly designed validating polygons with similar area corresponding to approximately 60 pixels

( Figs. 4 , 6 ; [18] ). As this method was optimized for urban context but was conducted on the

whole area of interest in this paper, we evaluated the accuracy of the two classifications in ur-

ban context and rural context separately and together. 

3.3. Segmentation results for the two different approaches 

The segmentation is an important process to create semantic objects. The two segmentations

were conducted from the same mono-temporal images but at two different spatial resolutions

(i.e., 0.5 m and 5 m). Results showed that the resolution and the chosen parameters influenced

the created segments. Differences rely on the complexity and heterogeneity of the environment.

In rural areas where heterogeneity and complexity are low, segmentation at HR was more rele-

vant to delimitate crops ( Fig. 7 ). Conversely in urban areas which are very complex and hetero-
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Fig. 7. Results of segmentation and classification at both scales. 
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eneous landscapes, VHR segmentation well performed to identify artificial from tree and grass

bjects ( Fig. 7 ). The segmentation at HR produced 359,750 segments for the whole area of in-

erest and the segmentations at VHR produced 710,688 segments for the Northern images and

514,964 for the Southern images. 

.4. Analysis of accuracy assessments 

The multi-temporal classification showed good classification results with an overall accuracy

nd a kappa index of 86,31% and 0.832 respectively. Regarding the accuracy at the class-level,

mpervious surface, cropland and shadow were well identified with high F-Score (i.e., around

0%) ( Table 4 ). Grassland showed relatively high F-Score but had confusions with impervious

urface (in urban context) and deciduous forest (mainly due to meadows close to forest and

or which Landsat pixel overlapped) ( Table 4 ). Deciduous forest was well detected but had

ome true deciduous pixels classified in other categories (recall value of 77%) such as conif-

rous forest or grassland. Coniferous forest was overestimated by having a low precision value

nd showing a confusion with deciduous forest and water and well classified true coniferous

ixels (i.e., recall value of 100%). The water category was underestimated with a good precision

alue but a low recall value identifying a confusion mainly with the impervious surface category

 Table 4 ). 

It was more contrasted for the VHR classifications. The accuracy of the northern classification

as quite low, considering only three land cover categories, with an overall accuracy of 80.74%

nd a kappa index of 0.713 for the northern classification but quite better for the southern clas-

ification with an overall of 88.36% and a kappa index of 0.814. However, the use of independent
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Table 4 

Confusion matrix of the multitemporal classification: impervious surface (1), cropland (2), grassland (3), coniferous 

forest (4), deciduous forest (5), water (6), shadow (7). 

Ground truth Recall (%) 

1 2 3 4 5 6 7 

Classified 1 992 0 0 0 0 22 0 97.83 

2 13 1665 128 0 0 0 0 92.19 

3 67 142 981 0 66 0 0 78.10 

4 0 0 0 316 0 0 0 100 

5 13 0 67 180 921 0 0 77.98 

6 115 0 0 4 0 169 11 56.52 

7 0 0 0 51 4 0 526 90.53 

Precision (%) 82.66 92.14 83.41 57.35 92.93 88.48 97.95 

F-Score (%) 89.61 92.17 80.67 72.90 84.81 68.98 94.10 

Table 5 

Performances of both classifications evaluated in urban context, rural context and urban-rural context. 

Northern classification 

Context Categories Precision (%) Recall (%) F-Score (%) 

Urban 

Wooded vegetation 96.29 89.23 92.63 

Herbaceous vegetation 86.05 91.33 88.61 

Impervious surface 95.34 98.62 96.95 

Rural 

Wooded vegetation 96.46 84.58 90.13 

Herbaceous vegetation 52.13 89.93 66.01 

Impervious surface 77.93 30.94 44.3 

Global 

Wooded vegetation 96.37 87.05 91.47 

Herbaceous vegetation 62.75 90.53 74.12 

Impervious surface 90.77 66.08 76.48 

Southern classification 

Context Categories Precision (%) Recall (%) F-Score (%) 

Urban 

Wooded vegetation 96.83 90.2 93.4 

Herbaceous vegetation 88.22 93.78 90.91 

Impervious surface 91.58 93.07 92.32 

Rural 

Wooded vegetation 99.47 91.97 95.57 

Herbaceous vegetation 61.43 93.94 74.28 

Impervious surface 86.64 54.3 66.76 

Global 

Wooded vegetation 98.54 91.35 94.81 

Herbaceous vegetation 74.4 93.85 83.01 

Impervious surface 89.74 74.05 81.14 

 

 

 

 

 

 

 

validating polygons in rural and urban areas allows to estimate the accuracy of both classifica-

tions in these different contexts. 

In urban context, the classification accuracy was high with an overall accuracy of 93.20% and

kappa index of 0.897 for the northern classification and an overall accuracy of 92.20% and a

kappa index of 0.881 for the southern classification. Conversely, in rural context results were

lower with an overall accuracy of 6 8.4 9% and a kappa index of 0.527 for the northern classifica-

tion and an overall accuracy of 85.25% and a kappa index of 0.746 for the southern classification.

Wooded vegetation was well detected in both context by showing high F-Score values ( Table 5 ,

Appendix C). 
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Table 6 

Databases used to build the land cover map of 1993. 

Land cover Database 

Building Existing database (updated BD Topo - IGN) 

Impervious surface Multi-temporal classification 

Road Existing database (updated BD Topo - IGN) 

Railway Existing database (updated BD Topo - IGN) 

Cropland Multi-temporal classification 

Grassland Multi-temporal classification 

Urban herbaceous vegetation Mono-temporal classifications (VHR) 

Forest Multi-temporal classification 

Rural wooded vegetation (e.g., hedgerows) Mono-temporal classifications (VHR) 

Urban wooded vegetation Mono-temporal classifications (VHR) 

Shrubland Mono-temporal classifications (VHR) 

Water Existing database (updated BD Topo - IGN) 

Fig. 8. Land cover map of Poitiers in 1993. 

3

 

h  

w  

a  
.5. Compiling data 

We compiled the created data and available institutional databases to build a map at very

igh spatial resolution ( Table 6 ; Fig. 8 ). Buildings, roads, railways and water courses and bodies

ere manually modified from existing data (BD Topo of IGN) by photointerpretation. Deciduous

nd coniferous forests, croplands, grasslands and artificial areas were extracted from the multi-
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temporal classification. Water from the HR classification was not used due to its coarse reso-

lution and because this category was mainly integrated into the classification to not overesti-

mate the impervious surfaces which could have close radiometric information. Urban vegetation

strata, detected within the artificial areas of the multi-temporal classification, were extracted

from the mono-temporal classifications. In addition, the wooded vegetation of mono-temporal

classifications was also integrated in rural areas du to its good detection. Shrublands were added

by creating polygons using photointerpretation from orthophotos. 

Limitations 

Despite the high accuracy of the land use map, shrub areas are difficult to classify and can

be classified as either tree or herbaceous vegetation. 
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ppendix A 

We used the method of geometric modelling based on the collinearity equation and imple-

ented in the Leica Photogrammetry Suite (integrated in ERDAS Imagine). The ERDAS Imagine

oftware is a simple and useful tool to visualize and manipulate geographic imagery data. The

RDAS Imagine software can perform a wide variety of tasks such as orthorectification (Long &

rihar, 2004) for which it is considered the most reliable. Moreover, during orthorectification,

he software incorporates the following parameters: 

(i) The reference system in which the image will be georeferenced, 

(ii) The Digital Terrain Model (DTM) used to derive the elevation of the Ground Points Control

(GCP), 

(iii) The camera and raw image parameters (see Fig. A1 ): 

- the focal length in millimeters, 

- the coordinates in millimeters in the system of the photo of the main point of symmetry,

hich symmetry point, which are ideally [0,0] but not necessarily, 

- the number of fiducial points used for the interior orientation, 

-the coordinates of the fiducials in millimeters in the coordinate system of the photo. 

ig. A1. Graphic representation of diagonal fiducial marks (F) on a 230 mm∗ 230 mm aerial photograph, with the

ollowing coordinates in mm in the photo coordinate system: FNE[115, 115], FSE[115, 115], FSW[115, 115], and FNW[115,

15]. (Rocchini et al., 2012). 

According to Rocchini et al., 2012, The ortho-rectification steps ( Fig. A2 ) include: 

• Interior orientation: The interior orientation of the photograph is needed to relate the image

coordinate system (in pixels) to the photo coordinate system (camera sensor). This is done

by graphically marking the fiducial marks into the scanned image. 

• Exterior orientation: Exterior orientation of the aerial photograph is based on the selection

of n GCPs, taking into account their x and y (coordinates of each GCP of the incorrect input

image in the image coordinate system), their x0 and y0 (corresponding GCP coordinates of

the rectified image in the target coordinate system defined by projection parameters), and z

coordinates. 
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• Rectification and resampling: The parameters computed during the interior and exterior

orientation steps are used to rectify the image, ultimately passing from the input x, y image

coordinates to the x0, y0 standard map coordinates in the target projection. 

Fig. A2. General flow of the orthorectification procedure (Rocchini et al., 2012). 

Finally, after having retrieved the parameters from the IGN and the DTM, we have orthorec-

tified the 50 tiles taken in 1993 in the surroundings of Poitiers. We have, compiled these tiles

into two mosaics (corresponding to the two periods in which the photos were taken: July in

the South and August in the North). We trimmed these two mosaics in order to obtain a global

study area of 15 km by 15 km. 
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A

A

ppendix B 

Features extracted and used for the multi-temporal classification. 

Raster Source of information Information type Mean SD 

Nb pixels Geometric 

Green Orthophoto Spectral X X 

Red Orthophoto Spectral X X 

NIR Orthophoto Spectral X X 

Blue Landsat (x 7 images) Spectral X 

Green Landsat (x 7 images) Spectral X 

Red Landsat (x 7 images) Spectral X 

NIR Landsat (x 7 images) Spectral X 

MIR Landsat (x 7 images) Spectral X 

MNDWI Landsat (x 7 images) Spectral X 

Features used for the mono-temporal classifications. 

Raster Information type Mean SD 

NIR Spectral X 

Red Spectral X 

Green Spectral X X 

NDVI Spectral X 

Energy Texture X X 

Entropy Texture X X 

Correlation Texture X X 

Contrast Texture X X 

ppendix C 

Multi-temporal classification 

Land cover categories are coded as following : 1 = impervious surface, 2 = cropland, 3 = grassland, 

4 = coniferous forest, 5 = deciduous forest, 6 = water, 7 = shadow 

Ground truth Recall (%) 

1 2 3 4 5 6 7 

Classified 1 992 0 0 0 0 22 0 97.83 

2 13 1665 128 0 0 0 0 92.19 

3 67 142 981 0 66 0 0 78.1 

4 0 0 0 316 0 0 0 100 

5 13 0 67 180 921 0 0 77.98 

6 115 0 0 4 0 169 11 56.52 

7 0 0 0 51 4 0 526 90.53 

Precision (%) 82.66 92.14 83.41 57.35 92.93 88.48 97.95 

F-Score (%) 89.61 92.17 80.67 72.9 84.81 68.98 94.1 

Overall accuracy = 86.31% 

Kappa index = 83.22% 
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Mono-temporal Classifications 

Land cover categories are coded as following : 1 = Wooded vegetation, 2 = Herbaceous vegetation, 

3 = impervious surfaces 

Northern images 

Urban context Ground truth 

1 2 3 

Classified 1 22,698 2205 532 

2 809 15,272 640 

3 65 270 24,008 

Overall accuracy = 93.20% 

Kappa index = 89.67% 

Rural context Ground truth 

1 2 3 

Classified 1 19,067 3073 403 

2 699 20,304 1573 

3 0 15,570 6978 

Overall accuracy = 6 8.4 9% 

Kappa index = 52.73% 

Urban & rural 

context Ground truth 

1 2 3 

Classified 1 61,961 5009 855 

2 766 35,865 1584 

3 148 7330 21,343 

Overall accuracy = 88.36% 

Kappa index = 81.42% 
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[5] W. Dorigo, A. Lucieer, T. Podobnikar, A. Čarni, Mapping invasive Fallopia japonica by combined spectral, spatial, and
temporal analysis of digital orthophotos, Int. J. Appl. Earth Obs. Geoinf. 19 (2012) 185–195, doi: 10.1016/j.jag.2012.

05.004 . 

[6] S. Dupuy, L. Defrise, V. Lebourgeois, R. Gaetano, P. Burnod, J.-P. Tonneau, Analyzing urban agriculture’s contribution
to a southern city’s resilience through land cover mapping : the case of Antananarivo, capital of Madagascar, Remote

Sens. 12 (12) (2020) 1962, doi: 10.3390/rs12121962 . 
[7] Q. Feng, J. Liu, J. Gong, UAV remote sensing for urban vegetation mapping using random forest and texture analysis,

Remote Sens. 7 (1) (2015) 1074–1094, doi: 10.3390/rs70101074 . 
[8] Y. Gao, J.F. Mas, N. Kerle, J.A. Navarrete Pacheco, Optimal region growing segmentation and its effect on classification

accuracy, Int. J. Remote Sens. 32 (13) (2011) 3747–3763, doi: 10.1080/01431161003777189 . 

[9] M. Grizonnet, J. Michel, V. Poughon, J. Inglada, M. Savinaud, R. Cresson, Orfeo ToolBox : open source processing of
remote sensing images, Open Geospat. Data Softw. Stand. 2 (1) (2017) 15, doi: 10.1186/s40965- 017- 0031- 6 . 

[10] R.M. Haralick, K. Shanmugam, I.H. Dinstein, Textural features for image classification, IEEE Trans. Syst. Man Cybern.
6 (1973) 610–621 . 

[11] Jian Yang, Yuhong He, Qihao Weng, An automated method to parameterize segmentation scale by enhancing in-
trasegment homogeneity and intersegment heterogeneity, IEEE Geosci. Remote Sens. Lett. 12 (6) (2015) 1282–1286,

doi: 10.1109/LGRS.2015.2393255 . 

[12] S. Mannel, M. Price, D. Hua, Impact of reference datasets and autocorrelation on classification accuracy, Int. J. Re-
mote Sens. 32 (19) (2011) 5321–5330, doi: 10.1080/01431161.2010.498841 . 

[13] F. Merciol, L. Faucqueur, B. Damodaran, P.-Y. Rémy, B. Desclée, F. Dazin, S. Lefèvre, A. Masse, C. Sannier, GEOBIA at
the terapixel scale : toward efficient mapping of small woody features from heterogeneous VHR scenes, ISPRS Int.

J. Geoinf. 8 (1) (2019) 46, doi: 10.3390/ijgi8010046 . 

https://doi.org/10.1016/j.isprsjprs.2013.09.014
http://refhub.elsevier.com/S2352-3409(23)00891-0/sbref0002
http://refhub.elsevier.com/S2352-3409(23)00891-0/sbref0003
https://doi.org/10.1080/15481603.2018.1426092
https://doi.org/10.1016/j.jag.2012.05.004
https://doi.org/10.3390/rs12121962
https://doi.org/10.3390/rs70101074
https://doi.org/10.1080/01431161003777189
https://doi.org/10.1186/s40965-017-0031-6
http://refhub.elsevier.com/S2352-3409(23)00891-0/sbref0010
https://doi.org/10.1109/LGRS.2015.2393255
https://doi.org/10.1080/01431161.2010.498841
https://doi.org/10.3390/ijgi8010046


18 E. Morin, N.T. Razafimbelo and J.-L. Yengué et al. / Data in Brief 52 (2024) 109829 

 

 

 

 

 

 

 

[  

 

[  

[  

 

[14] E. Morin, P.-A. Herrault, Y. Guinard, F. Grandjean, N. Bech, The promising combination of a remote sensing approach

and landscape connectivity modelling at a fine scale in urban planning, Ecol. Indic. 139 (2022) 108930, doi: 10.1016/
j.ecolind.2022.108930 . 

[15] R. Neyns, F. Canters, Mapping of urban vegetation with high-resolution remote sensing : a review, Remote Sens. 14

(4) (2022) 1031, doi: 10.3390/rs14041031 . 
[16] M.S. Nixon, A.S. Aguado, Feature Extraction and Image Processing, 1st ed, Newnes, 2002 . 

[17] G Quantum GIS Development Team, Development Team 2015. QGIS Geographic Information System. Open Source
Geospatial Foundation Project, 2019 . 

[18] V.F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, J.P Rigol-Sanchez, An assessment of the effectiveness
of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens. 67 (2012) 93–104,

doi: 10.1016/j.isprsjprs.2011.11.002 . 

[19] J.W. Rouse Jr, R.H. Haas, D.W. Deering, J.A. Schell, J.C Harlan, Monitoring the Vernal Advancement and Retrograda-
tion (Green Wave Effect) of Natural Vegetation.[Great Plains Corridor], 1974 . 

20] A.R. Shahtahmassebi, C. Li, Y. Fan, Y. Wu, Y. lin, M. Gan, K. Wang, A. Malik, G.A. Blackburn, Remote sensing of urban
green spaces : a review, Urban Forest. Urban Green. 57 (2021) 126946, doi: 10.1016/j.ufug.2020.126946 . 

[21] A. Smith, Image segmentation scale parameter optimization and land cover classification using the Random Forest
algorithm, J. Spat. Sci. 55 (1) (2010) 69–79, doi: 10.1080/144 98596.2010.4 87851 . 

22] H. Xu, Modification of normalised difference water index (NDWI) to enhance open water features in remotely
sensed imagery, Int. J. Remote Sens. 27 (14) (2006) 3025–3033, doi: 10.1080/01431160600589179 . 

23] F. Yuan, M.E. Bauer, N.J. Heinert, G.R. Holden, Multi-level land cover mapping of the twin cities (Minnesota)

metropolitan area with multi-seasonal landsat TM/ETM + data, Geocart. Int. 20 (2) (2005) 5–13, doi: 10.1080/
10106040508542340 . 

https://doi.org/10.1016/j.ecolind.2022.108930
https://doi.org/10.3390/rs14041031
http://refhub.elsevier.com/S2352-3409(23)00891-0/sbref0016
http://refhub.elsevier.com/S2352-3409(23)00891-0/sbref0017
https://doi.org/10.1016/j.isprsjprs.2011.11.002
http://refhub.elsevier.com/S2352-3409(23)00891-0/sbref0019
https://doi.org/10.1016/j.ufug.2020.126946
https://doi.org/10.1080/14498596.2010.487851
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1080/10106040508542340

	Mapping past land cover on Poitiers in 1993 at very high resolution using GEOBIA approach and open data
	1 Value of the Data
	2 Data Description
	3 Experimental Design, Material and Methods
	3.1 Steps of multi-temporal classification
	3.1.1 Segmentation
	3.1.2 Feature extraction
	3.1.3 Random forest classification
	3.1.4 Training and validating polygons

	3.2 Steps of mono-temporal classifications
	3.2.1 Segmentation
	3.2.2 Feature extraction
	3.2.3 Random forest classification
	3.2.4 Training and validating polygons

	3.3 Segmentation results for the two different approaches
	3.4 Analysis of accuracy assessments
	3.5 Compiling data

	Limitations
	Ethics Statement
	Data Availability
	CRediT Author Statement
	Acknowledgments
	Declaration of Competing Interest
	Appendix A
	Bibliography

	Appendix B
	Appendix C

	References

