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Abstract. The paper is devoted to model based testing against prob-
abilistic FSMs. Differently from our prior work in 2021, we consider
checking sequences and possibilities of test suite minimization through
reducing the length of the resulting checking sequence. Given a level of
certainty P , we define a P -probably checking sequence under a white box
testing assumption and discuss how a suffix of an input sequence can be
omitted, such that the resulting sub-sequence is P -probably checking.
The specification and possible implementations are non-initialized, i.e.,
the assumption of ‘no reset’ is supported.

Keywords: Model Based Testing · Non-deterministic Finite State Ma-
chines · Checking sequence · Probabilistic Approach.

1 Introduction

Model based test generation strategies, and in particular, Finite State Machine
(FSM) test generation strategies are known to have guaranteed fault coverage
under certain assumptions. When an implementation under test (IUT) is non-
initialized, i.e., each implementation state can be initial, checking sequences are
often considered. A checking sequence represents therefore a test suite and often
consists of a combination of synchronizing / transfer sequences with the proper
distinguishing sequences for a specification and related fault domain.

In this work, we focus on non-deterministic FSMs as related specifications;
the specification and implementations are non-initialized, possibly non-deterministic
machines, i.e., the ‘no strict reset’ assumption is supported. A fault domain con-
sists of the FSM implementations that are explicitly enumerated, i.e., similar
to [3, 7], we consider a test derivation strategy under the white box testing as-
sumption. In our previous publication [4], we studied the possibility of test suite
minimization through the introduction of the probabilities to the specification
machine. Together with that, we introduced a new P -probably separability rela-
tion to be able to distinguish each faulty implementation from the specification
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with a given level of certainty, P . We now extend this work by taking away a num-
ber of assumptions. First of all, we allow all the machines to be non-initialized
and thus, we consider a test suite represented by a single (checking) sequence.
Secondly, as no reset can be applied during testing, we do not minimize the test
suite cardinality, instead we shorten the overall length of the checking sequence,
whenever possible. The latter is based on the introduction of P -probably sep-
arating sequences, a P -probably checking sequence and a proper use of related
transfer sequences.

The structure of the paper is as follows. Section 2 contains preliminaries. Non-
initialized probabilistic machines are introduced in Section 3, while the checking
sequence minimization strategy is presented in Section 4. Section 5 concludes
the paper.

2 Preliminaries

An FSM is a 4-tuple S = ⟨S, I,O, hS⟩ where S is a finite nonempty set of states, I
and O are finite input and output alphabets, and hS ⊆ S×I×O×S is a transition
relation. The FSM S is non-deterministic if for some pair (s, i) ∈ S × I, there
exist several pairs (o, s′) ∈ O× S such that (s, i, o, s′) ∈ hS ; otherwise, the FSM
is deterministic. The FSM S is observable if for every two transitions (s, i, o, s1),
(s, i, o, s2) ∈ hS it holds that s1 = s2; otherwise, the FSM is non-observable.
The FSM S is complete if for every pair (s, i) ∈ S × I, there exists a transition
(s, i, o, s′) ∈ hS ; otherwise, the FSM is partial (partially specified). We hereafter
consider complete observable FSMs, if not stated otherwise.

A non-deterministic FSM S = ⟨S, I,O, hS , pr⟩ is probabilistic, when for each
non-deterministic transition (s, i, o, s′) ∈ hS , the function pr defines the proba-
bility for the output o to be produced at state s under input i, pr : S×I×O −→
[0, 1]. For a non-deterministic FSM, the function pr is defined in such a way that
∀s ∈ S ∀i ∈ I

∑
o∈O pr(s, i, o) = 1, and it is extended over input/output se-

quences from (IO)∗. Given an input/output sequence α/β = (α′/β′).(i/o) and
a state s0, pr(s0, α, β) = pr(s0, α

′, β′) ∗ pr(s, i, o), where s is the α′/β′-successor
of the state s0 of the specification FSM S; if the trace α′/β′ is not defined at
state s0 then pr(s0, α

′, β′) = 0; pr(s, ε, ε) = 1.

In this paper, similar to our previous work [4], for test minimization, we
consider the following fault model ⟨S, ∼=, FD⟩, where S is complete possibly
non-deterministic observable FSM, ∼= is the non-separability relation, and all
the implementations from FD are explicitly enumerated, FD = {I1, I2, . . . , Ik}.
FSMs Ij and S are separable, (written Ij ̸∼= S), if there exists a separating
sequence α ∈ I∗ such that the sets of output reactions of Ij and S to α do not
intersect, i.e., out(Ij , α) ∩ out(S, α) = ∅. We are interested in exhaustive test
suites, such that each Ij ∈ FD that is separable with S can be detected by the
test suite. Moreover, we are interested in a test suite containing a single sequence
which is referred to as a checking sequence with respect to a corresponding fault
model. Therefore such checking sequence α should be able to detect all non-
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conforming implementations, i.e., all the implementations of the fault domain
which are separable with the specification.

The main difference (with our previous work) and the main contribution of
this work is that we take away the assumption of having a designated initial
state, be that in the specification or in an implementation. Previously a P -
probably separating sequence was defined as follows: α ∈ I∗ is a P -probably
separating sequence for Ij and S, if

∑
β∈out(Ij ,α)∩out(S,α) pr(s0, α, β) ≤ 1 − P .

In the latter, pr(s0, α, β) was the probability to observe β when α is applied at
the initial state of the specification machine S. We further adapt this notion to
non-initialized FSMs S and Ij and explain how a checking sequence α can be
shortened for a given level P .

3 Non-initialized probabilistic FSMs

In this section, we define the probability of an output sequence to appear as a
reaction to a given input sequence, when the machine can start at any initial
state. We avoid going through the determinization procedure for that matter, i.e.,
obtaining an initialized equivalent, not to encounter potential state explosion.

Given a non-initialized probabilistic specification FSM S = ⟨S, I,O, hS , pr⟩,
S = {s1, s2, . . . , sn}, and an input/output pair i/o, pr(S, i, o) = 1

n

∑
s∈S pr(s, i, o).

The latter assumes that the probability p for S to start in state si is the same as
in any other state sj ∈ S. In other words, pressing a ‘reset’ button does not bring
any certainty concerning the initial state of the machine. Assume now that for
a state sj , j ∈ {1, . . . , n} a probability pj is given, for the machine S to start in
this state (sj), in this case pr(S, i, o) =

∑n
j=1 pj ∗pr(sj , i, o) for an input/output

pair i/o. For a given input i, it holds that
∑

o∈O

∑n
j=1 pj ∗ pr(sj , i, o) = 1.

As an example of a non-initialized probabilistic FSM, consider the machine
in Figure 1 (similar to that one in [4]). Consider an input/output pair i1/o1, for
p1 = 0.8, and p2 = p3 = 0.1, it holds that pr(S, i1, o1) = 0.74.

As usual, we extend the behavior of the probabilistic machine over input/output
sequences from (IO)∗. Given an input/output sequence α/β = (α′/β′).(i/o), the
probability of the non-initialized S to produce β on α is pr(S, α, β) =

∑n
j=1 pj ∗

pr(sj , α, β). For example, for the FSM in Figure 1, pr(S, i1i1, o1o2) = 0.096.
We are interested in a checking sequence α that delivers a P-probably ex-

haustive test suite for a given specification S and a set of its potential imple-
mentations {I1, I2, . . . , Ik}. The P -probably separability is therefore adjusted
for non-initialized machines. Input sequence α ∈ I∗ is a P -probably separating
sequence for Ij and S, if

∑
β∈out(Ij ,α)∩out(S,α) pr(S, α, β) ≤ 1 − P . Note that

out(Ij , α) (out(S, α)) is the union of all output reactions β on the sequence α
that can be obtained at any initial state of Ij (S).

An interesting question arises about the probability distribution for initial
states of implementation FSMs. In this paper, we assume that all the states can
be initial with the same probability. If this assumption is not supported then
the formula for defining a P -probably separating sequence for the specification
and such implementation should be modified, accordingly.
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2
(p2 = 0.1)

3
(p3 = 0.1)

i2/o2 (p = 0.8)

i1/o1 (p = 0.8)

i1/o2 (p = 0.2)
i2/o3 (p = 0.2)

i1/o3 (p = 0.85)

i1/o2 (p = 0.15)
i2/o1

i1/o1

i2/o1

Fig. 1. An example probabilistic FSM S

Coming back to the same example of S, let us consider an implementation
I1 ∈ FD in Figure 2. According to the above definition the sequence α =
i2i2i1i1i1 is a 0.9-probably separating sequence for I1 and S (Figure 1).

1 2

i2/o2
i1/o1

i2/o1
i1/o2

Fig. 2. An implementation FSM I1 ∈ FD

A sequence α is P -probably checking for the fault model ⟨S,∼=, FD = {I1, I2, . . . , Ik}⟩,
if this sequence P -probably separates each implementation Ij , j ∈ {1, . . . , k},
from the specification S.

4 Minimizing a checking sequence with a level of
P -exhaustiveness

Assume that a sequence α is a checking sequence for the fault model FM =
⟨S,∼=, FD = {I1, I2, . . . , Ik}⟩. Given a level P of certainty, the question arises:
can we shorten α in such a way that the resulting sequence would be P -probably
checking for ⟨S,∼=, FD = {I1, I2, . . . , Ik}⟩ ? We conjecture the following: non-
initialized implementations can be hard to test as in the checking sequence a
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transfer to a known state of the implementation, is implicitly used or even ex-
plicitly included during its derivation (see some related works on the checking
sequence derivation, for example in [1,2,5,6]). We therefore propose the following:
before the application of the sequence α or its shorter preamble α′, one can apply
a synchronizing sequence SS with further verification that the sequence SS.α′

is P -probably checking for FM1. Note however, that the sequence SS should
be synchronizing for all the implementations I1, I2, . . . , Ik, and this sequence
can be derived for a single FSM which is the direct sum of Ij , j ∈ {1, . . . , k}.
The latter contains all the transitions of each implementation Ij and thus, its
synchronizing sequence is also one for each Ij , j ∈ {1, . . . , k}. Note that if im-
plementations are non-initialized but deterministic then such a sequence can
be efficiently computed [8] (in polynomial time, if the number of mutants k is
polynomial too w.r.t. n, for the corresponding automaton where the outputs are
omitted).

As an example of the proposed strategy, consider again the FSM S in Fig-
ure 1, and the FD = {I1, I2, I3}. I1 is shown in Figure 2, while I2 and I3 in Fig-
ure 3 and Figure 4, respectively. Note that the sequence α = i1i1i2i2i1i1i2i1i2i2
is a checking sequence for ⟨S,∼=, FD = {I1, I2, I3}⟩. The direct sum for the
three implementations possesses a synchronizing sequence SS = i2i2; indeed,
each of the implementations has the same SS, which can be checked by direct
inspection. We append this SS as a prefix to α and start cutting its suffix. For
P = 0.8, one can cut 8 inputs in the resulting sequence, i.e., SS.α′ = i2i2i1i1
is 0.8-probably checking sequence and it is six inputs shorter than the initial α.
This approach can be therefore applied iteratively, until the level P of exhaus-
tiveness is respected.

1 2

3

i2/o2

i1/o2

i1/o2 i2/o1

i1/o2

i2/o1

Fig. 3. An implementation FSM I2 ∈ FD

The following suggestions for deriving a shorter checking sequence can be
made based on the considered example. First of all, the use of proper final state
identification sequences such as homing and synchronizing sequences, can help

1 Such checking is needed to assure that SS.α′ is P -probably separating for each
implementation Ij , j ∈ {1, . . . , k} and S.
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1 2

3

i2/o2

i1/o2

i1/o3

i1/o2, i2/o1

i1/o1

i2/o2

Fig. 4. An implementation FSM I3 ∈ FD

to derive a shorter checking sequence with the given level of certainty. Secondly,
when deriving a checking sequence it seems to be worth considering a determin-
istic projection of the specification where transitions and the initial state have
the highest probability. In a deterministic projection only one transition is left at
each state for every input. Finally, if all the implementations are deterministic
it is worth introducing another conformance probabilistic relation such as for
example, the P -probably reduction when the behavior of an implementation is
P -probably included in that of the specification, for a given level of certainty P .
All these challenging issues should be studied in details in the future.

5 Conclusion

In this paper, we presented a probabilistic approach for minimizing the length
of a checking sequence, probably keeping a given level of its exhaustiveness. It
is a continuation of the paper [4], where only initialized machines (specifica-
tion and its implementations) were considered. An interesting direction would
be to combine both approaches, when some of the test sequences could be re-
grouped together, i.e., building a P -probably checking sequence for a subset of
implementations.

There are many possibilities for future work, we state some of these future
directions. We did not discuss any P -probably checking sequence derivation sce-
narios in detail, assuming that a starting sequence to be shortened is given. At
the same time, we did not consider any other testing assumptions nor other
conformance relations. Finally, experimental evaluations need to be performed
to see how often the approach brings good practical results.
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