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Abstract: The paper presents a study of synchronization issues for one of non-classical state models, i.e., a state identifi-
cation problem widely used in the area of Model based Testing (MBT) and run-time verification / monitoring.
We consider Finite Automata (FA) augmented with the context variables and their related updates when the
transitions are executed. For such Extended Automata (EA) we define the notions of merging and synchro-
nizing sequences that serve as reset words in MBT, and show that under certain conditions and when every
context variable is defined over a ring, it is possible for the extended automata of the studied class to ‘repeat’
the necessary and sufficient conditions established for the classical automata. Otherwise, in a general case, the
problem can be reduced to deriving reset words for classical FA that represent corresponding EA slices.

1 Introduction

Finite state models are widely used as formal specifi-
cations in the testing and verification area of discrete
and hybrid systems. When deriving test suites with
the guaranteed fault coverage, in MBT, one of typical
well known problems for finite automata or finite state
machines concerns their state identification [Lee and
Yannakakis, 1994, Lee and Yannakakis, 1996]. Final
state identification in some cases can be solved via
generation and application of homing and synchroniz-
ing sequences [Sandberg, 2004] to the machine under
experiment. Such sequences can serve as reset words
or checking sequence preambles, when it comes to ac-
tive testing of non-initialized implementations [Hen-
nie, 1964]. At the same time, both sequences can
minimize the monitoring efforts when testing or ver-
ifying a system behavior in a passive mode [Kushik
et al., 2016]. State identification problems are well
studied for classical finite automata and finite state
machines (FSMs), however when the corresponding
state model is augmented with additional parameters
/ variables, such as for example, timeouts, predicates,
input / output parameters, to the best of our knowl-
edge, the problem has not been largely investigated.

Synchronizing sequences bring a machine to a
unique final state and are usually considered for ma-
chines without outputs [Sandberg, 2004], i.e., for

*This work is partially supported by RSF project N 22-
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classical automata. For deterministic complete au-
tomata the length of such sequence is polynomial and
it exists whenever each state pair has a merging se-
quence.

Note also that when it comes to testing and ver-
ification of a discrete event system, be that software
or hardware component of a communicating system,
it is rather hard to obtain its formal specification as a
finite automaton or a finite state machine. Sometimes
it is more convenient to consider an extended model
augmented with parameters listed above. In this pa-
per, we state and solve a problem of the existence
check and derivation of a synchronizing sequence for
an extended automaton, which looks like a classical
FA augmented with context variables that update their
values when certain transitions are executed, as well
as special predicates guarding some transitions which
depend on context variables.

When the behavior of an Implementation Under
Test (IUT) is described by an extended machine it can
well happen that for simplifying the run-time verifi-
cation or monitoring, not only a reached state is im-
portant but rather a state together with the context.
As a motivating example, we consider a Simple Con-
nection Protocol (SCP) which is designed to ‘con-
nect’ two entities, negotiating the quality of service at
the connection establishment [Alcalde et al., 2004].
The SCP allows connecting an entity called the up-
per layer to an entity called the lower layer. The up-
per layer dialogues with the SCP for fixing the quality



of service (QoS) desirable for the future connection.
Later on, the upper layer comes to the lower layer re-
questing the establishment of a connection. The lower
layer accepts or refuses this connection request. If the
lower layer accepts the request, then it informs the
upper layer that the connection has been established
and the upper layer can start transmitting data which
is followed by a corresponding acknowledgment. The
reader can find an FSM describing the SCP behavior
in [Kushik et al., 2016], where a possibility of mini-
mizing the monitoring efforts through the observation
of the SCP homing sequences was discussed. In the
example below, we abstract from the negotiation step
and data transmission, i.e., when monitoring the be-
havior of the SCP implementation, our observations
will be taken at the inputs, i.e., requests, and the fol-
lowing implementation actions. The corresponding
extended automaton, describing the SCP connection
establishment, is shown in Figure 1.

s1 s2
req QoS TryCount = 0

conn
TryCount < 2
TryCount = TryCount + 1

req QoS

reset
TryCount == 2

Figure 1: Extended automaton for the connection establish-
ment in the SCP

In the original FSM in [Kushik et al., 2016],
the upper layer tried to establish the connection two
times, before receiving the abort signal from the
lower layer, i.e., in fact, the context variable TryCount
in the EA in Figure 1 is defined over the group
({0,1,2},+mod3). Assume, that during the protocol
monitoring, one of the properties to be checked is the
safety of the abort signal. Indeed, we would like to
make sure not only that abort follows the connection
request but that there were at least two unsuccessful
attempts before.

That is, we would like to observe the output abort,
when the protocol reaches not only state state = s2
but the configuration (state = s2,< TryCount = 2 >)
(and not (state = s2,< TryCount = 1 >), for exam-
ple). In other words, differently from the [Kushik
et al., 2016] result, we not only want to know the cur-
rent state of the protocol implementation when veri-
fying certain properties but even more precisely, we
would like to make sure that the configuration of in-
terest has been reached. The latter could allow mini-
mizing the number of properties to be checked, as not

all the properties are relevant at different configura-
tions, even for the same state.

In the literature, there have been proposed various
definitions of extended FAs and FSMs, see for exam-
ple [Petrenko et al., 2004, Holzmann, 2004]. In [El-
Fakih et al., 2016,Petrenko et al., 1999,Petrenko et al.,
2004], the distinguishability notions for an EA are
considered. However, for the machines of the studied
classes, for identifying a final (current) configuration
of the machine, to the best of our knowledge, there
exist few papers where a homing sequence (HS) is de-
rived for an FSM with timed guards [Tvardovskii and
Yevtushenko, 2020] and a synchronizing sequence
(SS) is derived for a Timed Automaton [Doyen et al.,
2014]. In the latter paper, the authors also consider
the SS problem for a Weighted Automaton (WA), that
is considered as an EA where the weight is a con-
text variable. However, the weight cannot be directly
assigned to some integer, and due to this fact, the au-
thors show that in their case, an SS never exists for
a non-initialized WA, as two configurations with the
same location and different initial weight values can-
not be synchronized. In a general case of EA, it is not
the case. The reachability problem of WA [Bouyer-
Decitre, 2016] is also relevant to our studies, but on
the one hand, it is different from the SS problem, and
on the other, weights themselves do not affect the be-
havior of the machine [Droste et al., 2009] which is
not the case for context variables of an EA considered
in the paper.

We hereafter investigate a specific class of EA
where the values of context variables belong to a ring
and thus, the update functions are defined accordingly
using ring multiplication and addition; predicates are
used to verify if a context variable value belongs to a
certain ring subset. The provided formal definition of
such EA allows establishing the conditions for exis-
tence check and derivation of an SS.

The main contribution of the paper is a method for
the existence check and derivation of a synchronizing
sequence for an EA with the context variables which
values belong to a ring, as well as with the appropriate
predicates. For a special class of configurations, when
the context variables’ values belong to an ideal of the
ring, to have an appropriate SS, it is necessary and
sufficient that the corresponding underlying automa-
ton (context-free slice) has an SS, along with having
proper transitions from a state reached by the SS. The
same result applies to an EA with mutually exclusive
predicates at each state, that verify that a context vari-
able value belongs to an ideal of a ring. Given a set of
configurations with the same state and context vari-
ables which values belong to an ideal, we also discuss
an issue of merging the configurations of the set into



a single configuration. If such a sequence exists then
it is used for deriving an SS for the given extended
automaton.

The structure of the paper is as follows. Section 2
contains preliminaries as well as the problem state-
ment. The existence check and derivation of a merg-
ing sequence for two sets of configurations for an
extended automaton is discussed in Section 3. Cor-
respondingly, a method for the existence check and
derivation of a transfer sequence and of an SS for an
extended automaton is presented in Section 4. Sec-
tion 5 is devoted to EA with mutually exclusive predi-
cates and the related SS derivation problem. Section 6
concludes the paper.

2 Background and problem
statement

In this paper, we consider one of the classical state
identification problems, namely we focus on the ex-
istence check and derivation of a synchronizing se-
quence for finite extended automata. As usual, a fi-
nite automaton, simply an automaton throughout this
paper, is a 3-tuple A = (S,M,δ) where S is a fi-
nite nonempty set of states, M is a finite nonempty
set of actions, δ ⊆ S × M × S is a set of transi-
tions. Note that, similar to [Ito and Shikishima-Tsuji,
2004, Volkov, 2008], we consider automata without
the non-observable action. Moreover, in this paper,
we focus on complete deterministic automata, i.e., for
each pair (s,m), s ∈ S, m ∈ M, there exists exactly
one transition (s,m,s′) ∈ δ. Given a sequence / trace
α ∈ M⋆ and a state s, α takes the automaton to the
α-successor of s. The α-successor of the subset S′

of states is the set of α-successors for all states of S′.
A sequence / trace α ∈ M⋆ is an SS for A if the α-
successor of the set of states S is a singleton. If the
automaton has an SS then the automaton is synchro-
nizing. If the automaton has the designated subset
S′ ⊂ S of initial states, i.e., is weakly initialized, then
this automaton is synchronizing if there exists a trace
α such that the α-successor of the set S′ is a singleton.
In this paper, we consider non-initialized automata if
the converse is not explicitly stated.

A sequence α ∈ M⋆ is a merging sequence for two
different states s and p of A if the α-successors of s
and p coincide, i.e., are the same. It is known [Epp-
stein, 1990, Natarajan, 1986] that a complete and de-
terministic automaton is synchronizing if and only if
every pair of different states has a merging sequence.
In the SCP example, given in Section 1, a merging se-
quence is a synchronizing sequence for two states s1
and s2, for example, it can be a single input req QoS.

However, if we would like to take into account the
values of the context variables when synchronizing
the automaton, we need to restrict the correspond-
ing definition and in fact, merge and synchronize not
the states, but rather the configurations. That is the
reason why in this paper, we consider a special class
of extended automata and define the notion of an SS
for this class of machines. For the sake of simplicity,
we first, abstract from the predicates (or guards) that
can potentially label the transitions, only keeping the
context variables that can be updated when a transi-
tion is executed. Therefore, in this paper, an extended
automaton is augmented with a finite set of context
variables and each transition is labeled with update
functions for these variables. To formally define the
possible update functions, we furthermore turn to the
relevant algebraic structures, and consider that every
context variable is defined over a ring.

An extended automaton A is a 4-tuple A =
(S,M,T,δ) where S is a finite nonempty set of states,
M is a finite nonempty set of actions, T = {t1, . . . , tk}
is a finite set of context variables which are defined
over a finite ring R = (R,+,∗), and δ is a set of tran-
sitions between states from S such that each transition
in δ is a tuple (s,a,up,s′), where s,s′ ∈ S are the initial
and final states of a transition, a ∈ M is an (input) ac-
tion, up =< f1, . . . , fk > is a context update function
such that ∀ j = 1, . . . ,k, the function f j(t j) : R −→ R
is a linear combination h ∗ t j + b where h,b ∈ R. By
default, for identity function f j the context variable t j
does not change its value after the transition is exe-
cuted and we will simply omit these functions when
defining the transitions1. An EA is complete and de-
terministic when at every state, there exists exactly
one transition under each input.

As an example of an abstract EA, consider an au-
tomaton A in Figure 2. This automaton has three
states and two context variables t1 and t2 defined over
the ring R = Z10 = ({0, . . . ,9},+mod10,∗mod10);
h1 = 3, h2 = 1 while b1 = 4, b2 = 0. All the tran-
sitions in the automaton contain the update of context
variables, except one, namely (1,a,2) which is only
labeled by a letter a, i.e., all the context variables pre-
serve their values when the transition is executed.

As usual, a configuration is a pair (s,v) where s
is a state and v is the context, i.e., v is a vector of
values of context variables. We also consider a fi-
nite set of configurations Cs = (s,V ) where V is a fi-
nite non-empty set of contexts. Moreover, given two
configurations (s,v1) and (s,v2) and a trace σ, the σ-
successors of (s,v1) and (s,v2) are (p,u1) and (p,u2)

1Here we notice that in a WA in [Doyen et al., 2014], the
weight values are also defined over an infinite Abel group
R = (R,+).



1 2

3

b
t1 = 3∗ t1
t2 = t2 +4

a

b
t1 = t1 +4
t2 = t2 +4

a
t1 = t1 +4
t2 = 3∗ t2 +4

a
t1 = 3∗ t1
t2 = 3∗ t2b

t1 = t1 +4
t2 = 3∗ t2

Figure 2: An extended automaton A

for some state p.
Given an automaton A = (S,M,T,δ) with the set

T = {t1, t2, . . . , tk} of context variables with the values
in R, we further consider the context-free slice [El-
Fakih et al., 2008] Aaut that is the underlying classical
automaton without the context variables, while Asim

denotes the classical automaton that is obtained by the
simulation of A. By definition, both, Aaut and Asim,
are complete and deterministic automata if an initial
EA is complete and deterministic.

Given the set A = A1 × A2 × ·· · × Ak, A j ⊆ R,
two sets of configurations Cs = (s,A) and Cp = (p,A)
and a set B = B1 × B2 × ·· · × Bk, B j ⊆ R, of con-
texts, we would like to check if there exist a se-
quence σ of actions and a state q such that from each
configuration (s,v) ∈Cs and from each configuration
(p,v)∈Cp the sequence σ takes the extended automa-
ton A to some configuration of the set Cq = (q,B).
If the trace σ exists then we further refer to it as a
(q,B)-merging sequence for the sets Cs and Cp. A se-
quence which (q,B)-merges n sets of configurations
C1 = (s1,A), . . . ,Cn = (sn,A), is a (q,B)-merging se-
quence for the set of these n subsets of configurations.

A sequence which (q,Rk)-merges n sets of con-
figurations C1 = (s1,Rk), . . . ,Cn = (sn,Rk) is a q-
synchronizing sequence for the automaton A. A se-
quence which merges n sets of configurations C1 =
(s1,Rk), . . . ,Cn = (sn,Rk) into a singleton (s,v) is a
synchronizing sequence for the automaton A.

Given a set of configurations Cs = (s,A), if there
exist a singleton (q,v) and a sequence that takes the
automaton from each configuration of the set to (q,v),
then this sequence is a transfer sequence from Cs to
(q,v) or a synchronizing sequence for Cs.

In this paper, we tackle the following problems:

1. Existence check of a (q,B)-merging sequence for

two sets of configurations of a given automaton;

2. Derivation of a (q,B)-merging sequence for two
sets of configurations, whenever exists;

3. Existence check and derivation of a (q,B)-
merging sequence for an extended automaton;

4. Existence check and derivation of a transfer se-
quence for a subset Cq = (q,B) of an extended au-
tomaton;

5. Derivation of a synchronizing sequence for an ex-
tended automaton.

3 Existence check and derivation of
a merging sequence for two sets of
configurations in an extended
automaton

Note that a (q,B)-merging sequence for a pair of states
{s, p} only exists if in the context-free slice Aaut of
the extended automaton A there exists a sequence
merging states s and p into state q.

Proposition 1. 1. If for states s and p there is no
merging sequence in the slice Aaut then there is no
(q,B)-merging sequence for any two sets of configu-
rations Cs = (s,A) and Cp = (p,A), A ⊆ Rk.
2. A (q,Rk)-merging sequence exists for the sets
Cs = (s,A) and Cp = (p,A) if and only if in the slice
Aaut , there exists a sequence merging states s and p
into state q.

The first statement of the proposition establishes
the necessary conditions for the existence of a (q,B)-
merging sequence for two sets of configurations for
an arbitrary B ⊆ Rk. However, according to the sec-
ond statement of the proposition, if B = Rk then the
conditions become necessary and sufficient.

If B ⊂ Rk, then the sufficient conditions for the ex-
istence of a (q,B)-merging sequence can be obtained
similar to ‘classical’ synchronizing / homing tree ap-
proaches [Sandberg, 2004]. For that matter we adapt
the notion of a successor tree for such an extended au-
tomaton and later on propose the corresponding trun-
cating rules that allow deriving a (q,B)-merging se-
quence or to conclude that such a sequence does not
exist.

Given the set A = A1 ×A2 ×·· ·×Ak, A j ⊆ R, the
set B = B1 ×B2 × ·· ·×Bk, B j ⊆ R, two sets of con-
figurations Cs = (s,A) and Cp = (p,A), the root of the
tree is labeled by the pair {Cs,Cp}. Edges of the tree
are labeled by possible (input) actions. Given a cur-
rent node labeled by a pair {Cx = (x,A′

1 ×A′
2 ×·· ·×



A′
k),Cy = (y,A′′

1 ×A′′
2 × ·· ·×A′′

k )}, this node is adja-
cent to a node labeled by {Cq = (q,L′

1 × L′
2 × ·· · ×

L′
k),Cz = (z,L′′

1 × L′′
2 × ·· · × L′′

k )} through an arc la-
beled by m, if A contains the following transitions:
(x,m,up,q), (y,m,up,z) and L′

j is obtained from A′
j

through the application of related update function f j
for the variable t j for the transition (x,m,up,q), while
L′′

j is obtained from A′′
j through the application of

related update function f j for t j for the transition
(y,m,up,z), j ∈ {1,2, . . . ,k}.

Truncating rules are defined as follows.
Rule 1: A node labeled by a pair {Cq = (q,A′ =

A′
1×A′

2×·· ·×A′
k),Cz = (z,A′′ =A′′

1 ×A′′
2 ×·· ·×A′′

k )}
is terminal if at the same level or upper in the tree
there exists a node labeled by a pair {Cx = (q,L′ =
L′

1×L′
2×·· ·×L′

k),Cy = (z,L′′ = L′′
1 ×L′′

2 ×·· ·×L′′
k )}

such that L′
j ⊆ A′

j and L′′
j ⊆ A′′

j , j ∈ {1,2, . . . ,k}.
Rule 2: A node labeled by a pair {Cq =

(q,A′),Cz = (z,A′′)} is terminal if q = z, and A′
j ⊆ B j,

A′′
j ⊆ B j, j ∈ {1,2, . . . ,k}.

Proposition 2. A sequence α is a (q,B)-merging se-
quence for sets Cs = (s,A) and Cp = (p,A) of con-
figurations of the extended complete deterministic au-
tomaton A if and only if it labels a path to a node
truncated using Rule 2. If all the nodes in the tree
are truncated using Rule 1 then there no SS for the
automaton A.

Note that by definition, α is a (q,B)-merging se-
quence for the sets (Cs,A) and (Cp,A) if and only if
the automaton A is taken by α from any configuration
of the set (Cs,A) to a configuration of the set (q,B)
and the same holds for any configuration of (Cp,A).
In the successor tree, it is exactly the case when α

labels a path to a node that is terminal due to Rule 2.
Note also that rules 1 and 2 provide an estimation

of the length of a shortest (q,B)-merging sequence
for the sets Cs = (s,A) and Cp = (p,A). Indeed,
it is limited by the number of pairs {Cq = (q,A′ =
A′

1×A′
2×·· ·×A′

k),Cz = (z,A′′ =A′′
1 ×A′′

2 ×·· ·×A′′
k )}

and thus can be estimated as O(n2|R|2k) but in reality
is much shorter when it exists. We would like to high-
light the fact that the (q,B)-merging sequence deriva-
tion strategy can be also applied in the case of infi-
nite ring R, however another truncating rule should
be then added; the latter should define the maximal
desirable length of a merging sequence in question.

Proposition 3. A sequence α is a (q,B)-merging se-
quence for the complete deterministic extended au-
tomaton A if and only if α is a (q,B)-merging se-
quence for each pair of different sets of configurations
Cs = (s,Rk) and Cp = (p,Rk). If there is no (q,Rk)-
merging sequence for the extended automaton A then
there is no SS for the automaton A.

Consider a slightly modified automaton in Fig-
ure 2 when the update functions at the transition from
state 1 to state 2 under input a are not identities but
t1 = 2 and t2 = 2. By direct inspection one can assure
that there is an SS bba that takes the automaton from
any configuration to the configuration (2,< 2,2 >).

4 Existence check and derivation of
a transfer and a synchronizing
sequence for extended automata

Note that, differently from classical automata, for the
existence check of an SS it is not sufficient to have
the merging sequences for all pairs of states of the
underlying context-free automaton; nor it is sufficient
to have the merging sequences for all pairs of sets of
configurations. The reason is that the configurations
of the obtained sets should be brought into the set of
configurations for which there exists a sequence that
transfers this set to a single configuration.

4.1 (q,B)-merging sequence derivation

Under certain conditions over the automaton A, ex-
isting necessary and sufficient conditions for classical
automata can be somehow ‘repeated’. Below, as be-
fore, we consider that the EA A is complete and de-
terministic.

Proposition 4. Given an ideal I of the ring R, let for
every context variable t j and its update function h j ∗
t j +b j, it holds that b j is in I. Then {Cs = (s, Ik),Cp =

(p, Ik)} has a (q, Ik)-merging sequence if and only if
{s, p} has a merging sequence in the related context-
free slice Aaut .

Indeed, by definition of update functions, after up-
dating the value of any context variable, it still be-
longs to I, and thus the context-free slice Aaut defines
the existence of the Ik-merging sequence.

Corollary 1. Given an ideal I of the ring R, let for ev-
ery context variable t j and its update function h j ∗t j+
b j, it holds that b j is in I. Then the automaton A with
the initial set of configurations (s1, Ik), . . . ,(sn, Ik) has
a (s j, Ik)-merging sequence for some j ∈ {1, . . . ,n}, if
and only if each state pair {s, p} in its context-free
slice has a merging sequence.

As an example, consider again the automaton in
Figure 2 and an ideal I = {0,2,4,6,8}.

A sequence ba is the (2, I2)-merging sequence in
this case. Note that the two sets (1, I2) and (3, I2) are
(2, I2)-merged by a single input a, and ba is a (2, I2)-
merging sequence for the whole automaton A.



4.2 Deriving an SS for a set (q,B) of an
extended automaton

We now study whether given a pair (q, Ik), there exists
a configuration (p,v) and an input sequence β such
that β takes the automaton from each configuration of
the set (q, Ik) to (p,v). We refer to such sequence as
a transfer sequence from (q, Ik) to (p,v). Suppose
that a transfer sequence β = x1 . . .xn exists and for a
context variable t j of the configuration we have the
following updates: h1 ∗ t j + b1, . . . ,hn ∗ t j + bn when
applying this input sequence. Consider now two con-
figurations of the set with the initial value of context
variable t j equal to z1 and z2. In order to get the same
value of this variable after applying the sequence β it
has to be held that h1∗· · ·∗hn∗z1 = h1∗· · ·∗hn∗z2. To
prove this, consider the formulas hn∗(hn−1∗(. . .z1)+
bn−1)+bn and hn ∗ (hn−1 · (. . .z2)+bn−1)+bn. If the
results of the corresponding functions are equal then
bn can be deleted as well as all the products of the
type h∗b as they belong to the ideal I. The results of
two functions are equal if and only if hn ∗hn−1 ∗ · · · ∗
h1 ∗ z1 = hn ∗hn−1 · · · ∗h1 ∗ z2.

Therefore, there exists z′ ∈ I such that for any item
z ∈ I, the product hn ∗hn−1 ∗· · ·∗h1 ∗z is z′. Thus, this
z′ can be only 0.

Correspondingly, given a ring R without zero di-
visors, a transfer sequence exists if and only if there
is a path to some state such that for each context vari-
able t j there is a transition of the path with the update
function t j = b j. If the ring has zero divisors then the
conditions become only sufficient, since in this case,
the above product has to be a proper zero divisor. For
instance, in the above example (Figure 2) it can hap-
pen when the product equals 5.

Proposition 5. 1. Given a ring R without zero divi-
sors and a set (s, Ik) of configurations, there exists a
transfer sequence for (s, Ik) if and only if there exist a
state p and a path from state s to p such that for each
context variable t j there is a transition of the path with
the update function t j = b j.
2. Given an arbitrary ring R and a set (s, Ik) of config-
urations, let there exist a state p and a path from state
s to p such that for each context variable t j there is a
transition of the path with the update function t j = b j.
Then the sequence labeling the path is a transfer se-
quence for the set (s, Ik).

Indeed, consider two configurations (s, t ′1 . . . t
′
k)

and (s, t ′′1 . . . t
′′
k ) of the set (s, Ik). For a transfer se-

quence β and j = 1, . . . ,k, we have the update function
k j ∗t j +b j. Therefore, hn ∗(hn−1 ∗(. . . t ′j)+bn−1)+bn

= hn ∗ (hn−1 ∗ (. . . t ′′j ) + bn−1) + bn. Then bn can be
deleted as well as all the products of the type h∗b as

they belong to the ideal I. Correspondingly, by in-
duction, the results of two functions are equal if and
only if hn ∗ hn−1 ∗ · · · ∗ h1 ∗ t ′j = hn ∗ hn−1 · · · ∗ h1 ∗ t ′′j .
Since the same holds for t ′j = 0, the latter means that
hn ∗ hn−1 ∗ · · · ∗ h1 = 0. At the same time, once in
the path there exists an update function t j = b j, in the
postfix of the path we get the same t j value indepen-
dently of the initial value of this variable.

Here we note that the conditions of part 2 of
Proposition 5 can be modified when the ring has zero
divisors. In this case, the product hn ∗hn−1 ∗ · · ·∗h1 =
h can have only non-zero items but at least one of
them is a zero divisor.

SS derivation The process of deriving an SS for a
complete deterministic extended automaton described
above, i.e., where the values of context variables be-
long to an ideal I of a finite ring R, can be performed
in two steps.

Step 1: To check whether the underlying automa-
ton (context-free slice) Aaut has an SS. If there is no
SS then the extended automaton A has no SS. Other-
wise, derive the set of all states {s1, . . . ,sl} such that
there exists an SS to these states.

Step 2: Let the automaton have an (q, Ik)-merging
sequence to the set (p, Ik) of configurations. If there
exist a state s j ∈ {s1, . . . ,sl}, a state p and a path from
state s j to p such that for each context variable t j
there is a transition of the path with the update func-
tion t j = b j, then there exists a transfer sequence for
(s j, Ik) and thus, there exists an SS for the extended
automaton with the initial set of (s1, Ik), . . . ,(sn, Ik) of
configurations. This SS is obtained by prolonging an
(q, Ik)-merging sequence to state s j by a transfer se-
quence from (s j, Ik).

Note that for the EA in Fig. 2 the conditions of
Proposition 5 do not hold and by direct inspection,
one can assure that the EA does not possess an SS.
However, if we change an update function at state 1
for input b for t2 as t2 = 4 and an update function at
state 2 for input b as t1 = 4 then the EA has an SS
baab.

It is also important to underline that if the ring has
no zero divisors and there are no such states s j and
p at Step 2, there is no guarantee that the extended
automaton has no SS. The reason is that at Step 1,
there can exist an (q,(I′)k)-merging sequence where
I′ is a proper subset of I for which a corresponding
transfer sequence can exist.

We also notice that every context variable t j can
be defined over a proper ring R j and correspondingly,
the context v will be defined not over Rk but over the
ring that is the Cartesian product of R j. In this case,



the statements of the paper should be slightly modi-
fied.

5 Synchronization issues for
automata with predicates

We now add simple predicates to an EA and show
that some results of the previous section still hold.
We assume that an extended automaton has predi-
cates where a predicate Pj is a function defined over
the context variable t j; Pj is a mapping Pj : R −→
{True,False} of the type t j ∈ B, B ⊆ R or its nega-
tion.

The transition is unconditional if the predicate Pj
is True for any value of t j; then by default, we do not
associate any predicate with such a transition. Due to
the definition of predicates, every two predicates are
mutually exclusive, i.e., the automaton Asim again is
complete and deterministic. However, if an EA A has
predicates then the context-free slice Aaut of the deter-
ministic EA can be non-deterministic. Nevertheless,
the definition of merging sequences and a synchroniz-
ing sequence stay the same for an automaton with the
above predicates.

Fig. 3 contains an example automaton A aug-
mented with predicates. Note that for this augmented
automaton, ba is not a (2, I2)-SS anymore. In fact, a
(q, I2)-SS cannot start with input b due to the non-
determinism of the slice Aaut . There is however a
longer (q, I2)-synchronizing sequence, for example
aba.

1 2

3

b
t1 = 3∗ t1
t2 = t2 +4

a

t1 /∈ I
a
t2 = 2∗ t2

b
t1 = t1 +4
t2 = t2 +4

t1 ∈ I
a
t1 = t1 +4
t2 = 3∗ t2 +4

a
t1 = 3∗ t1
t2 = 3∗ t2

t2 /∈ I
b
t2 = 4∗ t2 +2

t2 ∈ I
b
t1 = t1 +4
t2 = 3∗ t2

Figure 3: An extended automaton A augmented with predi-
cates

Proposition 6. Given a set of configurations Cs =
(s,W) and a sequence σ, if the σ-successor of s in the
context-free slice Aaut of the automaton A is a set Q
of states then the σ-successor of Cs in A is contained
in the union of some sets Cq over all q ∈ Q.

Corollary 2. If the context-free slice Aaut is synchro-
nizing then the automaton A is (q,Rk)-synchronizing.

The corollary establishes the sufficient condition
for the existence of a (q,Rk)-synchronizing sequence
for an extended automaton. Note that this condition is
not necessary even for a complete and deterministic
EA. However, there is a proper case of an extended
automaton with predicates when the conditions of the
corollary become necessary and sufficient.

Similar to the results of the previous section, let
I be an ideal of the ring R. Consider a complete ex-
tended automaton A with the following features. A
transition of the EA can have a predicate P(t j) which
is True if t j is in I or its negation. Moreover, there are
the update functions of the kind h ∗ x+ b where h,b
are in I.

Proposition 7. Given a set of configurations Cs =
(s,Rk) and an action m, the set where the automa-
ton A is taken from any configuration of the set Cs by
action m is a subset of a set (s, Ik).

Due to the above proposition, after applying any
input (action) at the initial configuration we will reach
a configuration where the context is in Ik. Therefore,
the problem should be solved for a submachine with
subsets of such configurations from which there exist
only unconditional transitions. That is, the results of
the previous section can be directly applied.

6 Conclusion

In this paper, we studied a problem of the existence
check and derivation of synchronizing sequences for
extended finite automata that are widely used in MBT
and monitoring. We investigated a particular class of
those when the context variables are defined over a
finite ring and in this case, the conditions for the ex-
istence check of an SS can be established. In fact,
when the updates are represented by linear functions
for which the coefficients belong to an ideal, an SS
can be derived based on merging sequences for pairs
of sets of configurations combined with a correspond-
ing transfer sequence. We established the conditions
for the existence of such a transfer sequence. The
same results hold for a particular class of the extended
automata with predicates, which we also described in
the paper.



As a future work, we plan to extend the stud-
ied EA classes, by adding input/output parameters,
and considering other update functions and predi-
cates. Synchronizing sequences with appropriate fea-
tures can also be studied, similar to safe synchroniz-
ing sequences in [Doyen et al., 2014] when an SS
does not traverse appropriate (unsafe) states.

Finally, all the fundamental results presented in
the paper need a thorough experimental evaluation,
concerning their performance when it comes synchro-
nization issues in MBT and monitoring. We plan to
perform such experimental study with various (dis-
tributed) networking systems in the future.
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