
HAL Id: hal-04322420
https://hal.science/hal-04322420

Submitted on 28 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-invasive performance prediction of high-speed
softwarized network services with limited knowledge

Qiong Liu, Tianzhu Zhang, Leonardo Linguaglossa

To cite this version:
Qiong Liu, Tianzhu Zhang, Leonardo Linguaglossa. Non-invasive performance prediction of high-
speed softwarized network services with limited knowledge. IEEE INFOCOM, May 2024, Vancouver,
Canada. �hal-04322420�

https://hal.science/hal-04322420
https://hal.archives-ouvertes.fr


Preprint of the artcile accepted at the IEEE INFOCOM 2024 conference

Non-invasive performance prediction of high-speed
softwarized network services with limited knowledge

Qiong Liu∗, Tianzhu Zhang†, Leonardo Linguaglossa∗
∗LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120, Palaiseau, France

†Nokia Bell Labs, 91300, Massy, France

Abstract—Modern telco networks have experienced a significant
paradigm shift in the past decade, thanks to the proliferation
of network softwarization. Despite the benefits of softwarized
networks, the constituent software data planes cannot always
guarantee predictable performance due to resource contentions
in the underlying shared infrastructure. Performance predictions
are thus paramount for network operators to fulfill Service-
Level Agreements (SLAs), especially in high-speed regimes (e.g.,
Gigabit or Terabit Ethernet). Existing solutions heavily rely on
in-band feature collection, which imposes non-trivial engineering
and data-path overhead. This paper proposes a non-invasive
performance prediction approach, which complements state-of-
the-art solutions by measuring and analyzing low-level features
ubiquitously available in the network infrastructure. Accessing
these features does not hamper the packet data path. Our
approach does not rely on prior knowledge of the input traffic,
VNFs’ internals, and system details. We show that (i) low-level
hardware features exposed by the NFV infrastructure can be
collected and interpreted for performance issues, (ii) predictive
models can be derived with classical ML algorithms, (iii) and can
be used to predict performance impairments in real NFV systems
accurately. Our code and datasets are publicly available 1.

Index Terms—Network function virtualization, performance
prediction, service function chaining.

I. INTRODUCTION

Modern networks are undergoing an unprecedented paradigm
shift with the rise of network softwarization techniques, e.g.,
SDN and NFV. By replacing high-end, monolithic, proprietary
hardware middleboxes with virtualized functions running on
Commodity Off-The-Shelf (COTS) servers, this new breed
of softwarized networks manages to enact agile, scalable,
and efficient service provisioning with hugely reduced capital
and operational expenditures. The advent of various packet
acceleration stacks, such as Intel Data Plane Development Kit
(DPDK) [1] and netmap [2], tremendously leveled up the traffic
processing capabilities of software-based solutions, making
them rival their hardware counterparts and enabling software
network services to process tens of Millions-of-Packets-Per-
Second (Mpps) on a single CPU core [3].

However, these benefits come at a cost: compared to
traditional hardware middleboxes, the software data plane is
more susceptible to unpredictable performance impairments
due to contentions in the shared underlying infrastructure [4].
Real-time performance monitoring and prediction constitute the
first fundamental step to establish service-level objectives and

1https://github.com/evesiphus/onvm

fully unleash the potential of softwarized networks [5]. Since
the inception of the Internet, network monitoring has always
been a fundamental ingredient in facilitating network opera-
tion, management, and maintenance. Traditionally, engineers
inspected network status manually or using simple protocols
like SNMP. Modern networks’ growing scale and complexity
make these approaches impractical. There’s a trend towards
more automated and intelligent network management systems,
which may integrate SNMP data but also rely on additional
sources and methods for analysis and decision-making.

Recent solutions commonly employ in-band feature collec-
tion for performance analysis. Albeit the optimistic outcomes,
they are not always applicable due to the substantial instrumen-
tation and engineering overhead. Moreover, as network services
must serve incoming requests in sub-milliseconds, direct feature
measurement can dramatically stress the software data plane,
resulting in severe performance degradation and SLA violation,
e.g., low throughput and high latency.

We propose a novel performance prediction approach for
high-speed software data planes to complement existing solu-
tions. Instead of in-band data collection, we consider low-level
hardware features, e.g., CPU, memory, and PCI bus, which are
ubiquitous in modern COTS servers and can be acquired with
standard profiling tools. Albeit appearing less relevant than
packet- and flow-level statistics, these features embody real-
time network information and can deliver high-level insights
via advanced analytics [5]–[7]. With limited knowledge of the
network configuration, we collect such features using standard
tools and analyze them in real-time with data-driven techniques.
Our approach can accurately infer key performance indicators
(KPIs), e.g., throughput and latency, based on validations
on a real testbed. Compared to state-of-the-art solutions, our
approach is lightweight, compatible with existing NFV systems,
and adaptable to different network service configurations; it
offers a viable entry point for performance diagnosis and
bottleneck identification. We highlight that:

• Our approach does not impact the critical data path.
• Our approach can accurately predict throughput and out-

performs two state-of-the-art solutions, i.e., SLOMO [5]
and Dobrescu [6], reducing the average prediction error
by 37% and 70%, respectively.

• Our model can predict the service latency under assorted
traffic and network conditions.



This paper is organized as follows: we present the back-
ground and the related works about performance analysis for
high-speed software data plane in Sec. II. We describe the
design of our non-intrusive performance prediction approach
in Sec. III and present a sensitivity analysis with different
network conditions and service configurations in Sec. IV. We
demonstrate the applications of our approach in Sec. V and
discuss future directions in Sec. VI.

II. BACKGROUND

A. High-speed softwarized networks

Traditionally, software-based solutions, such as the Click
Modular Router [8], were favored for fast prototyping and
functional testing thanks to their unparalleled accessibility and
flexibility. However, specialized hardware middleboxes had far
superior packet processing capabilities and were preferred for
deployment in production-ready networks. Recent acceleration
techniques (e.g., kernel-bypassing, polling, batching, parallel
processing) have narrowed the performance gap between
software- and hardware-based solutions [?], making software
packet processing an integral part of the telco industry [1].

However, softwarized networks still bear several inherent lim-
itations. In particular, the co-located Virtual Network Functions
(VNFs) are susceptible to performance impairments due to the
erratic contentions in the shared underlying infrastructure [5].
According to a survey by Gong et al. [9], network operators
commonly encounter performance issues, and some spend ≥ 12
hours on performance diagnosis every month. Such problems
are intricate to predict with voluminous and heterogenous traffic
therein. The growing complexity of the software data plane and
network service structure further compounds the situation [10].
As modern COTS servers keep gaining new functionalities,
software data plane can have hundreds of configuration knobs,
including hardware options and software parameters: this vast
search space makes it extremely arduous to anticipate and
prevent performance contentions. Furthermore, network service
structures are transforming beyond the conventional linear
service function chains (SFCs), and many research efforts strive
for enhanced service provisioning via VNF parallelization that
organizes the VNFs as Directed Acyclic Graphs (DAGs) [11]–
[14]. As detailed in [12], 53.8% NF pairs in enterprise
networks could be parallelized. Such convoluted interactions
across infrastructure and service layers make it exceedingly
challenging to predict the occurrence of performance issues [9].
There is an urgent need for novel approaches to monitor
and identify performance issues with high accuracy and low
overhead.

B. Related works

Existing solutions generally employ in-band network mea-
surement: NFVPerf [15] employs packet mirroring for feature
collection but heavily relies on expensive memory copy
operations. PPTMon [16] employs event filtering and timestamp
embedding to monitor the processing latency of VNFs, but it
was not implemented for high-speed scenarios. These works
cannot handle the huge input load in high-speed networks,

DDIO

NIC
DCA

IOMMU

QPI

Fig. 1: The architecture of a modern COTS server.

e.g., the throughput can be up to 14.88 Mpps with the end-to-
end network service latency in sub-microseconds for 64-byte
synthetic packets on a 10 Gbps link.

Some solutions are designed for high-speed regimes but
are subject to enormous integration overhead, huge resource
footprint, and operational constraints. For instance, NFV-
VIPP [17] can collect the execution states of DPDK-augmented
VNFs but requires manually attaching a thread to each VNF,
which is nontrivial in large-scale networks. Additionally, each
monitoring thread needs to occupy one CPU core, which is
difficult considering the limited number of cores on COTS
servers. Microscope [9] and Printqueue [18] leverage the queu-
ing information to deduce performance bottlenecks. However,
the queuing occupancy might not always be easy to obtain in
real networks - as VNF can come from varied vendors, code
instrumentation and customization are mostly necessary, which
can be highly burdensome given the diversified implementation
and operation patterns.

To circumvent these obstacles, a line of works takes a novel
approach by exploring low-level features to derive insights into
service performance. In particular, Dobrescu et al. [6] propose
extrapolating the performance of the software data plane using
the cache features. Layered on this pioneering work, Shelbourne
et al. [7] infer throughput and packet losses for singleton
VNFs by exploring a larger set of low-level features, but they
only analyze the impact of input traffic without considering
other system-level performance interferences. Antonis et al. [5]
develop SLOMO, a multivariable performance prediction
framework. By investigating various system-level contentions
to select the relevant features, SLOMO employs the gradient-
boosting regression for throughput prediction. Although this
work delivers accurate predictions, it is mainly designed for
singleton VNFs. Our work digs deeper into end-to-end network
services comprising multiple VNFs with different service
topologies and employs Artificial Neural Networks (ANNs) to
handle the more complex non-linear data patterns.

III. SYSTEM DESIGN

A. Resource contention in a software data plane

A general architecture of a modern COTS server is depicted
in Fig. 1, which includes, for simplicity, only the relevant
components for packet processing. COTS servers are commonly
multi-processor systems with multiple Non-Uniform Memory
Access (NUMA) sockets, each with local memory and I/O
buses to alleviate memory access contention. To further enhance



data/instruction locality, COTS servers employ a multi-level
cache design. As shown in Fig. 1, each CPU possesses multiple
cores with built-in L1 caches (for both data and instruction)
and L2 caches. Cores on the same NUMA node share the same
L3 cache with a much larger size than L1/L2 caches. When
packets arrive at the Network Interface Controller (NIC), they
can be either directed to the main memory via Input–Output
Memory Management Unit (IOMMU) or to the L3 cache via
Direct Cache Access (DCA) if supported, e.g., the Intel Direct
Data I/O (DDIO) cache. Cores on different NUMA nodes can
only communicate via specialized interconnect, such as the
Intel QuickPath Interconnect (QPI).

Given the complex layout of various components and the
intricate interactions of the COTS servers, software packet
I/O operations can suffer from multi-faceted interferences. We
identify three primary sources of performance interference.
CPU share The allocated CPU share directly decides how
fast the incoming packets can be processed. Despite the high
frequency of modern CPUs, interference can still be caused by
temporary down-/over-clocking (e.g., Intel Turbo boost), which
introduces performance variance. Also, other workloads can
be allocated to a VNF’s cores due to misconfiguration, leading
to performance losses. CPU isolation mechanisms, e.g., Linux
isolcpus) can only alleviate the issue.
Multi-level caches While cache accesses are way faster
than main memory, prior works have widely deemed multi-
level caches the major performance bottleneckZ [6]. Many
NFV frameworks streamline packet processing across multiple
cores, which can cause severe contention for the Last-level
caches (LLCs). Cache partitioning techniques, such as Intel
Cache Allocation Technology (CAT), cannot always prevent
such contentions, e.g., large incoming packets can contend for
DDIO, which is referred to as the leaky DMA problem [19].
Memory bandwidth The contention for memory bandwidth
also contributes to performance degradations on the packet
path. For instance, VNFs with lower LLC shares can incur
high cache misses, which saturate the memory bandwidth for
all the co-located VNFs and network services [20].

Note that other sources of performance interference exist, but
they are less impactful than the preceding three. For instance,
packet I/O across multiple NUMA nodes can be extremely
slow due to the QPI contention [21], which can be avoided
with NUMA-aware design (e.g., in DPDK).

B. Design choices and reference architecture

Based on the discussion of the prior works in Sec. II-B, our
architecture should respect the following design considerations.
First, it must be as general as possible, to deliver accurate
and efficient predictions of performance impairments for
both individual VNFs and ground-up network services with
limited knowledge about the deployment. Second, given the
ever-increasing complexity of modern networks, it must be
lightweight and easy to deploy with minimal engineering
exertions. As part of the network management subsystem
colocated with VNF execution, it should be noninvasive and
introduce a negligible impact on the software data plane’s

N
IC
s

VNF VNF perfPMU ALGO

COTS Server
stream

Data path Telemetry Analysis

CPUs

N
IC
s

Fig. 2: The proposed architecture for performance prediction

normal operations and traffic. Finally, it must be fast, to enable
real-time predictions using the available data.

Fig. 2 gives the general illustration of our approach. The
prediction workflow consists of two fundamental steps, i.e., data
collection and statistical learning. To overcome the limitations
of in-band data collection, our approach measures the low-
level hardware features of the shared network infrastructure.
Although the internals of COTS servers are extremely com-
plex, modern systems commonly offer various toolsets for
performance monitoring, namely the Performance Monitoring
Units (PMUs), which leverage a set of fixed and programmable
counters to record the runtime execution events of a program
from various system units, including the instruction pipeline,
CPU caches, and configuration registers. This approach has
several advantages. First, regardless of the peculiarities of
network and system configurations, these features are always
available and can be readily collected via standard profiling
interfaces. High-level safeguard measures (e.g., encryption,
private enclaves) do not hinder the collection of these low-level
features. Second, compared to in-band measurement, collecting
low-level features only happens at the hardware registers and
thus causes much less intervention on the data path. Many
low-level features are already available in the system registers,
and our approach merely reuses them. This point is especially
crucial in high-speed networks since even slight noise can
cause noticeable performance losses [22]. Third, our approach
does not require an in-depth understanding of the target NFV
system components, such as the service, the management &
operation (MANO) plane, and the internals of (third-party)
VNFs. Operators are thus relieved from extra engineering
efforts, code instrumentation, and unit & integration tests.

Once collected, the features are streamlined to retrieve
the rich runtime information that they encode. Despite being
less intuitive than the packet- and flow-level statistics, they
are proven to be useful for insight distillation with proper
analytics techniques. Existing solutions generally employ rule-
based heuristics for performance analysis. Although these
methods are effective in specific settings, their assumptions
of the target networks do not always hold, especially given
the rapid diversification of modern NFV systems [?]. The
last decade has witnessed the prosperity of machine learning
techniques, especially Artificial Neural Networks (ANNs),



NUMA node 1 NUMA node 0

TX/RX

TX/RX
SUT

Commodity Server

10Gbps

Fig. 3: Testbed environment settings

thanks to their outstanding pattern-matching capabilities from
multi-dimensional data. Inspired by their historical success,
we also implement an ANN model using the most relevant
low-level features for performance prediction.

IV. SENSITIVITY ANALYSIS

This section presents our observational study of non-invasive
data collection, focusing on the correlation between the low-
level features and two common KPIs: throughput and latency.

A. Testbed environment

Hardware settings Our testbed is illustrated in Fig. 3. We
conduct experiments on a COTS server with two Intel (R)
Xeon CPUs E5-2660 v3 @ 2.60GHz with a three-level cache
of 64K/256K/25600K. Each processor consists of 10 physical
cores attached to a NUMA node. To minimize interference,
all the cores used for our tests are isolated from the kernel
scheduler with hyper-threading and turbo-boost disabled. Each
NUMA node also hosts an Intel 82599ES 10-Gigabit dual-port
NIC. We use fiber-optic cables to bridge each pair of ports, as
highlighted with the red arrows in Fig. 3.
Software settings All the involved software packet pro-
cessing components are based on the prevalent DPDK software
stack (version 18.11.11 LTS). The testbed operates as an open
loop: we deploy a TX process on NUMA node 1 to generate
packets with designated traffic patterns continuously; the traffic
goes through the target network services deployed on NUMA
node 0 (Sec. IV-A); and an RX process to measure the end-
to-end KPIs. We choose MoonGen [23], a high-speed traffic
processing engine, to fulfill the roles of TX and RX. Meanwhile,
we collect the low-level hardware features of individual VNFs
using perf [24], a lightweight standard Linux profiling tool that
interfaces with the system PMUs at a configurable frequency
(e.g., a few hundred milliseconds). The low-level features are
always available for collection using the VNFs’ execution
identifiers (e.g., process/thread/function IDs).
Network service deployment There are two ways to pro-
vision network services on NUMA node 0: (i) a general way
that uses software switches to steer traffic across the VNFs
to realize the service intent and (ii) a framework-specific way
with customized service chaining mechanisms. Our approach
works for both settings. For (i), we choose FastClick [25], a
high-speed software switch based on the Click modular router,
and reuse the off-the-shelf DPDK applications [1] as third-
party VNFs. For (ii), we opt for OpenNetVM (ONVM) [3],
a state-of-the-art NFV framework featuring flexible network

1 2 3 4 5
SFC length

0

5

10

15

Th
ro

ug
hp

ut
 (M

pp
s)

l2fwd
l2fwd-jobstats
fc

1 2 3 4 5101

102

103

l2fwc
l2fwd-jobstats
fc

SFC length

Se
rv

ice
 la

te
nc

y 
(u

s)

Fig. 4: The overhead of in-band data collection

service composition and high-speed packet steering. Any NFV
frameworks operating in pipeline mode are also suitable for our
study. The instantiated VNFs can operate either in containers or
as bare-metal processes, and they can be purposely connected
to form the intended network services. Each VNF runs in the
busy-polling mode that monopolizes a CPU core (with quasi
100% usage). Our method also applies to VNFs running in
interrupt mode, where multiple VNFs co-exist on the same
core. Note that both FastClick and ONVM are selected because
of their impressive performance and accessibility; our approach
is generally applicable to other prevalent software switches
(e.g., BESS [26] or Open vSwitch [27]) and NFV frameworks
(e.g., ClickOS [28] or E2 [29]).
Workload generation Performance issues generally have
two origins: overwhelming loads and insufficient resources [30].
We consider two basic workload generation schemes to expose
latent performance issues: load stimulus and resource stimulus.
The former composes the input traffic with special patterns
to contrive load contentions, while the latter perturbs the
resource shares of individual VNFs to fabricate resource
contentions. To better control the imposed contentions, we
employ competitor processes to expose and analyze the impact
of resource contentions. The competitors are based on stress-
ng [31], a standard stress-testing tool capable of generating
bogus operations at system components, including CPU clock,
multi-level caches, and memory, to emulate possible resource
contention scenarios. For example, CPU contention can be
created by pinning parasite competitors to a VNF’s worker core.
The cache contentions can be generated by thrashing existing
lines. The memory bandwidth contention can be induced
by injecting I/O requests. We can even generate multiple
contentions by calculatedly assigning the competitors.

B. Data collection overhead

To analyze the impact of data collection on the data path, we
first consider a sample SFC of identical VNFs, each performing
Layer-2 packet forwarding. The VNFs are containerized with
Docker and interconnected using FastClick. We chose three
VNFs from the DPDK example library, i.e., l2fwd, l2fwd-
jobstats, and flow classification (fc). l2fwd only performs packet
forwarding. l2fwd-jobstats and fc further collect packet- and
flow-level statistics, respectively. MoonGen is configured to
continuously inject 64B synthetic traffic to the SFC at line rate
and measure the throughput from the receiving end. It also
sends Precision Time Protocol (PTP) packets and synthetic
traffic to measure the end-to-end latency every second. The



Firewall

Bridge

Payload-scan

nDPI-stats

NF-router

Firewall

Bridge Bridge

Linear DAG-1 DAG-2

Flow-trackerPayload-scan

Payload-scan

nDPI-stats

nDPI-stats

NF-router

NF-router

Fig. 5: Three typical network service topologies

SFC length is varied from 1 to 5 2. As illustrated in Fig. 4, in-
band measurement causes enormous performance degradation.
In particular, fc causes the throughput to drop by up to 50%
while extending the latency by one order of magnitude.

To demonstrate the advantage of our approach, we repeat
the exact experiments for l2fwd with the addition of perf to
collect the low-level features every 100 ms. To test different
levels of interactions, we sequentially assign perf to the same
worker cores as the VNFs, to different idle cores on the same
NUMA node, and cores on the other NUMA node. In all cases,
the perceived throughput and latency remain the same. We then
inspect the framework-specific deployment and repeat the same
tests for an SFC instantiated with varied lengths on ONVM.
The observations for perf ’s negligible impact still hold.

Observation 1. Data collection via PMUs is non-intrusive
and imposes negligible overhead on the data path compared
to most existing solutions based on in-band data collection.

C. Sensitivity analysis: input traffic and service topology

0 2 4 6 8 100.6

0.7

0.8

0.9

1.0

1.1

1.2 1e10
Firewall
nDPI
NF-router
Payload
Bridge

Input rate

In
st

ru
ct

io
ns

(a) Instructions

0 2 4 6 8 101.2

1.4

1.6

1.8

2.0

2.2

2.4
Firewall
nDPI
NF-router
Payload
Bridge

Input rate

Br
an

ch
es

1e9

(b) Branches

0 2 4 6 8 100.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 1e7

Firewall
nDPI
NF-router
Payload
Bridge

Input rate

Ca
ch

e

(c) Cache references

0 2 4 6 8 100.5

1.0

1.5

2.0

2.5

3.0

3.5 1e8
Firewall
nDPI
NF-router
Payload
Bridge

Input rate

M
em

or
y 

st
or

e

(d) Memory stores

Fig. 6: Low-level features as a function of the input rate.

2Note that the performance deteriorates as the SFC gets longer, mainly due to
the accumulated memory copying and inter-core communication overhead [22].

Perf collects hundreds of hardware features: as unrelated fea-
tures can inject noise that harms an ML model’s effectiveness,
we must identify a refined subset of expressive features with
strong predictive power. Hardware features that already encode
information at the system level are treated in our approach as
intermediate variables between the input traffic and the end-
to-end KPIs. We now investigate their evolution with different
input traffic and service topologies and show our insights into
their impact on the output KPIs in Sec. IV-D.

We construct three typical network service topologies (or
SFCs): a linear service chain and two directed acyclic graphs
(DAGs), as shown in Fig. 5. The VNFs include Firewall, nDPI-
stat, NF-router, Payload-scan, Bridge, and Flow-tracker, all
implemented and open-sourced by ONVM developers. We then
inject random traffic with a rate between 0-10 Gbps and inspect
the features’ tendencies.

Fig. 6 highlights the tendencies of four relevant features
for the linear SFC, i.e., the number of instructions, branches,
cache references, and memory accesses per time unit, each
representing a critical factor of the CPU execution pipeline.
The instruction rates drop with higher input rates, as shown
in Fig. 6a, which aligns with the execution states of a CPU
pipeline and packet I/O mechanism. When a VNF performs
busy polling with only a few incoming packets, its execution
pipeline is mostly populated with simple instructions that
do not involve complex packet processing logic, and low-
level parallelism allows the CPU to execute more than one
instruction per clock cycle. With higher packet rates, the packet
processing logic is invoked more frequently, leading to a lower
instruction rate due to the increased code complexity. Similarly,
the branches also follow this reasoning. The caches and memory
constitute a major performance bottleneck, as identified by prior
works [5], [6]. This observation also holds on our servers: as
shown in 6c and Fig. 6d, the cache-reference rate and memory
access rate (mem-stores) positively correlate with the input rate.
Note that as the nDPI-stats requires frequent memory writes,
its mem-stores are exceptionally higher than other VNFs. We
replicate the same analysis with the two DAGs, and similar
trends can still be observed.

Observation 2. Some hardware features trend closely with the
input traffic regardless of the service topologies, making them
candidates for the intermediate variables between the input
traffic and output KPIs. They can also carry information about
the unique execution patterns of individual VNFs.

D. Sensitivity analysis: KPIs
To locate the relevant features, we opt for Pearson’s correla-

tion coefficient to assay the statistical dependencies between
the collected features and the KPIs, i.e., throughput and latency.
To represent typical Internet traffic, we configure MoonGen
to generate IMIX traffic that consists of a variety of packet
sizes with the ratio 64B: 570B: 1514B = 7: 4: 1. We collect
the low-level features and performance metrics for different
service topologies under both load and resource stimuli tests.

Table I and Table II list the correlated features with different
KPIs for the linear SFC. The results are coherent with our



Features
VNF Bridge Payload-scan NF-router nDPI Firewall Average

LLC-load 0.94 0.98 0.97 0.98 0.96 0.97
Cache-reference 0.95 0.97 0.97 0.98 0.97 0.94
LLC-stores 0.97 0.96 0.96 0.97 0.97 0.97
L1-Dcache-load-misses 0.95 0.97 0.97 0.98 0.97 0.97
Instructions 0.79 0.92 0.86 0.78 0.89 0.92
Branches 0.79 0.92 0.87 0.79 0.89 0.83
Mem-stores 0.39 0.50 0.42 0.90 0.53 0.55
Cache Misses 0.32 0.18 0.35 0.65 0.36 0.38
Cycles 0.14 0.08 0.14 0.14 0.06 0.12

(a) Throughput

Features Average

LLC-load 0.59
Cache-reference 0.58
LLC-stores 0.57
L1-Dcache-load-misses 0.55
Instructions 0.48
Branches 0.47
Mem-stores 0.11
Cache Misses 0.13
Cycles 0.02

(b) Latency

TABLE I: Correlated features with throughput and latency under load stimulus

Features
VNF Bridge Payload-scan NF-router nDPI Firewall Average

LLC-load 0.80 0.67 0.55 0.54 0.44 0.60
Cache-reference 0.81 0.73 0.58 0.46 0.45 0.61
LLC-stores 0.80 0.74 0.60 0.45 0.32 0.58
L1-dcache-load-misses 0.81 0.72 0.58 0.45 0.45 0.60
Cycles 0.35 0.30 0.29 0.25 0.22 0.28
Instructions 0.21 0.21 0.24 0.21 0.19 0.21
Branches 0.21 0.21 0.24 0.21 0.19 0.21
Mem-stores 0.12 0.08 0.04 0.73 0.03 0.20
Cache Misses 0.00 0.06 0.04 0.03 0.05 0.03

(a) Throughput

Features Average

LLC-load 0.31
Cache-reference 0.23
LLC-stores 0.18
Branches 0.17
L1-Dcache-load-misses 0.15
Cycles 0.14
Instructions 0.13
Mem-stores 0.12
Cache Misses 0.02

(b) Latency

TABLE II: Correlated features with throughput and latency under resource stimulus

tendency observations. There is no dominant feature that
consistently achieves the highest correlation across different
VNFs, which suggests the joint impacts of multiple features
on the SFC performance. Note that similar feature correlations
have also been observed with the DAG topologies; we omit
them for space’s sake.

Correlation with throughput Under load stimulus, the
features at the top of Table. Ia show homogeneously high
correlations with the throughput over different VNFs. In
particular, cache-related features, especially cache-reference
rate and L1-dcache-load-misses, strongly correlate with the
throughput. In contrast, as shown in Table. IIa, the correlation of
those same features under resource stimulus shows an ascending
pattern: the correlation is small at the beginning of the chain,
and increases towards the end. For most of the features, the
last VNF (i.e., bridge) presents the highest overall correlation
with the throughput. We observe that certain VNF-specific
behaviors contribute to individual features’ peculiarities. For
instance, under both stimuli tests, nDPI’s mem-stores feature
shows a very high correlation with throughput, because this
particular VNF requires frequent memory accesses.

Correlation with latency As shown in Table Ib and
Table IIb, the cache-related features show the highest correlation
with the latency. We also observe that latency has relatively
weaker correlations with the hardware features than throughput.
As the latency is measured as the round-trip time of the PTP
packets, it is very susceptible to high-level system events,
such as buffer overflow and bandwidth saturation, that are less
intuitive to capture with the low-level features. We will detail
our method to infer latency in Sec. V-C.

V. APPLICATIONS

This section presents two applications for our approach,
i.e., inferring the throughput and latency of network services.
We choose a lightweight ANN because of its outstanding
performance in non-linear pattern-matching, generalizability to
new data, continuous learning, and scalability to large datasets.

A. General workflow

We conceptualize a blueprint for performance prediction
based on network stimuli tests. Specifically, load stimulus mea-
sures the pressure of traffic competition, and resource stimulus
models how susceptible an SFC is to performance degradation
due to the competitors’ interference. The combination of them
can also expose more performance issues. Building on these
concepts, we realize a practical workflow consisting of two
logical parts: (1) offline profiling for building the ANN model
and (2) online inference for performance predictions.

We denote a network service as S(Vs, topos), where Vs

represents the constituent VNFs = {VNFs
1, · · · ,VNFs

k} and
topos their topological composition. A network stimulus is
denoted as stimuj . We first initialize offline profiling to collect
features and KPIs for the given (S, stimuj). Then, we exclude
the unrelated features for the target KPIs (throughput or
latency), according to Sec. IV-D. The collected data are
proportionally decomposed into training (60%), validation
(20%), and test (20%) datasets. We define J(θ) as the loss
function to represent the average loss over the training samples
x = {x1, x2, · · · , xn}. Let P(·) denote the probability under
the underlying distribution, EX(·) denotes the expectation over



the random variable X , and the Euclidean norm is denoted as
∥ · ∥. The penalty for a mismatch is calculated as follows:

J(θ) = Ex,y∼pdataL(x, y, θ) =
1

n

n∑
i=1

L(xi, yi,θ) (1)

where pdata denotes the real data distribution, L(xi, yi,θ) =
− logP(y|x;θ) the loss of sample xi, and n the sample size.
Since the features have a wide range of scales (i.e., [102−1010]),
we use L2 regularization to avoid overfitting and improve
generalization; the modified penalty is:

Ĵ(θ) =
1

n

n∑
i=1

L(xi, yi,θ) +
α

2
∥θ∥22 (2)

Where α ∈ [0,+∞) balances the norm penalty term and the
original objective. Note that α → 0 means no regularization,
and the regularization penalty becomes larger as α increases.
The corresponding gradient is:

∇θĴ(θ) = αθ +∇θĴ(θ) (3)

To solve (3), we use the Adaptive Moment Estimation (Adam)
technique [32] to adjust each parameter’s learning rate based
on its past gradients and squared gradients. The objective
is to minimize (2) when (3) goes to 0. The obtained model
ANN(S, stimuj) is then deployed for online inference.
Hyperparameters considerations We narrowed our search
space to develop an ANN that balances computational efficiency
with performance. Our study utilizes a subtype of feedforward
neural networks - the Multilayer Perceptron (MLP) - to tackle
regression tasks influenced by numerous features. We employed
the grid search methodology to identify the most effective ANN
architecture. Unlike more intricate optimization algorithms
such as random search or Bayesian optimization, grid search is
advantageous for its simplicity and transparency. Due to space
constraints, not all search results are reported in this paper.
For instance, we found that the number of nodes and hidden
layers has less impact on overall accuracy than the factors, e.g.,
optimizer, activation function, and batch size. We thus limited
the number of hidden layers in the ANN to be ≤ 4, and the
number of nodes per layer to be ≤ 64. The parameters of our
defined search space are as follows.

- Hidden layers - 1-4
- Nodes per layer - 16, 32, and 64
- Activation function - ReLU and tanh for load stimulus, Sigmoid

and ReLu for resource stimulus
- Optimizer - Adam and Stochastic Gradient Descent (SGD)
- Learning rates - adapted rate in 0.1, 0.01, and 0.001
- Number of epochs - 10-200 in interval 10
- Batch size - multiples of 8 to 128
- Regularization Drouput (probability of 0.1 to 0.5)

In the following sections, we only detail the generalizability
and interpretability analyses for throughput prediction, but the
observations equally apply to the other use cases.

B. Throughput prediction

Feature selection We build a refined feature set from the
original one via the correlation analysis of Sec. IV-D. Then, we

0 20 40 60 80 100 120 140 1600

2

4

6

8

10 Prediction
Real

Time sequence

Th
ro

ug
hp

ut

1e3

(a) Linear (regular rate)

0 50 100 150 2001
2
3
4
5
6
7
8

Prediction
Real

Time sequence

Th
ro

ug
hp

ut

1e3

(b) Linear (random rate)

0 10 20 30 40 50
Time sequence (seconds)

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (M

bp
s)

1e3

Input rate
Throughput
throughput prediction

(c) Resource stimulus

Fig. 7: Throughput prediction

train ANN models on both sets and calculate their prediction
errors. By removing the irrelevant features, the ANN’s accuracy
increases by 15%, while shrinking the training time by 40%,
which justifies the need for a preliminary feature selection.
Accuracy Under load stimulus, our model achieves im-
pressive overall accuracy: 98% for the regular rate and 92% for
the random rate, as illustrated by the examples in Fig. 7a and
7b. Under resource stimulus, throughput prediction becomes
more intricate due to diversiform contentions from the CPU,
caches, and memory buses. Still, our model’s accuracy remains
commendable at 83%, as illustrated by the example in Fig. 7c.
Comparison with state-of-the-art Prior works on NFV
throughput prediction consider the memory subsystems as
the major performance bottleneck. In particular, Dobrescu et
al. [6] employ linear models to estimate throughput based on
cache access rate. However, these methods prove inadequate
with newer hardware architectures. Also, they assume additive
effects for multi-traffic contentions, which curbs the prediction
power under more complex scenarios. SLOMO [5] achieves
the contention-aware throughput prediction in the singleton
VNF scenario via gradient boosting regression (GBR). SLOMO
considers the joint effects of caches (e.g., LLC) and memory
bandwidth. Nonetheless, it does not consider the complexities
under SFC settings, and GBR is less effective with non-linear

Fig. 8: Throughput prediction comparison



0 20 40 60 80 100 120 140 160 1800

2

4

6

8

10

12
Prediction
Real

Time sequence

Th
ro

ug
hp

ut
1e3

(a) DAG-1

0 50 100 150 2000

2

4

6

8

10 Prediction
Real

Time sequence

Th
ro

ug
hp

ut

1e3

(b) DAG-2

Fig. 9: Robustness across different topologies

patterns than ANN. We compare our throughput prediction
model against these two related works.

In Fig. 8, we investigate three scenarios with increasing
complexity. Scenario 1: Singleton VNF (i.e., ONVM bridge)
under random load and resource stimuli; Scenario 2: Linear
SFC, as defined in Figure 5, under random resource stimulus;
Scenario 3: Same SFC as Scenario 2 under random load and
resource stimuli. Although scenario 3 is hardly realistic, it
provides rich contention samples to ascertain a KPI predictor’s
effectiveness. Our feature set differs slightly from SLOMO
by excluding L2 cache and L3 occupancy features. This
discrepancy does not affect the overall accuracy as we have
already included abounding highly pertinent cache features.

In scenario 1, Our model can accurately predict throughput,
with a mean accuracy of 97%, which outperforms SLOMO’s
95% and Dobrescu’s 83%; Overall, our model increases the
prediction accuracy concerning Dobrescu and SLOMO by 18%
and 7% on average, respectively, and reduces the average
prediction error by 70% and 37%. Note that under the most
challenging scenario 3, our model’s accuracy is 65%, which we
believe can benefit from further data and model enhancements.
We leave this as future work.
Generalizability To evaluate the robustness of our model
in uncharted scenarios, we test the accuracy of the ANN
model (trained for the linear SFC) in the DAG topologies.
As exemplified in Fig. 9a and 9b, our model can effectively
generalize to different topologies, making it more suitable to
deal with the dynamics in real networks. Note that the accuracy
of DAG-1 is better than DAG-2 due to the involvement of an
unseen VNF (i.e., Flow-tracker) in DAG-2.
Explainability Although neural networks are generally
blackboxes for human cognition, their predictions can still be
interpreted with advanced techniques, such as eXplainable AI
(XAI). Our ANN model has a shallow architecture, making
it easily accessible to XAI algorithms. The interpretation
can then be combined with domain knowledge to extract
actionable insights. As an illustrative example, we attribute
the feature importance of our model under resource stimulus
using the SHAP algorithm [33]. We specifically perturb the
CPU shares of the VNFs of the linear SFC. Fig. 10 lists the
normalized SHAP values quantifying the features’ contributions
to the final predictions. We notice that, albeit the cache
features contribute the most, as expected, the influences of the
"*_cycles" features are surprisingly high. Network engineers

0.0 0.2 0.4 0.6 0.8 1.0
Normalized SHAP value

bridge_cache-references
payload_scan_cache-references

payload_scan_LLC-stores
ndpi_stats_cache-references
payload_scan_cache-misses

bridge_L1-dcache-load-misses
bridge_L1-dcache-loads

payload_scan_L1-dcache-load-misses
payload_scan_instructions
firewall_cache-references

nf_router_LLC-stores
ndpi_stats_cycles

nf_router_LLC-loads
firewall_LLC-loads

nf_router_cycles
firewall_LLC-stores

bridge_cycles
firewall_cycles

payload_scan_cycles

0.53
0.51
0.51
0.49
0.48
0.47
0.47
0.47
0.46
0.46
0.46
0.44
0.44
0.44
0.44
0.44
0.44
0.42
0.42

Fig. 10: XAI of resource stimulus

10 5 0 5 10
Principal Component 1

15
10

5
0
5

10
15
20

0

50

100

150

200

250

300

Se
rv

ice
 la

te
nc

y 
[u

s]

Pr
in

cip
al

 C
om

po
ne

nt
 2

(a) Load stimulus

10 5 0 5 10 15 20
Principal Component 1

10

5

0

5

10

15

0
200
400
600
800
1000
1200
1400

Se
rv

ice
 la

te
nc

y 
[u

s]

Pr
in

cip
al

 C
om

po
ne

nt
 2

(b) Resource stimulus

Fig. 11: PCA for end-to-end service latency

can immediately deduce the presence of parasite processes
or malfunctioning CPU frequency-scaling governors. Other
performance bottlenecks can be identified in a similar fashion.

C. Latency prediction

Latency prediction is intrinsically complicated due to more
drastic state transitions under congestion, and pairwise cor-
relation analysis is inadequate to uncover the complicated
relationships, as discussed in Sec. IV-D. To better understand its
predictability, we first conduct Principal Component Analysis
(PCA) to explore the feature space, as shown in Fig. 11.
We observe that two principal components carry enough
information to separate the data points according to the latency.
In Fig. 11a, we underline that the average service latency is



0 20 40 60 80 100 120 140 160 1800.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Prediction
Real

Time sequence

Se
rv

ice
 la

te
nc

y
1e2

(a) Linear

0 20 40 60 80 100 120 140 160 1800.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Prediction
Real

Time sequence

Se
rv

ice
 la

te
nc

y

1e2

(b) DAG-1

0 5 10 15 20 25 30 35 40 45
Time sequence (seconds)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

En
d-

to
-e

nd
 la

te
nc

y 
[u

s] 1e4
Prediction
Real

(c) Resource stimulus

Fig. 12: Latency prediction

around 50µs under load stimulus. The high-latency points are
mostly clustered between 5 and 10 on the x-axis. Therefore, it is
possible to periodically gather the hardware features and detect
whether the network service is facing high latency via PCA.
In Fig. 11b, we show PCA results under resource stimulus,
and the low latency regions are clustered within a circular
region centered on (−5, 0). An interesting phenomenon is that
outside the circular region, latency oscillates acutely between
low levels (below 200µs) and extreme values (above 1200µs)
since the artificially generated severe resource contentions lead
to extremely high packet delays and jitters.

Following the general workflow, we build an ANN model
based on these observations to predict latency. As illustrated
by the two examples in Fig. 12a and 12b, this model can
effectively predict the latency for the linear (86%) and DAG-1
(79%) under load stimulus. The prediction error is relatively
large at high-speed regimes (around 80-100s of the x-axis), as
the latency packet’s round-trip time (RTT) is less predictable
under network congestion. Fig. 12c shows an example of
latency prediction under resource stimulus. We observe that
the resource contention occurs between 15-35s, which leads to
a nearly 40% throughput drop, hence significant packet losses.
Note that we configure MoonGen to wait for a maximum
of 120ms before assuming a latency packet is lost. During
the contention period, the latency experiences significant
fluctuations. Consequently, current methods are unsuitable for
predicting the exact (artificial) latency under severe network
congestion, as sporadic packet losses make the RTT hard to
quantify. However, our model can still approximate the expected
values with prior knowledge of the maximum latency and
predict abnormal service latency and congestion periods.

VI. CONCLUSION AND FUTURE DIRECTIONS

As network softwarization keeps gaining momentum, there
is an urgent need for stable and predictable performance in the

software data plane. Existing solutions for network performance
diagnostics commonly rely on in-band data collection, which
requires tremendous engineering overhead and interferes with
the critical data path. We propose a novel approach that utilizes
low-level hardware features for KPI prediction. Compared to
in-band data collection, our approach is easily applicable to
real-world NFV systems without an in-depth understanding
of their implementation details. The low-level data collection
imposes a negligible impact on the software data plane. We
implement an ANN model that can accurately infer throughput
and latency in high-speed networks. Our model is generalizable
to network services with similar topological compositions,
and its predictions can be interpreted with domain-specific
knowledge to identify performance bottlenecks.

This paper presents our initial attempt for performance diag-
noses using infrastructure-level features. Despite the optimistic
results, the system settings are still preliminary and the ML
workflow is not production-ready. We thus plan to extend the
current work from the following directions:

Broader NFV system settings: Our current work is mainly
evaluated using openNetVM and FastClick. We will further
consider other prevalent NFV frameworks. Also, we plan to
integrate more system profiling tools beyond perf, e.g., Intel
PCM, Intel VTune profiler, and AMD uprof. Moreover, we
only consider SFCs running in the pipeline mode and plan to
cover SFCs in the run-to-completion mode. In addition, our
current work only employs DPDK as the acceleration stack.
We will evaluate other kernel-bypassing (e.g., Netmap [2])
or in-kernel techniques (e.g., eBPF/XDP). Furthermore, our
current work considers VNFs running as bare-metal processes
or inside Docker containers. Our approach’s applicability to
other virtualization techniques, e.g., virtual machines, should
be examined. Similarly, we will adapt our method to protected
execution environments, e.g., Intel SGX and its variants.

Multi resource contentions scenarios: We intend to broaden
the scope of our framework, transitioning from single-node
to network-wide performance predictions, thereby offering a
more holistic view of network conditions. Besides, we will
proceed to identify the performance bottlenecks, including
the contentions for DDIO, LLC, CPU share, and memory
bandwidth. The contention injection scheme should also be
enriched to generate high-quality, representative data.

Automation monitoring and tuning: The present approach
relies heavily on manual tuning without systematic logging,
making the entailed datasets, parameters, and configuration
dependencies difficult to trace. It is equally essential to
automate the entire ML workflow, converting it into an end-to-
end data processing pipeline with continuous data collection,
model development, deployment, serving, and monitoring.

ACKNOWLEDGEMENTS
This work has been partially carried out in the context of the following projects: a.

ANR project IONOS-DX (ANR-22-CE25-0003); b. Beyond5G, as part of the economic
recovery plan "France Relance" and the investments for the future program. We thank Dr.
Fabio Pianese for helping us form this work’s initial ideas.

REFERENCES

[1] “Intel DPDK,” https://www.dpdk.org/, last accessed July 2023.

https://www.dpdk.org/


[2] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in 2012
USENIX Annual Technical Conference, 2012, pp. 101–112.

[3] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for high per-
formance network service chains,” in Proceedings of the 2016 workshop
on Hot topics in Middleboxes and Network Function Virtualization, 2016,
pp. 26–31.

[4] W. Wu, K. He, and A. Akella, “Perfsight: Performance diagnosis for
software dataplanes,” in Proceedings of the 2015 Internet Measurement
Conference, 2015, pp. 409–421.

[5] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware
performance prediction for virtualized network functions,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 270–282.

[6] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable
performance in software packet-processing platforms,” in 9th USENIX
Symposium on Networked Systems Design and Implementation, 2012,
pp. 141–154.

[7] C. Shelbourne, L. Linguaglossa, T. Zhang, and A. Lipani, “Inference of
virtual network functions’ state via analysis of the CPU behavior,” in
2021 33th International Teletraffic Congress, 2021, pp. 1–9.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, 2000.

[9] J. Gong, Y. Li, B. Anwer, A. Shaikh, and M. Yu, “Microscope: Queue-
based performance diagnosis for network functions,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 390–403.

[10] P. Zheng, W. Feng, A. Narayanan, and Z.-L. Zhang, “NFV performance
profiling on multi-core servers,” in 2020 IFIP Networking Conference.
IEEE, 2020, pp. 91–99.

[11] H. Li, Y. Dang, G. Sun, G. Liu, D. Shan, and P. Zhang, “LemonNFV:
Consolidating heterogeneous network functions at line speed,” in 20th
USENIX Symposium on Networked Systems Design and Implementation,
2023, pp. 1451–1468.

[12] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in NFV,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017, pp. 43–56.

[13] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proceedings of the Symposium on SDN
Research, 2017, pp. 143–149.

[14] X. Lin, D. Guo, Y. Shen, G. Tang, and B. Ren, “Dag-sfc: Minimize the
embedding cost of sfc with parallel vnfs,” in Proceedings of the 47th
International Conference on Parallel Processing, 2018, pp. 1–10.

[15] P. Naik, D. K. Shaw, and M. Vutukuru, “NFVPerf: Online performance
monitoring and bottleneck detection for NFV,” in 2016 IEEE Conference
on Network Function Virtualization and Software Defined Networks.
IEEE, 2016, pp. 154–160.

[16] N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “PPTMon: Real-time and fine-
grained packet processing time monitoring in virtual network functions,”
IEEE Transactions on Network and Service Management, vol. 18, no. 4,
pp. 4324–4336, 2021.

[17] M. Dodare, Y. Taguchi, R. Kawashima, H. Nakayama, T. Hayashi, and
H. Matsuo, “NFV-VIPP: Catching internal figures of packet processing
for accelerating development and operations of nfv-nodes,” in 2019 15th
International Conference on Network and Service Management, 2019,
pp. 1–4.

[18] Y. Lei, L. Yu, V. Liu, and M. Xu, “PrintQueue: performance diagnosis
via queue measurement in the data plane,” in Proceedings of the ACM
SIGCOMM 2022 Conference, 2022, pp. 516–529.

[19] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy,
and S. Shenker, “{ResQ}: Enabling {SLOs} in network function
virtualization,” in 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), 2018, pp. 283–297.

[20] V. R. Chintapalli, S. B. Korrapati, M. Adeppady, B. R. Tamma, B. R. Killi
et al., “NFVPermit: Towards Ensuring Performance Isolation in NFV-
based Systems,” IEEE Transactions on Network and Service Management,
2023.

[21] Z. Niu, H. Xu, L. Liu, Y. Tian, P. Wang, and Z. Li, “Unveiling
performance of NFV software dataplanes,” in Proceedings of the 2nd
Workshop on Cloud-Assisted Networking, 2017, pp. 13–18.

[22] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone, and
J. Roberts, “Comparing the performance of state-of-the-art software
switches for NFV,” in Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies, 2019, pp. 68–
81.

[23] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proceedings of
the 2015 Internet Measurement Conference, 2015, pp. 275–287.

[24] “perf: Linux profiling with performance counters,” https://perf.wiki.kernel.
org/index.php/Main_Page, last accessed July 2023.

[25] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,”
in 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. IEEE, 2015, pp. 5–16.

[26] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy, “SoftNIC:
A software nic to augment hardware,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2015-155, 2015.

[27] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar et al., “The design and implementation
of Open vSwitch,” in 12th USENIX symposium on networked systems
design and implementation, 2015, pp. 117–130.

[28] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “ClickOS and the art of network function virtualization,” in 11th
USENIX Symposium on Networked Systems Design and Implementation,
2014, pp. 459–473.

[29] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker, “E2: A framework for NFV applications,” in Proceedings of
the 25th Symposium on Operating Systems Principles, 2015, pp. 121–136.

[30] A. Aghasaryan, M. Bouzid, and D. Kostadinov, “Stimulus-based sandbox
for learning resource dependencies in virtualized distributed applications,”
in 2017 20th Conference on Innovations in Clouds, Internet and Networks.
IEEE, 2017, pp. 238–245.

[31] “Kernel/Reference/stress-ng - Ubuntu Wiki,” https://wiki.ubuntu.com/
Kernel/Reference/stress-ng, last accessed July 2023.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[33] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng

	Introduction
	Background
	High-speed softwarized networks
	Related works

	System design
	Resource contention in a software data plane
	Design choices and reference architecture

	Sensitivity analysis
	Testbed environment
	Data collection overhead
	Sensitivity analysis: input traffic and service topology
	Sensitivity analysis: KPIs

	Applications
	General workflow
	Throughput prediction
	Latency prediction

	Conclusion and future directions
	References

