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Software Acceleration Techniques for High-speed
Programmable Networks

Leonardo Linguaglossa1

1Telecom Paris - France

Abstract: Network programmability has provided an effective approach to enable
innovation in network systems. By replacing static, expensive middleboxes with equiva-
lent pieces of software implementing the same functionality, operators can significantly
reduce their CAPEX/OPEX expenditures, and engineers can rapidly design, test and
deploy novel architectures and services, thus reducing the time-to-market for network
applications. However, the flexibility provided by software solutions comes at a cost:
purpose-specific hardware has the clear advantage of optimized performance (i.e., through-
put, latency) with respect to pure software-based solutions. The introduction of software
acceleration techniques represented an essential step towards the increasing popularity of
the SDN/NFV paradigm shift, by reducing the performance gap between hardware-based
and software-based systems. Thanks to such techniques, modern software-networking so-
lutions can operate at multi-10Gbps rate (up to hundreds of Gbps) on commodity servers
equipped with regular COTS components. In this chapter, we cover the aspects related to
software acceleration techniques in a bottom-up fashion: we first provide an overview of
high-speed software networking on COTS architectures, and we then explore the evolution
of softwarized networking by focusing on performance acceleration and the design space
for high-speed programmable networks.

1 Introduction

In the last decades, the networking industry had experienced a major architectural shift
towards the softwarization of network devices [1]. Besides the growing popularity of
programmable hardware such as OpenFlow switches [2, 3] or P4 switches [4, 5], commonly
adopted Network Interface Cards (NICs) are being replaced with more programmable
counterparts known as SmartNICs [6]. In line with this trend, network functions are
being executed in pure software on top of commodity servers, rather than using static
expensive middleboxes [7].

Together with the growing expansion of cloud appliances [8], current trends show
a tremendous amount of network functionalities being executed via software instead of
hardware. This context has provided the strong foundation for the evolution of novel
network paradigms such as Software-defined Networking (SDN), or Network Function
Virtualization (NFV). Some efforts to bring software-programmability in the network
environment date back to the end of the twentieth century, as for the Click modular
router [9], one of the first frameworks that allowed users to map network functions into
pieces of software, thus originating the shift from hardware-specific components to more



flexible alternatives run on COTS equipment. The main idea of Click is to provide a
set of C++ libraries used to create standard or custom network functions. A simple
programming language can be used to link such functions, connect them to external NICs
and specify the packet processing workflow in a graph-like fashion, realizing a software
modular router instance.

As we shall see in this chapter, several concepts introduced by Kohler’s Click are still
relevant in modern solutions for high-speed packet processing: from the focus on COTS
general-purpose hardware to deploy software routers and elude the network ossification
problem, to the idea of a “forwarding graph” to specify the desired packet processing.
However, software solutions had to face a natural trade-off: with high flexibility comes a
significant performance gap with respect to hardware solutions. Although classical net-
work applications relied on the support of the operating system for both the management
and the data plane (e.g., retrieving packets from the network card, allocating memory to
store packets, scheduling the functions to be executed on a CPU, perform some process-
ing in the TCP/IP stack, ...), nowadays NICs capabilities can reach 100 Gbps rate and
beyond [10], a 100x improvement w.r.t. to 20 years ago; this operational point is too high
for general-purpose OS kernels to sustain [11]. These limitations have not stopped the
desire for a flexible approach based on pure software for implementing network function-
alities: on the contrary, they boosted the research effort in the direction of reducing the
gap between hardware and software systems for packet processing [12]. In this chapter,
we focus on the techniques utilized to accelerate the packet processing on COTS systems.
We first provide a general overview on the components of a COTS architecture (Sec.
2). Then we present the most important acceleration techniques used by state-of-the-art
high-speed packet processing engines (Sec. 3). Finally, we conclude the chapter with
some considerations about the design space of accelerated frameworks in Sec. 4.

2 High-speed software networking on COTS servers

The need for flexibility and programmability in network environments has fueled the on-
going process of “network softwarization” and inspired the development of novel paradigms
(among which the aforementioned SDN and NFV) that share some common concepts:
decoupling the forwarding plane from the control plane, the separation of network func-
tions from the underlying hardware, virtualization of network resources [13]. Most of
such solutions are deployed on commercial off-the-shelf (COTS) servers, which are com-
modity platforms equipped with general-purpose multi-core processors belonging to the
x86 [14, 15] or ARM [16] families, often connected to the memory through a Non-Uniform
Memory-Access (NUMA) architecture [17]. These servers are managed by an operating
system (typically a Linux flavor) and can access one (or more) NIC(s) through a spe-
cific network device driver. A schematic representation of this architecture is shown in
Figure 1. In a top-down view, several applications of one or more users can coexist at
user-space. Each application can be a stand-alone process or a virtual machine managed
by a hypervisor. Network-related apps can access the NICs either (i) via the mediation
of the OS kernel (which manages the processing units and the memory as well); or (ii)
through some user-space libraries which bypass the operating system drivers; or (iii) by
implementing from scratch a full kernel-bypass application. Most of the past work in
this domain focused on edge systems deployed within COTS equipment [18], but this
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Figure 1: Architecture of a COTS server and the underlying subsystems.

approach is also spreading in other contexts in the form of virtual switches in data center
systems, or inter-container routing platforms [19]. In this section we overview the com-
ponents of COTS hardware, as shown in Figure 1. This will serve as a background to
fully understand the acceleration techniques presented in the next section.

2.1 COTS subsystems

The main components of a commodity server hosting network appliances are the multicore
processors or CPUs, the main memory (aka RAM ), the NICs and the operating system.

CPU The Central Processing Units of a server form the subsystem responsible for
the execution of the network functions (normally implemented using a programming
language such as C or Lua). CPUs are very complex systems, consisting of multiple
pipelines with different stages that instructions have to traverse in order to complete the
processing. Example of such stages can be the instruction fetch, the execution within the
arithmetical-logical unit (ALU), and the memory access to write the result. Furthermore,
CPUs include a multi-level cache hierarchy consisting of small but fast memories used
to store both instructions and data. Caches optimize the computation time by storing
the most recent instructions, or by pre-fetching some data that the program is likely to
be accessing: this principle is called temporal/spatial locality of reference [20], and it is
a very important concept for accelerating packet processing applications [12]. The clock
frequency of common CPUs is in the range [1.5, 3.8] GHz1.

Main memory The memory subsystem is devoted to the data transfer of packets
from/to the NICs, as well as the allocation of data structures. The CPU and memory may
interact during code execution or data retrieval. Additionally, some off-chip storage units
(such as solid-state drives, or SSDs) can be further accessed by the memory subsystem
for persistent storage. However, SSDs are out of the scope of this chapter and we omit

1See for instance https://www.amd.com/en/products/servers-processors or https://www.intel.

com/content/www/us/en/products/processors/xeon.html.
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them. The CPUs being much faster than the RAM memory is a well-known phenomenon,
and as a countermeasure, CPUs make extensive usage of smaller, faster caches to reduce
the latency needed to access the stored data. This effect is further amplified in modern
systems where CPUs are shown to experience a non-uniform latency depending on where
the data to be accessed are located on the physical chip. This suggested to partition the
RAM in different Non-uniform memory access (NUMA) nodes [21], each of them attached
to a subset of the available CPUs. As a result, a CPU core can retrieve data from the
NUMA node it is attached to much more efficiently than a different NUMA node. Even
within a NUMA node, a high level of data locality can significantly reduce the cost of
reading from memory: it has been observed, for instance, that sequential data access
can keep the cost of reading from the memory predictably small compared to a random
access [22]. As we shall see, it is the duty of the high-speed application to make sure
that CPUs will always access data located on its own NUMA node, to avoid incurring in
performance penalties.

NIC The Network Interface Card is responsible for the I/O of incoming and outgoing
packets. NICs are typically connected via a PCIe interface to the host system. Among the
most important features of high-speed NICs, we cite the availability of multiple hardware
transmit and receive queues, a direct cache access (DCA), and the native support for
hosted virtual machines2. Hardware queues are essential to achieve horizontal scalability
via the usage of multiple CPU per queue: through Receive-side scaling (RSS) [23] the
incoming traffic can be distributed to different queues accessed by different cores, each
of them receiving only a subset of the input load. A similar mechanism is used on the
transmit side, where different CPU cores can write in parallel to separate HW queues
without the need of expensive locks. NICs can autonomously write the packet data to
a shared memory area without interrupting the CPU (via DMA), and with DCA they
can even directly access the last-level cache of a CPU core, which significantly reduce the
latency due to the memory write/read operations. Finally, the native support to virtual
machines can be leveraged to automatically dispatch traffic to different VMs without the
intervention of the hypervisor.

Operating system COTS server are managed by an operating system (OS), which is
usually a *nix flavor. The OS’s tasks include maintaining low-level services such as mem-
ory management or CPU scheduling, and providing an interface to access the hardware
resources. A typical network application is a user-space process that is programmed to
access the NICs via a either a system call, or a user-space device driver, which in turn
are directly connected to the network device. Whereas the original design trend of high-
speed network applications was to leverage the kernel-provided driver of the NIC through
system calls, it soon became clear that this approach caused a non-negligible overhead for
the network function execution. Such overhead grows with the increase of NICs speed,
and this inspired the usage of kernel-bypass approaches that leverage custom NIC drivers
(for example, netmap [24] provides a high-speed interface between a user-space applica-
tion and the NIC) or a pure user-space implementation of the driver logic, as the Intel
DPDK [25] which removes the NICs from the control of the operating system. This
trend culminates in the appearance of pure user-space drivers implemented on high-level

2The specifications for some popular NICs can be found at the url https://cdrdv2.intel.com/v1/dl/
getContent/331520 (for Intel 10Gbps NICs) or at the url https://cdrdv2.intel.com/v1/dl/getContent/
331520 for Mellanox SmartNICs.
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Figure 2: Logical view of the typical workflow of packets in an accelerated software
networking application, with the three components of I/O, Compute and Memory.

languages different than C [26]: this approach can provide good performance by inherit-
ing the advantages of kernel-bypass, while at the same time simplifying the development
process of custom applications. Though offering significantly high performance, the draw-
back of kernel-bypass techniques is that they cannot access OS tools such as the Linux
implementation of TCP/IP, and they require to rebuild the usual kernel’s functionalities
at user-space, whereby it is not uncommon to encounter clean-slate (re)implementation
of full networking stacks or security mechanisms [27, 28].

2.2 Components of the packet-processing workflow

In order to understand the rationale behind the proposed acceleration techniques, it is
useful to focus on two important trends in COTS systems. First, during the last twenty
years, the clock frequency of common CPUs has been stagnating, and it nowadays rarely
exceeds the 4 GHz [29]. Even though the number of transistors of the microprocessors’
architectures kept increasing, this has resulted in an increment of the number of available
cores, or in the improvement of the internal caches. One may think of a CPU as a
system that provides computational resources in the form of available clock cycles. For
an optimized program, the more clock cycles are available, the more operations can be
performed. Since the “budget” of clock cycles depends on the CPU clock frequency that
has barely changed in the past years, the computational resources of a single CPU core
has remained almost constant, offering only slightly better performance than those of
old processors3. On the other hand, the speed of NICs has steadily increased since the
introduction of 10Gbps NICs in 2002 [10], reaching multi-100Gbps capabilities in 2020.
Moreover, as COTS servers may have several attachments for multiple NICs on the same
chassis, the available bandwidth within a single high-speed COTS server will increase
faster than the available computational power. In other words, whereas it is easy to
attach additional NICs to the same COTS server, the computational power (represented
by the number of available processors) should be considered as constant from purchase
time. With this dichotomy in mind, we now analyze the different typologies of resources
offered by COTS systems for high-speed network applications: the I/O, the memory and
the compute, represented in Fig. 2. An optimal usage of these components is essential to

3We will see in the next sections that it is possible to exploit low-level parallelism to speed-up the
single-core performance in modern architectures, as also reported in [29]
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build high-speed packet processing applications.

I/O The input/output (I/O) of a system refers to the pressure of input/output traffic
over the entry point of the communication, that is the NIC, during the RX/TX phase
of the packet processing. Several aspects may affect the I/O of a system, including the
available bandwidth of the NIC or the workflow of the packet processing required by the
incoming packets. The latter significantly affects the I/O pressure to the subsequent com-
ponents of the processing workflow. We consider as an example a forwarding application
that receives packets from a NIC port, processes them by swapping the MAC addresses,
and sends them to another NIC port. This involves a certain load due to the I/O (the
reception and forwarding of the packet) and a subsequent load to the CPU (the MAC
address swap). As explained in [24], small packets put a stress on the compute, while
large packets affects mostly the I/O and the memory. In fact, if the traffic rate is con-
stant, a workload of small packets translates to a higher packet rate to be processed by
the CPU. On the contrary, large packets cause a lower I/O packet rate, which requires
less operations per second. For this reason, a typical stress test scenario performed on
software switches is executed by sending minimum-sized packets at the maximum I/O
speed (e.g. 64-byte packets for a 10Gbps NICs, resulting in a packet rate of 14.88 millions
of packets per second). In general, the I/O capabilities of the system are limited by the
available bandwidth on the NIC (for large packets) or by the CPU (for small packets),
and can be optimized by a load-balancing or batching mechanisms (cfr. Sec 3.1).

Memory After packets are received, the NIC can read/write data from/to some device,
which may be another NIC, a RAM memory or a storage unit. This data transfer usually
involves the access to the internal bus of the PCIe that connects the NIC to the COTS
server. Among the factors affecting the load on the memory component, we include the
available bandwidth of the NIC and the bandwidth of the internal buses. For the sake of
simplicity, we assume that the PCIe interface has enough capacity to accommodate the
requirements of the external NIC. When these assumptions are satisfied, we can assert
that the memory capabilities of the system are only limited by the available bandwidth
on the PCI bus (typically greater than the maximum capacity of the NIC). The memory
efficiency of a system may be improved by reducing the cost of read/write operations, or
by issuing memory operations without the involvement of the CPU (cfr. Sec 3.2).

Compute In the context of software networking, we define the computing power (or
“compute” in short) of a system as the maximum numbers of operations that the system
can issue per time unit. The producer of the compute resource is the CPU subsystem.
Network applications are the consumers of the compute in the form of packet processing.
As a rule of thumb, the CPU frequency is tightly coupled with its computing power:
the more clock cycles are available, the more operations can be performed per time unit.
However, we must consider that modern CPUs might have several pipelines and multiple
levels of caches. This affect the compute in that, with a single clock cycle and optimized
pieces of code, it may be possible to issue more than one instruction with a single clock
cycle. This value is measured by the instructions per clock cycle (IPC), and it reflects
the computing efficiency of the system (cfr. Sec. 3.3). As a result, it is possible that
newer CPUs with several pipelines and a low CPU clock frequency can issue more in-
structions per time unit than older CPUs with a higher frequency but a single pipeline.
The compute phase is a bottleneck (i) when the workload consists of small packets, or
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Table 1: Objectives of software acceleration techniques. Each technique may tackle one
of three components of the workflow of a packet processing application, namely I/O,
Compute and Memory. The objectives are: (1) reduce memory access; (2) optimize
memory allocation; (3) share overhead of processing; (4) reduce interrupt pressure; (5)
horizontal scaling; (6) exploit CPU cache locality; (7) reduce CPU context switches; (8)
fill CPU pipelines; (9) exploit HW computation; (10) simplify thread scheduling, (11)
runtime code optimization.
Section Technique I/O Compute Memory Objectives

3.1 RX/TX Polling 3 3 4, 7, 10
I/O batch 3 3 4, 7

3.2 Memory Zero-copy 3 1
Mempools 3 3 3 2
Hugepages 3 3 1, 2
Prefetching 3 3 1
Cache alignment 3 1, 2, 6

3.3 Threading Lock-free multithreading 3 3 5, 6, 7
Lightweight threads 3 3 5, 7, 10

3.3 Coding Compute batch 3 3 3, 6, 8
Multiloop 3 3, 8
Branch prediction 3 8, 11
JIT compilation 3 11

3.4 NIC-support RSS 3 3 5
Flow hashing 3 9
SR-IOV 3 3 5, 9

3.5 CPU-support SIMD 3 3 8, 9
DDIO 3 3 1, 6, 9
Hyperthreading 3 5, 8

(ii) when the processing rate depends on the packet size (as for cryptographic functions,
where increasing the packet size may result in increased required instructions per packet).

3 Software acceleration techniques

We now review the software acceleration techniques employed for high-speed packet pro-
cessing. The approach adopted for accelerating the processing can be focused on pure
software solutions, involving modifications at every layer that can be modified by coding,
or hardware-assisted, which takes advantage of common pieces of equipment attached to
the COTS server. We list the considered techniques in Table 1, which extends the table
presented in [12]. For each row we provide the position of the considered technique when
deployed in a typical packet processing workflow (also corresponding to the organization
of current section). We also identify the component of the packet processing affected by
the acceleration technique between I/O, Compute and Memory (cfr. Sec. 2.2). The last
column of the table shows the main objectives of the considered acceleration technique.
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3.1 RX/TX

A very important phase in a packet processing application is undoubtedly represented
by the reception and the transmission of packets. This phase’s main activity is included
in the I/O category of the packet processing workflow, and as one can expect the main
acceleration techniques in this stage involve some mechanisms to deal with fast I/O. How-
ever, as packets may also be treated in an interrupt-driven fashion, interrupt mitigation
approaches aim also at reducing the load on the CPU processing, thus targeting the
Compute phase of the workflow.

Polling techniques have been proposed long ago [30] to reduce the problem of livelock,
that is when a system is overwhelmed by the I/O interrupt rate and the computational re-
sources are used to serve the incoming interrupts rather than perform useful work. When
interrupt-driven mode is active, the NIC will send an interrupt signal to the system’s
CPU to notify that some packets have been received and are ready to be processed. At
the reception of such signal, the CPU executes a special interrupt-handling routine (IRQ)
causing a corresponding context switch, which may introduce significant performance
degradation, especially under heavy loads which could lead to full CPU saturation. In-
stead, with polling enabled, the CPU periodically queries the device(s) to check whether
some I/O to be handled is present, thus removing the need for interrupts. After their
first proposition, polling techniques have been successfully introduced to the Linux kernel
under the name of NAPI [31] and are implemented by modern user-space drivers such as
DPDK [32]. There are some variations on the utilization of polling. For instance, the
original Linux NAPI approach proposes to switch between interrupt-mode and polling
mode after a first packet is successfully received, turning off the interrupts for all subse-
quent packets in a batch. Alternatively, with interrupt-coalescing [33] the system waits
for a fixed timer for further packet reception before raising an interrupt. In general, un-
der heavy loads the optimal solution is achieved by a pure polling mode, in which the
CPU continuously polls the device without either of interrupts or timers. This is usually
called a busy-poll mode. The tradeoff for high-efficiency under heavy load is a 100% CPU
consumption regardless of the input rate, resulting in excessive CPU cycles consumption
under the average scenario.

I/O batching is another technique aiming at reducing the impact of fast I/O on the
system. With I/O batching, the RX/TX is performed on groups of several packets rather
than individually. When the NIC receives some packet from a HW queue, it temporarily
stores the packet within the queue. It then groups the last received packets in a batch,
and moves the batched data at once to a shared memory that is ultimately accessed by
the CPU for processing. Differently from interrupt-coalescing (which works on packet
reception), the same behavior is also present upon the transmission of packets, whereby
the CPU could wait for a batch of packets to fill the TX queue before issuing the trans-
mission operation. Although it can be implemented as an independent mechanism, I/O
batching is commonly used in conjunction with polling to mitigate interrupt pressure and
at the same time limit the memory operations. The additional advantage is that the
transmission of a few bytes on the PCI bus has a very high overhead, because it is re-
quired to take ownership of the bus, which is a costly operation. The transfer of multiple
packets at once allows a per-transfer PCI access, thus the overhead becomes negligible as
the number of bytes being actually transferred increases. I/O batching tackles both the
I/O stage as well as the memory stage, by amortizing the cost of I/O and memory oper-
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ations over multiple packets [12]. There exists a trade-off between the benefits provided
by batching and the per-packet latency introduced to the packet-processing workflow.
In fact, increasing the number of batched packets is very effective for small batch sizes,
and it has diminishing returns for larger values, while always increasing latency [19].
Therefore, modern libraries and tools for high-speed network applications rarely exceed
a maximum batch size of 512 packets (i.e., the default batch values are 32 for DPDK,
512 for netmap). However, the benefits of batching are so high that after being intro-
duced in PacketShader [34] and DoubleClick [35], all major high-speed packet processing
frameworks implements it [36, 25, 24, 37].

3.2 Memory optimization

Memory management is another important step for a high-speed network application.
Besides the actual reception/transmission of packets (which involve the allocation or
deallocation of buffers where the packets are stored) memory can also be accessed by the
application itself when needed. Depending on the scenario, there may be two limitations:
(i) the memory transfer rate, which can slow down the packet processing by introducing
unnecessary latency, (ii) the RAM maximum size, which may cause the system to swap
some memory to the storage.

Nowadays, the systems employed for high-speed software networking rarely show RAM
limitations of the second type, but the overhead linked to the memory transfer rate is
still significant. For example, after the correct reception of some packets, the network
driver needs to provide the received data to some application: in the past, this was
achieved by a costly memcpy [38] operation. Via Direct-memory Access (DMA) the NIC
can write/read memory areas without the CPU’s intervention; together with an explicit
mapping of the DMA region to a portion of memory of the network application itself,
it is possible to completely avoid memory copy operations. This approach, commonly
known as zero-copy [39, 24, 25] reduces the memory accesses to a bare minimum, as
only lightweight packet descriptors (including a pointer to the packet buffer and some
metadata) are transferred between the NIC driver and the network application, while the
actual packets are never copied.

Interestingly, most of the existing accelerated frameworks actually avoid performing
any kind of memory management at all within the datapath, that is kept as fast as
possible by massively adopting mempools of preallocated packet buffers. In this way,
pools of memory of preassigned size are created and initialized only once at the startup of
the application: such pools are used to store packet buffers and are never deallocated. If
the NIC has multi RX/TX queue capabilities, it is possible to attach a subset of different
HW queues to different memory pools. The NIC can then manage such pools as ring
queues, where packets are queued and dequeued in a circular fashion.

Standard *nix operating systems use a virtual memory system that organizes physical
memory in pages of 4 kB size by means of an indirection table [40]. The usage of small
pages is not suitable at high-speed as many indirections may be required by the appli-
cation, which degrades the performance of the Translation Lookaside Buffer (TLB), the
entity responsible for providing virtual-to-physical memory mappings. Instead, memory
is allocated from the Linux hugepages with size ranging from 2 MB to 1 GB. This improves
the performance by reducing the number of pages to be managed by the TLB by several
orders of magnitude, which in turn reduces the possible misses in the TLB table.
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Moreover, as discussed in Sec. 2.1, the RAM in modern COTS servers is normally
divided into multiple Non-Uniform Memory Access (NUMA) nodes, with different CPU
cores attached to different NUMA nodes. An important speed-up is obtained when the
application has NUMA-awareness, that can be achieved by placing the allocated mem-
pools to the same NUMA node where the CPU core is deployed, and accessing other
NUMA nodes only when indispensable. In this way, it can be guaranteed that the major-
ity of run-time memory accesses will have a small latency, and only a small fraction may
incur on the penalty of accessing a different socket.

In general, memory accesses are significantly faster if cache-friendly data structures
are adopted. CPUs can read and write data in multiple of a cache-line, and therefore it is
essential for the data structure to occupy as few cache lines as possible (which maximizes
the CPU cache hit rate) and to be cache-aligned as much as possible (to avoid the transfer
of unrelated data belonging to another item which exceeds a cache line). When inter-
core transfers are required, cache-friendly data structures can prevent cache-realignment
among different CPU cores, hence avoiding not only sharing data among different threads,
but also avoiding to access to different data stored on the same cache line. Together with
cache-alignment, prefetching data while performing some computation can increase the
performance of the packet processing by reducing the latency due to memory accesses
that are performed ahead of time while the CPU executes different instructions, thus
avoiding CPU stalls.

3.3 Threading and coding

As COTS servers are commonly equipped with multi-core chips, software developers have
started to leverage different forms of multi-threaded programming, which can reduce the
complexity of the I/O, as well as the processing load on CPU cores. Network applications
can be well suited for this execution model: if we consider for instance a routing network
function, the action taken on a packet does not usually depend on previous or subsequent
packets, which suggests that different threads may serve different packets independently.
Although a workload that involves stateful computation might invalidate this assumption,
this situation can be handled by the application itself. A general guideline advocates to
preserve flow-coherence on a per-core basis (such that packets belonging to the same
flow are always processed by the same CPU core) and avoid packet reordering. This is
feasible thanks to the availability of multiple hardware RX/TX queues, allowing each
CPU core to operate on different traffic subsets (see more on Sec. 3.4). On the other
hand, it is essential to avoid thread synchronization, which may involve mutual exclusion
primitives that can introduce a non-negligible overhead. The alternative is to adopt a
lock-free multi-threading model, which leverages per-core variables and isolated lock-free
data structures. If inevitable, one must privilege lightweight mutual exclusion primitives
like read-copy-update as alternative to standard mutexes and semaphores.

The aforementioned execution model is called run-to-completion execution: in this
workflow, each packet is treated by a separate thread (which will also process other
packets of the same flow) and the processing is terminated by the final forwarding decision.
Alternatively, frameworks such as DPDK have recently introduced a cooperative multi-
threading model [41]. This model adopts lightweight threads (called lthreads in DPDK’s
lingo) whose execution depends on a simple cooperative scheduler less complex than the
classical POSIX pthread scheduler [42] (for instance, the lthread-scheduler lacks thread
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prioritization and preemption). In a cooperative model, the entire packet processing
workflow can be split into multiple subsets, each of one managed by a different thread.
Therefore, a thread implements only a portion of the processing activity and can then
voluntarily issue a context-switch to another thread for further processing.

In combination with the different multithreading approaches, some coding best-practices
can be used to significantly speed-up the software execution and improve the system’s
scalability. The main idea is to explicitly write the code in some particular fashion in
order to “help” the generation of low-level instructions and thus maximizing the through-
put of the underlying CPU. For example, with compute batching it is possible to improve
the CPU pipeline performance [11, 36] by writing code to explicitly process packets in
large batches rather than on a per-packet basis. This technique extends the I/O batch to
the inner computing path, and it mitigates the overhead of network function processing.
Software network engines that use compute batching either adopt the same batch size
previously used for the I/O batching, or they opt for some multiple of the max batch size
for the I/O. In addition, compute batching can increase the usage efficiency of the L1
instruction cache, as the processing to be performed on a batch is likely to be the same
for all packets in a batch: in this way, as soon as the first packet enters the computing
phase, the code to be executed is fetched and loaded into the L1 instruction cache (which
may generate some overhead), but for all subsequent packets in the same batch the code
would be already in the cache, thus speeding-up the processing for the rest of the batch.
Compute batching also helps filling the internal CPU pipelines which can work at full
capacity: as the instructions to be executed on different packets are typically indepen-
dent, it can be possible to execute multiple instructions within the same clock cycle [36],
thus enhancing the IPC value. Finally, compute batching can be effectively used in con-
junction with memory optimizations such as data prefetching (cfr. Sec. 3.2) and can take
advantage of CPU-assisted primitives to improve data-level parallelism (cfr. Sec. 3.5).

Another coding best-practice is the multi-loop programming, an evolution of the clas-
sical loop unrolling, which consists in writing packet processing loops to explicitly process
packets in groups of two or four in each iteration (hence, the conventional name of dual-
loop or quad-loop respectively). One of the advantages of loop unrolling is to reduce the
number of jump instructions which may cause a CPU pipeline invalidation: at the end of a
loop, the processor typically “jumps” to execute an instruction that is not adjacent to the
jump instruction, and this can introduce idle pipeline slots because of the fetching of new
instructions and the refill of the CPU pipeline. At the same time, multi-loop can be effec-
tively used in conjunction with prefecthing data from subsequent packets while processing
already prefetched packets, which can maximize the usage of the CPU pipeline [36].

Regardless of the particular threading model chosen, high-speed network applications
should avoid context switches as much as possible, which be caused by a system call, or
by the OS scheduler to allow the execution of another thread. Since a context-switch
requires to store the current state of a process and replace it with another process, it has
a strong impact on the processing flows, as the low-level pipelines are invalidated and
need to be repopulated with different instructions. Even simple function calls, though
not causing a full context-switch, can show a non-negligible performance penalty, as the
running thread needs to push/pop local variables from the stack, invalidate the CPU
pipelines and load new instructions from a potentially random memory location. As a
consequence, developers frequently use explicit inlining, which requires the code annota-
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tion of frequently accessed functions whose code is duplicated and copied every time that
it is used (as opposed to raising a jump instruction towards the memory area containing
the function’s code). This technique reduces the run-time overhead of frequent function
calls, at the cost of a slightly increased program text size [43]. Sometimes code jumps
may be unavoidable, i.e. when the result of some if condition produces a code branch-
ing. In this case, with workload-related insights it may be possible to guess in advance
if one particular branch can be taken with high probability. The programmer can then
manually annotate the code to indicate the most likely execution branch corresponding
to a conditional expression, thus forcing the CPU to follow a specific branch which may
improve the CPU’s branch prediction success rate. A correct branch prediction allows the
CPU to continue filling its pipelines without waiting for the actual result of the condition
(which normally stalls the pipeline by introducing so-called “bubbles” to wait for the
result to be computed [20]). In contrast, a branch misprediction causes a full pipeline
invalidation and the subsequent repopulation with the instructions related to the correct
branch. This implies that to avoid incurring in performance penalty, it is of extreme
importance to avoid branch mispredictions.

Although the majority of the presented coding practices assume the usage of a com-
piled language such as C, there exist some high-speed network applications written in
interpreted programming languages (as for Snabb [44], programmed in Lua [45]). The
typical preference of compiled low-level languages (and C in particular) is because of per-
formance: code compiled into machine language and optimized for execution may run
faster than interpreted code whose translation is usually on a per-line basis. Moreover,
high level languages might show unpredictable behavior, e.g. in the case of garbage col-
lection, that is usually interleaved with the regular program execution [46]. On the other
hand, the ahead-of-time compilation may perform static optimization which translates
the code into low-level instructions without any assumption on the run-time execution.
With Just-in-Time (JIT) compilation, it is possible to get the best of the two worlds. A
JIT compiler performs an intermediate step that analyzes the code to be executed and
optimizes it at run-time. Among the advantages of this approach, the compiler can access
run-time information such as the values of variables, or the parameters of a function call
(not present during a static compilation step), which can improve the execution speed.
Furthermore, with JIT compilation it is possible to optimize the code that is actually
used more frequently, as opposed to a static compilation that targets a global optimiza-
tion. Finally, interpreted code may be more portable than compiled code as it would not
require a new compilation for a new target machine [47].

3.4 NIC-assisted acceleration

Modern NICs are equipped with HW components that can be accessed by software to
provide an advanced set of functionalities. This category of NIC-assisted acceleration
techniques can reduce the I/O pressure or relief the computation load on the CPU.

One of such NIC components is a specialized device accessed to natively compute flow
hashes that can be exported via the network driver to the high-level application. This is
useful if the application involves the usage of hash-tables, as the CPU will not need to
recalculate a new hash value, which may be computationally intensive. The availability of
multiple hardware RX/TX packet queues is leveraged by Receive Side Scaling (RSS) [23],
a technique that enables the adoption of a per-core multithreading approach: the NIC
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uses the pre-calculated hash value (computed over the 5-tuple to preserve flow coherence)
to distribute packets among different CPU cores, thus achieving flow-level parallelism.
Since packets belonging to the same flow will always be scheduled to the same CPU core,
this also improves the locality of data structures on a per-core basis. Furthermore, the
RSS seed can be configured such that packets of bidirectional transport connections are
processed on the same CPU core.

In addition to these advantages, modern NICs can even provide virtualization support
by offering native communication facilities between packets received by or sent to a virtual
machine hosted in the same COTS system equipped with the NIC. It is the case of
Single root input/output virtualization (SR-IOV), which allows NIC’s PCI resources to be
logically accessed as separate virtual channels, each of them used by a different virtual
machine, without being explicitly managed by some hypervisor. Thanks to SR-IOV
enabled NICs, several virtual functions can independently access the NIC’s resources
without explicitly manage concurrent access: this improves the system’s scalability in a
virtualized environment, though the maximum number of concurrent VMs is limited by
the hardware specs.

3.5 CPU-assisted acceleration

The last class of techniques analyzed in this chapter are CPU-assisted acceleration tech-
niques, which leverage the features of modern CPUs to accelerate the I/O, compute and
memory management of packet processing applications.

As observed in Sec. 2.1, most modern CPUs are equipped with multiple pipelines and
computing elements (ALUs) that can support low-level data-parallelism through Single
Instruction Multiple Data (SIMD) operations. When using SIMD, it is possible to allow
simultaneous computation on multiple data while issuing just a single instruction. The
effect of SIMD is maximized when the same instruction has to be performed on different
objects (e.g. same instructions on different packets of the same typology). By allowing the
execution of a single instruction on multiple data instances, this approach can improve the
throughput of the CPU pipelines, especially when using a batched processing approach.

Furthermore, modern CPUs and NICs can effectively interact by taking advantage
of Data Direct I/O (DDIO), which is an improvement over the usual DMA that allows
NICs to perform a direct transfer of packets into the last-level CPU cache (typically the
L3 cache) instead of the main memory. By avoiding multiple reads from and writes to
the main memory, DDIO additionally improves the cache data availability, as the possible
misses on the L1-L2 caches would eventually result in a hit on the L3 cache with high
probability. Finally, CPU chipsets are nowadays capable of hyperthreading (HT), a tech-
nique that lets a single CPU core appear as two independent virtual cores for concurrent
scheduling of multiple processes per physical core. The goal of HT is to share the CPU
resources of a single physical core to multiple threads that may be concurrently scheduled
to the different virtual cores of the same physical core, thus increasing the number of
independent instructions in the pipeline. Hyperthreading plays also an important role
to tackle memory latency, as while a (HT) thread waits for a memory operation, the
other virtual core can perform some useful operations. As such, multiple instructions can
operate on separate data in parallel, which can increase the IPC, and the efficiency of the
pipeline is enhanced as a result of a reduced CPU idle time.
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4 Summary

As network softwarization steadily proceeds, more and more network appliances are chal-
lenging the classical design choice of relying on custom purpose-specific equipment, in
lieu of a more flexible approach based on pure software deployed on COTS servers and
commodity NICs. Acceleration techniques are an effective mechanism for leveraging the
capabilities of such systems and keep up with the ever increasing requirements of complex
network applications. Due to their versatility, acceleration techniques tackle the perfor-
mance bottlenecks of the packet processing workflow and reduce the overhead required
for I/O, compute and memory operators. More generally, there exist several classes of
engines which exploit one (or more) of the acceleration techniques to provide low level
building blocks for accelerated applications (as for netmap [24], DPDK [25] or the ixy
drivers [37]), purpose-specific functions (i.e., traffic generation [48], access control lists [49],
load-balancing [50]) or fully-fledged modular frameworks for accelerated packet processing
(such as FastClick [11], the Snabb switch [44], OpenVSwitch [51]).

In this environment, network operators can decide to deploy their appliances as vir-
tual network functions to be executed in production servers, incurring in a performance
penalty that has been continuously reduced for the last decades. State-of-the art software
switches can easily achieve multi-10Gbps performance even with a single dedicated CPU
core (as shown in [52], most of the analyzed frameworks can process more than 10 millions
of packets per second, with peaks of 50 Gbps depending on the packet size). The perfor-
mance gap between HW and SW solutions is definitely outmatched by the advantages in
flexibility, ease of management and scalability brought by the latter. The evolution of the
available acceleration techniques has fueled the proliferation of an ecosystem of software
networking engines that can be used to implement high-speed packet processing under a
plethora of scenarios, ranging from network monitoring, to firewall systems or even fully-
fledged NFV environments [52]. We conclude this chapter by providing some insights on
the exploration of network applications’ design space, an important yet often underrated
step which should be done in order to carefully choose one or more acceleration techniques
depending on the desired objectives.

Kernel-bypass vs in-kernel approaches. High-speed packet processing is not nec-
essarily a kernel-bypass exclusive field. Despite most of existing solutions have adopted a
pure user-space approach based on DPDK [11, 19, 44], there are some alternatives which
rely on the Linux kernel and, at the same time, provide enhanced performance. One
popular representative of the in-kernel software network engines is the eXpress Data Path
(XDP) [53]. xDP operates directly in the Linux kernel at driver-level, by providing a fast
interface between the NIC and an extended Berkeley Packet Filter (eBPF) program [54].
The eBPF subsystem is a virtual machine deployed inside the Linux kernel that can be
used to map some user-space program to be executed following the reception of a packet.
A programmer can write some code that is translated into eBPF instructions that are
in turn verified by the eBPF verifier in order to prevent integrity or security problems
(cfr. the dedicated chapter on eBPF). We underline that an XDP/eBPF application can
process almost 20 millions of packets per second on a single 3.6 GHz CPU core (only
slightly worse than a pure DPDK counterpart) and can saturate the whole PCI bus with
just 4 cores. More importantly, the xDP/eBPF approach does not require a full stack
implementation at user-space, as it is integrated within the kernel and it can reuse all the
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available codebase without reinventing the wheel. Furthermore, the security and integrity
checks performed by the eBPF are a plus to ensure that the deployed program does not
break the host system. Overall, network developers should decide whether to adopt one
approach or the other, depending on the target use-case and the security/performance
requirements.

Regular NICs vs SmartNICs. In this chapter we mostly focused on ordinary NICs
and COTS equipment. However, SmartNICs [6] have become quite popular in a very
diverse set of use-cases, including energy saving [55], DDoS mitigation [56] or acceleration
in the public cloud [57]. The definition of a SmartNIC relates to a design in which a
regular NIC integrates within the ordinary chipset an additional hardware-programmable
element, such as FPGAs or a System-on-chip [12]. The typical advantage of SmartNICs
over regular NICs is the additional computational power deployed on-chip that can be used
to further offload the COTS server’s CPU by taking additional charge. This can be taken
to the extreme case, where a full control-plane plus the corresponding data-plane can
be both deployed on the computing element of the SmartNIC [6]. Finally, for latency-
sensitive applications, the SmartNIC can provide better performance guarantees. The
main drawback relies on the circuitry complexity, which may increase the management
overhead and decrease the time-to-upgrade an existing network appliance. As for the
previous design choice, it is up to the developer to analyze the desired use-case and opt
for the best-suitable solution.
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