
HAL Id: hal-04322395
https://hal.science/hal-04322395

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Performance benchmarking of state-of-the-art software
switches for NFV

Tianzhu Zhang, Leonardo Linguaglossa, Paolo Giaccone, Luigi Iannone,
James Roberts

To cite this version:
Tianzhu Zhang, Leonardo Linguaglossa, Paolo Giaccone, Luigi Iannone, James Roberts. Perfor-
mance benchmarking of state-of-the-art software switches for NFV. Computer Networks, 2021, 188,
pp.107861. �10.1016/j.comnet.2021.107861�. �hal-04322395�

https://hal.science/hal-04322395
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Performance Benchmarking of State-of-the-Art Software Switches for NFV

Tianzhu Zhanga,1,∗, Leonardo Linguaglossaa, Paolo Giacconeb, Luigi Iannonea,1, James Robertsa,1

aTelecom Paris, 19 Place Marguerite Perey, 91120 Palaiseau, Paris, France
bPolitecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino TO, Italy

Abstract

With the ultimate goal of replacing proprietary hardware appliances with Virtual Network Functions (VNFs) imple-
mented in software, Network Function Virtualization (NFV) has gained popularity in the past few years. Software
switches are widely employed to route traffic between VNFs and physical Network Interface Cards (NICs). It is thus
of paramount importance to compare the performance of different switch designs and architectures. In this paper, we
propose a methodology to compare fairly and comprehensively the performance of software switches. We first explore
the design spaces of 7 state-of-the-art software switches and then compare their performance under four representative
test scenarios. Each scenario corresponds to a specific case of routing NFV traffic between NICs and/or VNFs. In our
experiments, we evaluate the throughput and latency between VNFs in two of the most popular virtualization environ-
ments, namely virtual machines (VMs) and containers. Our experimental results show that no single software switch
prevails in all scenarios. It is, therefore, crucial to choose the most suitable solution for the given use case. At the same
time, the presented results and analysis provide a more in-depth insight into the design tradeoffs and identify potential
performance bottlenecks that could inspire new designs.

Keywords: Network Function Virtualization (NFV), Virtual Network Functions (VNF), Service Function Chain
(SFC), Software Switch, Virtual Switch, Performance Benchmarking Methodology, High-speed Packet Processing

1. Introduction

For many years developers have used software packet
processing for fast prototyping and functional testing but
have relied on the superior performance of proprietary
hardware for product deployment. The limitations of
commercial off-the-shelf (COTS) servers, whose general-
purpose kernels and chips were not optimized for packet
processing, outweighed the flexibility advantage of soft-
ware solutions. This situation has changed in recent
years, thanks mainly to the impulsion of Software-Defined
Networking (SDN) and Network Function Virtualization
(NFV) but also due to advances in the performance of
COTS hardware. It is now widely accepted that signifi-
cant savings on both CapEx and OpEx can be realized by
replacing expensive, proprietary, and inflexible hardware
middleboxes with software counterparts.

A major spur to progress has been the development
of high-speed I/O frameworks (e.g., Data Plane Develop-
ment Kit (DPDK) [1], PF RING ZC [2], and netmap [3])

∗Corresponding author
Email addresses: tianzhu.zhang1989@gmail.com

(Tianzhu Zhang), linguaglossa@telecom-paris.fr (Leonardo
Linguaglossa), paolo.giaccone@polito.it (Paolo Giaccone),
luigi.iannone@telecom-paris.fr (Luigi Iannone),
james.walter.roberts@gmail.com (James Roberts)

1Tianzhu Zhang, Luigi Iannone, and James Roberts were affili-
ated with Telecom Paris during the time of writing.

that employ acceleration techniques, like kernel-bypassing,
polling, buffer pre-allocation, and batch processing, to
achieve performance comparable to that of proprietary
hardware appliances. Furthermore, modern COTS servers
are equipped with multiple cores to promote paralleliza-
tion and Non-Uniform Memory Access (NUMA) awareness
to enhance memory access efficiency. Software switches
have largely benefited from the combined use of these ac-
celeration techniques. They are thus widely employed by
NFV platforms as their data plane to flexibly steer traf-
fic through various components. For example, Metron [4],
SplitBox [5], and MiddleClick [6] incorporate FastClick [7]
for traffic steering. UNO [8] and eVNF [9] leverage Open
vSwitch with DPDK (OVS-DPDK) [10] for efficient packet
forwarding. E2 [11] and ParaBox [12] adopt Berkeley
Extensible Software Switch (BESS) [13] as data plane,
while ClickOS [14] and HyperNF [15] opt for the VALE
switch [16]. NetBricks [17] integrates BESS and OVS-
DPDK to benefit from their respective features.

While interest in software switches is soaring, the
relative merits of different proposals are still not well-
understood in the absence of comprehensive, comparative
performance analysis. It is indeed a daunting task to per-
form such an evaluation [18], and most published compar-
isons relate to a small number of switch proposals [19, 20]
or execute a limited number of test scenarios [21]. Our
work’s objective is to propose a methodology for compar-
ing switch performance in terms of essential metrics like

Preprint submitted to Computer Networks November 27, 2020

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1389128621000372
Manuscript_d19f5270e679687930999de23d0b6092

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1389128621000372
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1389128621000372

throughput and latency. Our methodology aims to pro-
vide a fair comparison of a broad range of state-of-the-art
software switches in a set of representative yet straight-
forward test scenarios. Such a methodology must take
into account the different design choices that guided the
switch designs. For instance, Open vSwitch (OVS) [22]
was tailored to support match/action semantics; VPP was
constructed as a full-fledged software router; while other
solutions such as Snabb, FastClick, and BESS embraced
modular design to compose complex network services.

The contribution of our work is twofold:

• We propose an experimental methodology to thor-
oughly evaluate the performance of software switches
in the context of NFV. Our methodology is indepen-
dent of the adopted control plane in the software
switch.

• We apply our methodology to fairly evaluate the per-
formance of 7 state-of-the-art high-speed software
switches under the same environmental settings.

We start by analyzing the design space of these frameworks
to build a basic understanding of their respective designs.
We then define four test scenarios, namely p2p, p2v, v2v,
and loopback, as already introduced in [23, 24], to provide
meaningful results for different segments of a Service Func-
tion Chain (SFC). Finally, we present the performance
comparison results in terms of throughput and latency. In
particular, the throughput is measured with both unidi-
rectional and bidirectional traffic. It is important to note
that these experimental results depend significantly on the
testbed’s particular hardware and software configurations.
For instance, VPP achieved varied throughput on different
COTS servers [25, 24]. Similar phenomena were also re-
ported in [26, 27]. Indeed, the experimental results differ
even after an OS upgrade on the same server. Therefore,
our aim is not to assess the performance in absolute terms
for the adopted testbed, but rather to define a proper com-
parison methodology and to identify possible performance
impairments with approximate results when the switches
are deployed for traffic routing in NFV settings.

Traditionally, VNFs are usually deployed in virtual
machines (VMs) based on hypervisors such as QE-
MU/KVM [28] and Xen [14]. Recently, there has been
an increasing trend to distribute VNFs into lightweight
containers [29, 30, 31]. Our experiments consider both
virtualization techniques. In particular, we choose the QE-
MU/KVM hypervisor to instantiate VMs and the Docker
engine to manage containers. However, prior works have
already proven that the Linux kernel stack imposes non-
negligible overhead for both VM and container networking.
For instance, as reported by [21], the kernel-based Linux
Bridge and Open vSwitch only achieved 1 Gbps through-
put with 64B packets, while some other kernel-bypassing
approaches, such as Snabb, managed to approach 10 Gbps
for VM networking. We thus incorporate a set of VNF
I/O techniques (e.g., vhost-user backend, virtio-user fron-

tend, netmap’s ptnet/veth) for different virtualized en-
vironments. To facilitate reproducibility, all the scripts
and instructions of our experiments have been released on
GitHub [32]. We strongly encourage researchers and de-
velopers to use them to repeat the same set of experiments
on their servers and to build on this basis to gain further
understanding. The present paper extends the previous
work described in [24], notably by considering containers
in addition to VMs for hosting VNFs and by refining the
testbed configurations and measurement tools to ensure a
fair comparison for each test scenario.

The paper is organized as follows. In Sec. 2, we review
related literature on software switches and their perfor-
mance comparison. Then, in Sec. 3, we explore the de-
sign space of the 7 considered software switches and high-
light their specificities. In Sec. 4, we describe the proposed
performance benchmarking methodology and the related
testbed settings. Experimental results are presented and
discussed in Sec. 5. Finally, we draw conclusions in Sec. 6.
We also provide Appendix A to clarify a few essential
settings for the considered switches.

2. Related work

In this section, we survey the panoply of open-source
software switches and discuss related work on the perfor-
mance comparison of different implementations.

2.1. Software switches

We first introduce the 7 software switches that are di-
rectly compared in our work. Then we review other related
software switches that are excluded from our performance
comparison study and explain the particular reasons.

Evaluated Software Switches – The state-of-the-art soft-
ware switches included in our study have been chosen
for the availability of an up-to-date codebase and their
promised high performance.
Open vSwitch with DPDK (OVS-DPDK) [10] is a
high-speed variant of OVS. Just like OVS, it supports
standard management interfaces and programmable con-
trol of traffic forwarding. By migrating the OVS fast path
into user space and adopting DPDK poll-mode drivers for
packet retrieval, it completely avoids the overhead imposed
by the general-purpose kernel stack and interrupt-based
packet receiving of the host operating system.
t4p4s [33, 34] is a platform-independent software switch
specifically designed to support P4 semantics [35]. It con-
sists of a compiler and a hardware abstraction layer. The
former generates optimized switching code from P4 pro-
grams, while the latter deals with platform-specific func-
tion deployment and optimization. Currently, t4p4s is ca-
pable of generating switching programs on multiple hard-
ware targets, including Intel X86 with the DPDK library.
FastClick [7] extends the codebase of Click Modular
Router [36] and integrates packet I/O techniques such as

2

DPDK and netmap for high-speed processing. Its data
path is also optimized leveraging various acceleration tech-
niques, including zero-copy, batching, and multi-queueing.
Snabb [21] is a high-speed modular software switch with a
collection of predefined modules enabling the composition
of advanced network applications. Like MoonRoute [37],
it is based on Lua and LuaJIT [38]. Snabb is known for
introducing the vhost-user protocol [39], which features di-
rect packet exchange between user-space software switches
and VNFs running on VMs, without kernel intervention.
Berkeley Extensible Software Switch (BESS) [13] is
a modular software switch from UC Berkeley featuring a
set of built-in modules used to compose network services.
Modules can be glued together and fed to the daemon pro-
cess, which deals with packet scheduling (enabling traffic
prioritization) and processing.
Vector Packet Processing (VPP) [40] is a software
router that allows users to configure the forwarding graph
and process packets in batches. It incorporates many
throughput optimization techniques while also support-
ing interrupt mode when using native drivers. Besides,
VPP provides a command line interface for experimenta-
tion and debugging while resorting to the binary API for
production use (bindings to C, C++, Go, Python over a
non-blocking, shared memory interface).
VALE [16] is an L2 software switch based on netmap. It
adopts batch computing and memory prefetching to en-
hance processing efficiency. mSwitch [41] augments VALE
with enhanced switching logic. A pass-through approach
named ptnet was later proposed to ensure high-speed
packet delivery between virtual machines [42]. In con-
trast to most of the other switches that employ poll-mode
drivers and complete kernel bypass, VALE presents better
compatibility with OS kernels and relies on system calls
and interrupts for packets’ I/O operations. Therefore, it
is interesting to compare VALE with other solutions.

Other Software Switches – In this part, we briefly ref-
erence some software switches that are excluded from
our comparison study due to outdated/unavailable code-
bases, low performance, or duplication with the forego-
ing software switches under consideration. In particular,
RouteBricks [43] achieves multi-Gigabit/s packet pro-
cessing speeds by exploiting parallelization both within
and across commodity servers. PacketShader [44]
boosts packet processing using graphics processing units
(GPUs). Hyper-Switch [45] improves packet forward-
ing between virtual machines and Xen hypervisor by
adopting batch processing and computation offloading.
Cuckoo Switch [46], a software Ethernet switch, adopts
the cuckoo hashing algorithm for forwarding table lookup
and DPDK for packet I/O operations, thus realizing both
memory efficiency and high-speed processing. IVS [47]
is an OpenFlow software switch based on the OVS kernel
module purposed to achieve efficient pipeline processing
with the Floodlight SDN controller. MoonRoute [37]
is a software router based on MoonGen [48] and Lua-

JIT [38]. The adoption of Lua scripting language improves
programmability compared to other software switches us-
ing low-level languages such as C or C++. Despite their
interesting features, these switches are excluded from di-
rect quantitative comparison due to outdated codebase.

VFP [49] is designed to support SDN in cloud
data centers. PVPP [50] extends VPP to support
P4 programs. ESwitch [51] employs template-based
code generation to optimize the OpenFlow pipeline.
VOSYSwitch [52] extends Snabb to support OpenFlow
semantics and achieves performance comparable to OVS-
DPDK. NF-switch [53] embeds a many-field flow table
inside OVS to implement efficient SFCs. OVS eBPF [54]
is a kernel-based datapath optimization for OVS with ex-
tended Berkeley Packet Filter (eBPF). The work in [55]
seeks to accelerate OVS processing with integrated GPU.
We cannot configure these switches for direct comparison
as their codebases are unavailable.

bmv2 [56] is a reference P4 software switch, but it
is not a production-ready solution, and its performance
is significantly lower than Open vSwitch, as pointed out
by [57]. PISCES [58] extends Open vSwitch with the
support of the P4 language. HyperV [59] is another P4
dataplane hypervisor, and its DPDK target achieves com-
parable performance to PISCES. However, as detailed in
[34], t4p4s outperforms PISCES by a factor of two when
running the baseline L2 forwarding application. We thus
only consider t4p4s in our comparison. Lagopus [60] and
xDPd-DPDK [61] are two user-space OpenFlow switches
that integrate DPDK for high-speed processing. Due to
their overlapping functionalities and lower performance
with OVS-DPDK [26], we exclude them from our com-
parison to avoid duplicated effort. In [62], OfSoftSwitch
was optimized with the PFQ framework [63]. However,
this switch also presented limited performance (≤ 4 Mpps
with 64B packets) and is therefore not included in our
comparison. A similar observation also applies for BO-
FUSS [64] and KVS [65]. BOFUSS provides an SDN
software switch implementation with performance no bet-
ter than the standard OVS. KVS utilizes NIC-level hash
functions to index flow rules and only achieves 2.68 Gbps
on a single core.

Finally, ClickNF [66, 67] extends Click with a set of
modules enabling complex L2 to L7 network functions.
Since ClickNF is similar to FastClick in terms of design
and performance, we do not consider it to avoid duplicates.
vNS [68] implements a full-fledged modular network stack
based on ClickNF to provide tailored functionalities for
network service composition. REdge [69] extends VALE
to build high-performance NFV backend. Oko [70] ex-
tends OVS-DPDK to integrate runtime stateful filtering
and monitoring eBPF programs into the OpenFlow pro-
cessing pipeline. Although these proposals have imple-
mented many interesting features on the original switches,
they do not bring any performance enhancement in the
baseline test scenarios defined by our comparison study.

3

2.2. Performance Comparison
The literature includes several works aiming to evalu-

ate the performance of software switches. Rojas et al. [79]
measured the throughput of several customized software
routers on two workstations equipped with 10/100 Mbps
NICs. Emmerich et al. [80] compared OVS throughput
with Linux bridge and Linux kernel IP forwarding. Ac-
cording to their results, the standard OVS failed to attain
2 Mpps with 64B packets. Shanmugalingam et al. [20]
evaluated the throughput of OVS-DPDK with port mir-
roring using 1 Gbps NICs. Our work differs in that we
only focus on software switch implementations capable of
achieving much better performance (e.g., more than two
orders of magnitude higher throughput).

Some prior performance comparison works are partic-
ularly relevant to ours. Fang et al. [18] analyzed the
bare-metal throughput of BESS, VPP, and OVS-DPDK
when forwarding traffic between two physical interfaces.
Pitaev et al. [74, 75] compared the throughput of VPP
and OVS-DPDK with heterogeneous VNFs in VMs. Let-
tieri et al. [76] compared the throughput and CPU utiliza-
tion of VALE, OVS-DPDK, and Snabb. They configured
the switches to steer traffic between two VNFs and be-
tween a VNF and a physical NIC. We do not characterize
CPU utilization because VALE operating in hybrid mode
(polling and interrupt) always outperforms other switches
running in polling mode. In addition, since our work fo-
cuses solely on software switches, we attach physical NICs
to the VALE switch, not directly to the VMs. Paolino et
al. [21] compared the throughput of Snabb, Open vSwitch,
OVS-DPDK, and Linux bridge under the same test sce-
narios as [76]. Note that all the previous works did not
compare software switches in terms of processing latency,
which is another critical performance metric, especially
for real-time services. Emmerich et al. [19] evaluated
both throughput and latency of OVS and OVS-DPDK
forwarding packets between two physical NICs, between
two VNFs in VMs, and between a VNF and a physical
NIC. Kawashima et al. [26, 77] evaluated the throughput
and latency of OVS, Linux Bridge, OVS-DPDK, Lagopus,
and xDPd-DPDK forwarding synthetic traffic between two
physical NICs and between a VNF and a physical NIC.
These works did not compare performance in the presence
of service function chains (SFCs) with multiple VNFs.

Casoni et al. [72] compared the throughput for VALE
and Linux bridges forwarding packets between a set of se-
quential/parallel LXC containers. Bonafiglia et al. [71]
evaluated throughput and latency for OVS and OVS-
DPDK on SFCs of varied lengths. However, they still
relied on the inefficient kernel path for containers. Our
experiments adopt more efficient I/O techniques for con-
tainerized VNFs, as explained in Sec. 3.5. Hong et al. [30]
measured the throughput and latency of BESS for service
function chaining. They wrapped Click programs inside
containers and deployed them as VNFs. As indicated by
their results, the Click programs imposed a non-negligible
processing overhead that outweighs the impact of the

BESS. Our work instead uses more lightweight VNFs to
better reflect the forwarding capacity of software switches.
Niu et al. [73] compared the throughput and latency of
BESS and ClickOS in SFC scenarios. We preferred to
consider VALE rather than ClickOS in our comparison,
as the latter is a full-fledged NFV framework rather than
a software switch. Furthermore, in our comparison, all
VMs were based on the KVM hypervisor, avoiding the
uncertainty arising when one system uses KVM and the
other Xen. Besides, none of the aforementioned works
considered the throughput test with bidirectional traffic,
which, based on private communication with Cisco engi-
neers, is another critical factor. Therefore, we evaluate
the throughput of software switches with both unidirec-
tional and bidirectional traffic. In general, our work pro-
vides a more comprehensive performance comparison for
software switches in NFV. As highlighted in Table 1, our
work considers a more extensive set of software switches
and compares them in more test scenarios with different
virtualization techniques and performance metrics.

In contrast to the existing literature, in addition to
providing measurement results, our work seeks to define
a comparison methodology. Such a methodology consists
of test scenarios and metrics designed to enable a deeper
understanding of software switch performance and help
identify potential bottlenecks. There are two open-source
projects, namely FD.io CSIT-1904 [81] and VSperf [78],
that are very relevant to our work. CSIT-1904 aims to
define a comprehensive set of test scenarios for VPP and
DPDK applications. VSperf, proposed by the Open Plat-
form for NFV Project (OPNFV), focuses on the bench-
marking methodology of virtual switches for the NFV in-
frastructure [82]. Currently, it has integrated vanilla OVS,
OVS-DPDK, and VPP. Our work covers all the test sce-
narios defined by the two projects. Moreover, the reported
experimental results relate to a set of representative, state-
of-the-art software switches that are more extensive than
any performance comparison studies in prior work.

3. Software switch design space

We first discuss the importance of exploring the dif-
ferent design objectives of alternative software switches
before considering how the seven representative state-of-
the-art solutions fit into a design space taxonomy.

3.1. Design Objectives

Before performing a comparative evaluation, it is very
important to understand the main design differences be-
tween the considered software switches. This may re-
quire identifying the adopted processing model, or ascer-
taining whether the switch has been designed for a par-
ticular application such as SDN or NFV. Such a task
is time-consuming but appears an essential precondition
to avoiding biased results or an incorrect interpretation
of the impact of subtle, performance impacting details.

4

Table 1: Performance comparison of existing software switches under the NFV environment. We highlight in bold the software switches relevant
to our comparison study, as explained in Sec. 2.1.2. “Bare-metal” refers to the case of configuring software switches to forward packets between
two physical NICs, “Inter-VNF forwarding” refers to traffic forwarding between two VNFs. “SFC” refers to the service function chaining
scenario with a varied number of sequential VNFs, “Uni.” refers to unidirectional throughput test, “Bi.” refers to bidirectional throughput
test. (?)Only OVS (and not OVS-DPDK) was evaluated with containerized VNFs in [71].

Ref. Software switches under test Bare-metal
VNF environment Inter-VNF

SFC
Throughput

Latency
VM Container forwarding Uni. Bi.

[30] BESS X X X X
[71] OVS, OVS-DPDK X X X(?) X X X
[72] Linux bridge, VALE X X X X
[73] ClickOS, BESS X X X
[19] Linux bridge, OVS, OVS-DPDK X X X X X
[34] OVS, PISCES, t4p4s X X

[74, 75] OVS-DPDK, VPP X X
[18] BESS, VPP, OVS-DPDK X X
[76] OVS-DPDK, Snabb, VALE X X X
[21] Snabb, OVS, OVS-DPDK, Linux bridge X X X

[77, 26]
OVS-DPDK, OVS, Linux bridge

X X X X
Lagopus, xDPd-DPDK

CSIT-1904 [25] VPP X X X X X X X X
VSperf [78] OVS, OVS-DPDK, VPP X X X X X X X X

Our work
OVS-DPDK, FastClick, Snabb

X X X X X X X X
VPP, t4p4s, BESS, VALE

Table 2: Taxonomy of state-of-the-art high-performance software switches

Architecture Programming Model Virtual Runtime Programming
LoC

Main
Self-contained Modular Paradigm RTC Pipeline Interface Reprogram. Language Purpose

BESS X Structured X X vhost-user High C, Python 70.5 k Programmable NIC
Snabb X Structured X vhost-user High Lua, C 453.4 k VM-to-VM

OVS-DPDK X Match/action X vhost-user High C 635.8 k SDN switch
FastClick X Structured X vhost-user Medium C++ 507.8 k Modular router

VPP X Structured X vhost-user Medium C 1200.0 k Full-fledged router
VALE X Structured X ptnet Low C 103.9 k Virtual Ethernet
t4p4s X Match/action X vhost-user Low C, Python 40.3 k P4 switch

Rather than providing a detailed discussion of implemen-
tation and/or acceleration techniques, for which we refer
to the survey in [83], we aim in this section to consider each
switch design in relation to a number of technical aspects
affecting packet processing performance. The objective is
to gain insight on how to devise meaningful experimen-
tal scenarios. A summary of this taxonomy is shown in
Table 2, whose details are now discussed.

3.2. Architecture

A significant difference between software switches re-
sides in the way packet processing is configured and, more
importantly, executed. A self-contained architecture is de-
fined as a full-fledged software that can be deployed with
minimal configuration effort. The switch data path is pre-
defined, though modifications at compile time are allowed,
and all processing functions are deployed in a single pro-
cess. In contrast, a modular architecture targets a high de-
gree of flexibility. This is usually achieved by providing a
predefined set of network functions that can be arranged in
a forwarding graph. The latter can even be re-configured
at runtime when each node is a different thread or process
or extended with custom network functions.

Our evaluation takes into account four switches de-
signed with a self-contained architecture: VALE [16],
VPP [84], t4p4s [33], and OVS-DPDK [10]. VALE is an
L2 learning switch based on netmap, which can intercon-
nect both physical NICs and virtual interfaces and forward

packets at high speed. Though it is feasible to connect
VALE with an external program, it is considered here as a
self-contained architecture. VPP consists of a forwarding
graph with hundreds of functions and support for addi-
tional plugins [85]. It exposes a command-line interface
that can be used to configure the router with a syntax
similar to the Cisco IOS operating system. OVS-DPDK is
a software switch built for SDN in which packet processing
is realized via a set of match/action tables (cf. Sec. 3.3),
which can be modified via the ovs-vsctl API. Custom
packet processing can be realized by adding new code that
must be compiled inside the original codebase. t4p4s is
designed to support P4 [35] semantics, whose workflow is
quite similar to OVS-DPDK. It consists of a parsing stage
on packet entry and a de-parsing stage when packets exit.
Match/action tables, described through P4, are deployed
between these two stages to indicate the sequence of oper-
ations to perform on packets.

The other switch designs considered in our study,
FastClick [7], BESS [13], and Snabb [21], belong to the
modular category. FastClick, one of the latest versions
of the original Click Modular Router, consists of a set of
nodes that can be arranged using a Click-specific config-
uration language. BESS also has a modular architecture,
although the modules are more general and less specialized
than those of FastClick. Similarly, Snabb interconnects
modules with links to compose network services.

5

3.3. Design Paradigm

Software switch implementations are heavily influenced
by their design paradigms, which can be classified into
two categories. Software switches in the first category em-
brace the structured programming paradigm to process
and forward incoming packets. Most of the considered
software switches, such as BESS, Snabb, FastClick, VPP,
and VALE, adopt this approach. On the other hand, soft-
ware switches in the second category rely on the match/ac-
tion paradigm to realize tailored processing for different
traffic classes. OVS-DPDK and the t4p4s belong to this
category and utilize a variety of built-in packet classifica-
tion algorithms to match specific header fields and apply
the corresponding actions in each processing stage.

3.4. Processing Model

Software switches generally employ two ways to process
incoming packets: run-to-completion (RTC) and pipeline.
The former refers to a model in which a single thread per-
forms full packet processing before being forwarded or dis-
carded. In contrast, the latter refers to a model according
to which packets go through several threads, each con-
taining a portion of processing logic, to complete full pro-
cessing. Most of the considered software switches (VPP,
FastClick, OVS-DPDK, t4p4s, and VALE) adopt the RTC
model to reduce the context switching overhead. Snabb is
the only switch that processes packets according to the
pipeline model. BESS presents the most versatile design
by adopting either model (RTC by default) depending
on the implemented multicore approach. Although BESS
originally adopts the RTC model, when scaling the appli-
cation to multiple cores, it can decide for a duplication or
a chaining approach. In the first approach, modules are
replicated to all cores, and load-balancing is deployed at
the NIC-level using receive-side scaling. In the second ap-
proach, similar to the pipeline model, different modules
are assigned to different cores.

3.5. Virtual Interfaces

Software switches mainly rely on virtual interfaces to
interact with VNFs and realize the intended traffic steering
on NFV platforms. There are several techniques for VM
and container networking. Most of the VMs based on QE-
MU/KVM communicate with the outside world using the
virtio [86] standard. It consists of the virtio net para-
virtualized frontend network driver and the vhost net

backend driver. Traditionally, vhost net takes packets into
the kernel and copies them back to the user-space software
switch. However, this is not desirable from a performance
point of view. To address this issue, Snabb implements
vhost-user, a backend driver allowing direct packet ex-
change between user-space software switches and VMs.
Compared with vhost net, vhost-user provides better per-
formance as it eliminates the overhead imposed by the ker-
nel. DPDK also adopts this solution and hence all of the
frameworks considered in this work, except VALE that is

based on netmap, use vhost-user [39] as backend driver2.
VALE relies on ptnet for efficient VM networking [42].
ptnet is a new para-virtualized device driver that grants
the VMs direct access to packet buffers of netmap ports
on the host using the netmap API. Compared with vhost-
user, ptnet delivers packets in a zero-copy manner without
incurring the overhead of queueing (as for virtio) or packet
descriptor format conversion, at the cost of a lower degree
of host-VM isolation and more difficult live migration.

Compared to virtual machines that emulate resources
at the hardware level, the container is an alternative
lightweight solution at the OS level and achieves isola-
tion through namespaces/cgroups. For high-speed con-
tainer networking, the DPDK community advocates using
the virtio-user frontend driver [87]. virtio-user is a
shared memory mechanism based on virtio. It implements
a vhost adapter to emulate virtio ports and bridge vhost
backend drivers, without the involvement of any hypervi-
sor. As demonstrated by [88], virtio-user manages to
achieve more than 3.5× performance boost over the stan-
dard kernel-based approach vhost net. We thus consider
virtio-user as the virtual device driver for all the soft-
ware switches using vhost-user backend. Netmap instead
provides native support for the veth interface [89]. By
specifying the kernel source path during compilation, the
veth.ko module based on netmap optimization is automat-
ically created. Container networking in netmap mode is
made possible by moving veth pairs across different Linux
namespaces. In our tests, we attach one end of veth to a
VALE switch and the other end to a container namespace,
to implement peer-to-peer zero-copy packet delivery. To
guarantee optimal performance, both sides of a veth pair
must be attached to netmap applications.

3.6. Runtime Reprogrammability

Although software switches are usually easy to pro-
gram, it is also important to consider their degree of repro-
grammability, e.g., packet processors can be programmed
through simple C programs. However, adding a new fea-
ture may require rewriting part of the code and sometimes
also rerunning, recompiling or replacing binary executa-
bles. However, a highly reprogrammable software switch
should offer the possibility to change the internal process-
ing pipeline at runtime with no need for recompilation.
We categorize the software switches into three degrees of
reprogrammability: high, medium, and low.

Snabb, BESS, and OVS-DPDK have the highest de-
gree of reprogrammability. Thanks to the App engine and
command-line tools, Snabb can interactively load stan-
dard modules to adjust its processing pipeline at runtime.
BESS’s bessctl utility serves the same purpose. The be-
havior of OVS-DPDK can also be modified at runtime.

2Note that ivshmem was an alternative VM networking for DPDK
applications. We do not consider it in our study as it has been
removed in newer versions of DPDK.

6

In particular, external SDN controllers can populate flow
rules to the OVS match/action tables through southbound
protocols such as OpenFlow [90]. Both VPP and FastClick
allow to program some modules and execute custom packet
processing applications. In particular, the VPP command-
line interface allows existing modules to be configured and
new plugins to be added at runtime. Nevertheless, chang-
ing the version of the same plugin requires restarting the
software switch. Therefore, VPP has a medium degree
of reprogrammability. Similarly, even though some mod-
ules can be interactively configured, a FastClick instance
has to be restarted when the processing graph is changed
and therefore has a medium degree of reprogrammability.
Finally, both t4p4s and VALE have a low degree of re-
programmability since they do not provide any means to
dynamically adjust their packet processing at runtime.

3.7. Programming Language

The choice of one particular programming language
over another can be dictated by performance requirements,
programmability, or time-to-market considerations. Most
of the software frameworks for high-speed packet process-
ing are written in C and/or C++. Since both languages
are performant, feature-rich, and portable across differ-
ent platforms, most of the software switches considered
in our study implement their performance-critical com-
ponents using them. High-level programming languages,
such as Python and Lua, are also adopted by some soft-
ware switches. For example, BESS additionally provides
a Python API to facilitate the composition of configura-
tion scripts, t4p4s implements its P4 compiler in Python.
Snabb is mainly based on Lua and also wraps snippets of
C code using LuaJIT, which profiles and optimizes code
execution at runtime [21]. With the relatively better pro-
grammability of Lua and the dynamic optimization of Lu-
aJIT, Snabb is expected to be an efficient solution.

3.8. Switch Primary Purpose

Packet processing frameworks can sustain good perfor-
mance, thanks to a large collection of acceleration tech-
niques discussed in the survey [83]. The adoption of these
techniques depends on the primary purpose for which the
software switch has been designed. Considering this pur-
pose is of interest for two main reasons: (i) it may provide
hints on the performance of each design in some specific
scenarios; (ii) it may be helpful in understanding which of
the software switch implementations is more suitable for
some particular user requirements.

BESS provides a native way to easily schedule packets
without only using the simple FIFO approach, thus en-
abling custom policies, resource sharing, and traffic shap-
ing. Resource sharing mechanisms may also be imple-
mented on top of existing frameworks, e.g., the authors
of [91] implemented fair sharing of both CPU and band-
width using fair packet dropping on top of VPP. However,
to the best of our knowledge, BESS is the only design that

physical interface

virtual interface

COTS Server

VNF1 VNF2 VNF3 VNF4

network traffic

Figure 1: Example of a service function chain in NFV going through
different physical (p) and virtual (v) interfaces on a COTS server.

natively provides scheduling capabilities without the need
to write a custom algorithm. Snabb targets a performant
and straightforward packet processing framework. Its core
optimizations leverage runtime profiling and rely on Lua-
JIT to optimize the most frequently executed portion of
code, rather than relying on the static compilation. Its app
engine can dynamically register new apps, making it one
of the most flexible solutions for high-speed packet pro-
cessing. Unlike other switches, it implements its own com-
pact kernel bypass mechanism without relying on DPDK
or netmap. OVS-DPDK aims to provide the benefits of
SDN (i.e., separation of data and control planes) with the
flexibility of a software solution. Its data path is highly op-
timized thanks to the presence of internal flow caches. It
can also be used as a static switch with predefined rules,
or as a fully functional SDN switch in conjunction with
an external control plane. t4p4s implements a high-speed,
platform-independent P4 switch. Its compiler synthesizes
P4 programs and generates core switch code, which is then
converted to platform-specific instructions by its hardware
abstraction layer. It is representative of several efforts to
implement production-ready P4 switches. FastClick aims
to provide a high-speed modular router that can process
millions of packets per second by arranging custom func-
tions in a graph-like fashion. The advantage of FastClick
is the possibility to re-arrange its rich set of internal ele-
ments to realize different types of packet processing appli-
cations. VPP should be considered when a fully-featured
software network function (e.g., switch, router, or secu-
rity appliance) is required. Its code was part of Cisco’s
high-end routers before being released as open-source and
therefore contains a large set of software components that
can be used for all kinds of possible L2-L4 applications.
VALE fulfills the role of a high-speed L2 learning switch
that interconnects multiple VMs. Its primary purpose is
to provide a high-speed virtual local Ethernet switch.

4. Test methodology

This section shows our methodology to compare
generic software switches’ performance in terms of
throughput and latency, i.e., two crucial metrics to evalu-
ate the performance and scalability of NFV applications.

When the traffic traverses a service chain of multiple
VNFs, it follows a path through a sequence of interfaces
which may be either physical (p) or virtual (v), as shown
in the example of Fig. 1. This basic observation motivates
the test scenarios considered in Sec. 4.1, which include all
possible combinations of physical and virtual interfaces.

7

COTS server

COTS server

SUT

COTS server

SUT

COTS server

SUTSUT

NIC0

NIC1

NIC0

(a) p2p

(c) v2v

(b) p2v

(d) loopback

VNF1 NIC0

NIC1VNF2

VNF

VNF

Figure 2: A logical view of the four proposed test scenarios. Red
arrows illustrate the packet flow in the System Under Test (SUT),
namely the software switch.

For each scenario, we conduct an experimental measure-
ment campaign in our platform, as described in Sec. 4.2.
The configuration settings for each specific software switch
considered in our work are discussed in Sec. 4.3.

4.1. Test Scenarios

For a meaningful and comprehensive comparison in a
NFV system, we propose to consider four reference test
scenarios, p2p, p2v, v2v, and loopback, as illustrated in
Fig. 2. We assume a logical server with two dual-port
NICs and denote the software switch as System Under
Test (SUT). In practice, we implement all the scenarios
on a single COTS server, as described in Sec. 4.2.

Physical-to-physical scenario (p2p) – Packets entering
from one physical input interface are forwarded to the
physical output interface by the software switch, as shown
in Fig. 2-(a). Although this scenario does not deal with
VNFs, it is still relevant since common network functions
are increasingly hosted by software switches, either to aug-
ment the physical NIC [13] or to reduce duplicated VNF
processing [68]. Evaluating the bare forwarding rate be-
tween two physical interfaces thus provides a baseline ref-
erence. Furthermore, in other scenarios, p2p serves as a
reference to evaluate the overhead imposed by the virtu-
alized environment, both qualitatively and quantitatively.

Physical-to-virtual scenario (p2v) – The software switch
forwards packets between a physical interface and a VNF
hosted in a virtualized environment, as shown in Fig. 2-
(b). This scenario can be mapped to the first and last hop
of VNF chains inside a server. Combined with p2p, p2v
reveals the software switch performance when connected
to a virtualized environment.

Virtual-to-virtual scenario (v2v) – The software switch
transfers the traffic between two virtual interfaces, as
shown in Fig. 2-(c). This scenario is used to assess the traf-
fic exchange performance by subsequent VNFs in a chain
running in the same server. Since no physical interface is
involved, the forwarding rate in this scenario is not lim-
ited by the NIC’s hardware, but by the underlying bus
architecture (typically front-side bus and memory bus).

Loopback scenario – The software switch steers incoming
packets from physical NIC0 through a chain of VNFs be-
fore sending them out through physical NIC1. Each VNF
is deployed inside a virtual machine or a container and
chained with other VNFs through the virtual interfaces of
the software switch. Fig. 2-(d) illustrates the case of a ser-
vice chain with a single VNF. We additionally take into
account service chains with multiple VNFs in our study.
This scenario mimics a complete NFV service chain within
the same server.

When comparing the above four scenarios, it is worth
noticing that the memory bandwidth bounds the through-
put for the v2v scenario. In contrast, when the physical
interface is involved (p2v, p2p scenarios), throughput is
bounded by the NIC capacity.

4.2. Measurement Testbed

This section describes the hardware and software con-
figuration that we used to implement our methodology.
This description can be used as a reference to design a
measurement platform based on the available state-of-the-
art technologies.

Our testbed includes a commodity server equipped
with two Intel Xeon E5-2690 v3 @ 2.60GHz CPUs
(each with 24 virtual cores under hyper-threading and
32k/256k/30720K L1-3 caches), 192GB DDR4 memory
@2.13GHz, and two Intel 82599ES dual-port 10Gbps NICs
spread over two NUMA nodes. The server runs Ubuntu
16.04.1 operating system with Linux 4.15.0-65-generic ker-
nel distribution. We deployed VNFs inside both VMs and
containers to evaluate the efficiency of software switches in-
teracting with different virtual environments. Containers
are instantiated with Docker (version 18.09.7), while VMs
are launched from a CentOS 7 [92] image using QEMU
virtualizer [93]. In particular, we use QEMU 2.2 in exper-
iments for BESS as newer versions present compatibility
issues. As we verified on our testbed, QEMU 2.2 yields
the same throughput and latency as the newer QEMU 3.0
for the other switches. Furthermore, as recommended
in [94, 95], we fix the CPU frequency to 2.6 GHz by set-
ting the scaling governor to “performance” and disable
Turboboost to reduce performance variance. We also re-
serve 1GB Hugepages to minimize Translation Lookaside
Buffer (TLB) misses and assign 32 pages for each NUMA
node. Finally, some CPU cores are specifically isolated
from the kernel scheduler using the isolcpus boot pa-
rameter and reserved solely for the software switch un-
der test and the VNFs. The setup for each test scenario
is illustrated in Fig. 3. Software switches are always de-
ployed on a single core on NUMA node 0 to ensure a fair
comparison and avoid the inter-core transfer overhead in
multi-core configurations. Single-core is also arguably a
reasonable assumption as network operators usually seek
to limit resources devoted to networking. Each VM/con-
tainer is allocated four physical cores. We utilize a collec-
tion of high-speed software packet processing tools, includ-

8

NUMA node 0NUMA node 1

NIC1

Port 0

MoonGen SUT

Port 1

NIC0

Port 1Port 0

(a) p2p

NUMA node 0NUMA node 1

NIC1

MoonGen

SUT

NIC0

FloWatcher-DPDK pktgen-DPDK

 /pkt-gen/pkt-gen

Port 1Port 0Port 1Port 0

(b) p2v

NUMA node 0

SUT

/pkt-gen
pktgen-DPDKFloWatcher-DPDK

/pkt-gen
pktgen-DPDK
/pkt-gen

(c) v2v

NUMA node 0NUMA node 1

NIC1

MoonGen

NIC0
Port 1

...

Port 0Port 1Port 0

testpmd

 /VALE

testpmd

 /VALE

testpmd

 /VALE

SUT

(d) loopback

Figure 3: Test scenarios mapped to our testbed with two NUMA nodes each associated with a dual-port 10 Gbps NIC directly connected to
the other NUMA node’s NIC. Red arrows represent the data flow. In particular, we highlight unidirectional and bidirectional traffic for p2v
and v2v scenarios with two arrows respectively, as their configurations are asymmetric on TX and RX ends.

ing MoonGen [48], pktgen-DPDK [96] (version 19.10.0),
FloWatcher-DPDK [97], and netmap’s pkt-gen [98], for
traffic generation and measurement. The DPDK version
used for all the tests is always 18.11.3 (LTS) for both the
host machine and the virtual environment.

It is important to note that the use of the same server
for both traffic generation/reception and the system un-
der test does not introduce spurious interference since the
cores and memory are effectively isolated under the NUMA
architecture of our server. In particular, we combine soft-
ware switch utilities (e.g., handles or command-line op-
tions to tune DPDK EAL parameters) with system tools
(e.g., numactl, taskset) to guarantee core and memory
affinities. For the v2v scenario, everything runs on NUMA
node 0 without the involvement of physical NICs; thus, the
traffic forwarding rate is only limited by the local memory
speed. For the other scenarios, the TX/RX components
run on NUMA node 1 while the software switch under
test (and TX/RX for p2v scenario) is deployed on NUMA
node 0. The cores only access memory in their local
NUMA node and do not share remote memory. The same
benchmark-setting was also adopted in [52]. Note that,
since packets are transferred through physical NICs, their
maximum bandwidth (10 Gbps) constitutes the theoretical
bottleneck for these scenarios. Although many works have
already conducted experiments using 40/100 Gbps NICs,
we argue that it is still relevant to characterize software
switches in the NFV environment with 10 Gbps NICs.
In fact, according to our experimental results in Sec. 5,
most of the software switches under test fail to sustain a
10/20 Gbps forwarding rate in most unidirectional/bidi-
rectional test scenarios.

4.3. Software Switch Settings

For each tested software switch, we used the lat-
est functional version/commit available at the time of
writing, namely: FastClick (commit 9d5e9c6); BESS
(“Haswell” archive, specifically built for Haswell CPU ar-
chitecture); OVS-DPDK (version 2.11.90); Snabb (commit
24c9a67); VALE (netmap commit 42270fc); t4p4s (com-
mit b1161b2); and VPP (version 19.04). Moreover, as
detailed in [18], each software switch requires a specialized
parameter setting to render the optimal performance with
different input traffic and application contexts. However,

given the huge number of system and application parame-
ters ranging from GRUB settings to internal packet buffer
sizes, it is impossible to exhaustively test and find the
most suitable set of values for all the test scenarios. Here
we only perform basic parameter tunings for each software
switch to improve performance. As the test scenarios and
traffic patterns are intrinsically simple, we believe these
basic tunings are sufficient to conduct a fair performance
comparison study for state-of-the-art software switches.
Indeed, the goal of our work is not to find the optimal
throughput and processing latency in absolute terms for
each considered software switch. We also report the set-
tings required for each scenario, taking into account the
specific software switches considered in the tests. Addi-
tional configuration details are reported in Appendix A.

p2p scenario – In this scenario, the software switch
acts as a packet forwarder from one physical port to the
other without the involvement of any virtualization layer.
We configure MoonGen to transmit synthetic traffic at
10 Gbps from NUMA node 1 to the SUT, as illustrated
in Fig. 3a. Similar to [19, 26, 30, 71, 76], we generate
identical packets and fix the packet size to 64B, 256B, and
1024B, respectively. The results of synthetic traffic pro-
vide a fair evaluation of the sheer forwarding capability
for each software switch and can also be utilized to es-
timate the performance of more realistic traffic patterns.
Packets are sent at the maximum rate, disregarding any
drops3. We consider unidirectional traffic and measure
the corresponding throughput (in Gbps) on NUMA node
1, by collecting outbound traffic from NUMA node 0. We
also consider bidirectional traffic, which doubles the packet
processing rate that the switch has to sustain. We measure
the bidirectional throughput by simultaneously transmit-
ting packets towards both interfaces of NUMA node 0.
We also run the baseline DPDK testpmd sample applica-
tion [99] in the fastest forwarding mode (i.e., forwarding
packets as they are) and measure the bare-metal through-
put as a baseline reference.

3Note that this is different from the usual Non-Drop-Rate (NDR)
of CSIT 1904 [25]: a binary search for the NDR is not suited for
evaluating software switches as it may converge to unreliable points
due to even a single packet drop, caused at the driver level.

9

p2v scenario – We configure the SUT to allow the commu-
nication between the VNF and the physical NIC, as illus-
trated in Fig. 3-(b). Since this is a hybrid test scenario
(connecting the physical and virtual environments), we
consider three possible combinations of the packet work-
flow. In particular, we consider a physical-to-virtual uni-
directional flow (denoted as “unidirectional”), the reverse
virtual-to-physical flow (called “unidirectional-reverse”)
and the full-duplex combination of the above cases (named
“bidirectional”). To obtain the highest throughput for
each software switch under different virtualization tech-
niques, we apply different configurations using specific
software tools and virtual device drivers. The VALE
switch requires a specific configuration, as it relies on
netmap’s ptnet driver for high-speed VM networking. To
enable ptnet inside VMs, we use a customized QEMU pro-
vided by netmap authors [100], as it supports ptnet vir-
tual interfaces with VALE ports as their host-side back-
end [42]. We then compile netmap with ptnet support in
the guest VM and run netmap applications inside the VM
to maximize throughput. Note that we are aware that
ptnet also supports passthrough of physical interfaces di-
rectly, without connecting them using VALE. However, we
decided not to use this feature because our work focuses
on software switches instead of device passthrough. For
high-speed networking testing between containers, netmap
provides native support for veth interfaces. We package
netmap applications in a Docker container (as VNFs), for
experiments related to VALE. To bridge the VALE switch
with the containerized VNF, we put one end of the veth
pair into the container namespace and attach the other
end to a VALE instance. For both VM and container
tests in the p2v scenario, we use pkt-gen as VNF inside
the container. In the unidirectional test, one instance of
pkt-gen in RX mode is attached to the ptnet/veth vir-
tual interface to measure the throughput, while for the
reversed test, pkt-gen runs in TX mode. In the bidirec-
tional test, two instances of pkt-gen in TX/RX modes are
simultaneously attached to the virtual interface. To test
the throughput of other switches with VMs, we use the
standard QEMU and create a virtio-pci virtual interface
with a vhost-user as backend. We further accelerate packet
I/O inside the guest VM by deploying DPDK and attach
the virtio-pci interface to the igb uio poll-mode driver.
For the case of containers, we build a Docker image wrap-
ping the DPDK suite and run VNF on top of a virtio-user
interface with vhost-user backend supplied by SUT. The
docker image is available at [101]. We run FloWatcher-
DPDK [27], a lightweight software traffic monitor, to mea-
sure the unidirectional throughput. To measure the bidi-
rectional throughput, we use pktgen-DPDK, a high-speed
traffic generator/monitor. For the unidirectional-reverse
test, we use pktgen-DPDK only as the traffic genera-
tion VNF. On NUMA node 1, MoonGen is used as a
traffic generator for unidirectional tests, and it is used
as a traffic generator/monitor for the bidirectional tests.
FloWatcher-DPDK is used to measure the reversed unidi-

rectional throughput. In the VM case, we configure Snabb
in client mode to flexibly reconfigure Snabb without re-
instantiating all the VMs. Instead, for the container case,
we have to configure Snabb in server mode since virtio-
user cannot create the Unix socket in the absence of the
hypervisor.

To obtain bidirectional traffic, we initiate two pkt-gen
instances (for VALE)/one pktgen-DPDK instance (for oth-
ers) to TX/RX from inside the VM/container and start
another MoonGen instance to TX/RX simultaneously on
NUMA node 1, as illustrated in Fig. 3b. However, we expe-
rienced severe performance degradation when the two pkt-
gen instances are attached to the same ptnet port inside
the VM. To overcome this, we attach the pkt-gen instances
to a netmap virtual interface, which is, in turn, attached to
the ptnet port through a VALE instance inside the VM.
This setting imposes an extra hop of packet forwarding,
but this is the best option to achieve reasonable bidirec-
tional p2v traffic with VALE. Without this bottleneck, the
real bidirectional throughput of VALE is expected to be
much higher. We do not observe the same issue in the
container test with two pkt-gen instances attached to the
same veth interface concurrently.

v2v scenario – In the v2v scenario, as illustrated in Fig. 3-
(c), we need to instantiate two VMs, each with a virtual
interface attached to the software switch under test. The
virtual interface configurations are similar to those in the
p2v scenario. We deploy a traffic generator in the first
VNF and configure it to inject packets towards the soft-
ware switch, which in turn forwards packets to the moni-
toring VNF. Similar to previous scenarios, different traffic
generation/measurement tools are required to realize the
intended data path for different switches. For VALE unidi-
rectional throughput, we deploy an instance of pkt-gen in
each VM/container and configure them to perform traffic
generation/measurement, respectively. For other switches,
we run pktgen-DPDK in the first VM/container as a traffic
generator and FloWatcher-DPDK on the second VM/con-
tainer to measure unidirectional throughput.

To generate bidirectional traffic, we deploy an in-
stance of pktgen-DPDK in each VM/container to trans-
mit packets at maximum rate and measure the aggregated
throughput, for software switches other than VALE. For
the VALE switch, we instead need two pkt-gen instances
in each VM/container to transmit and receive simultane-
ously. Similar to the p2v bidirectional test, for VM de-
ployment, we attach both pkt-gen instances in each VM
to a netmap virtual interface, which is attached to the pt-
net virtual interface through a VALE instance. For the
container deployment, we directly attach both pkt-gen in-
stances to the veth interface in each container.

Loopback scenario – We instantiate a chain of N identi-
cal VNFs, with N ∈ {1, 5}. Each VNF is allocated with
four cores and a pair of virtual interfaces. Each software

10

switch transfers traffic across the VNFs in sequence, form-
ing a linear service chain. By default, a single instance of
each VNF is deployed in a VM or container. Fig. 3-(d)
illustrates the setup. For VALE, we configure two ptnet
virtual interfaces for each VM in which we run a VALE in-
stance as a VNF. This VALE instance cross-connects the
pair of ptnet ports. Each VM is linked to its successor
through a VALE instance. The first and last VM also
need to link the physical ports with two additional VALE
instances. Similarly, for container configuration, two pairs
of veth interfaces are created, each of which has one end at-
tached to VALE and the other end attached to a container
hosting a new VALE instance as VNF. In all, we need
(N + 1) VALE instances for a service chain of N VNFs.
For the other software switches, we configure two virtio in-
terfaces with vhost-user backend for each VM, in which we
run an instance of the DPDK testpmd sample application
that cross-connects interfaces and updates the destination
MAC addresses. On NUMA node 1, we start MoonGen
to generate 10 Gbps traffic through one port and measure
throughput for different packet sizes from the other port.
For bidirectional traffic, MoonGen is configured to gener-
ate 10 Gbps traffic from both its physical ports and to
measure the aggregated throughput. The software switch
is configured to transfer packets between MoonGen and
the service chain. We vary the number of VNFs from 1
to 5 to test the throughput of each switch with increasing
service chain length. Regarding the switch configurations,
BESS exhibits compatibility issues with QEMU 3.3.10 and
cannot instantiate more than 3 VMs simultaneously. As a
result, we degrade to QEMU 2.2.0 specifically for BESS in
this scenario. Furthermore, it was not possible to perform
the loopback test for Snabb with containerized VNFs due
to the issue reported in [102].

4.4. Latency Test

We measure the round-trip time (RTT) latency, which
in our case is defined as the time spent between packet
emission by the traffic generator and the time the traffic
monitor receives the packet.

To avoid saturation and perform meaningful latency
measurements, it is necessary to identify the Maximal
Forwarding Rate (R+), defined as the maximum rate the
software switch can forward packets without experiencing
losses. Injecting packets at a speed higher than R+ causes
congestion and leads to packet losses that would bias the
measured latency. On the other hand, injecting packets
at a very small rate may also impair latency as most so-
lutions employ batch processing. It is well known that it
is very hard to determine R+ since software traffic gen-
erators generally lack the stability of hardware and may
induce non-deterministic packet losses.4 VNF chains in

4Precision is made more difficult by the coarse granularity of soft-
ware traffic generators. MoonGen, for example, rounds up TX rates
in the range [9.88, 10] Gbps to 10 Gbps.

the loopback scenario tend to exacerbate this uncertainty.
Rather than trying to identify the precise R+, we follow
the methodology introduced in [85] and define R+ as the
average throughput achieved under saturating input con-
ditions. We measure latency at loads of 0.10, 0.50, and
0.99 times R+. Thus, 0.99R+ reflects the latency under
heavy input load, 0.50R+ under intermediate load, while
0.10R+ shows the impact of batch processing on latency
under low load.

We perform the described latency measurement specif-
ically for p2p and loopback scenarios as, in these two sce-
narios, MoonGen can leverage the NIC to accurately and
efficiently timestamp UDP packets [48]. We have not per-
formed a latency test for p2v, as its RTT is expected to
be similar to that of the loopback scenario with one VNF.
For v2v, it is not possible to perform the same test as for
p2p and loopback since virtual interfaces, unlike physical
ones, do not support hardware timestamping. Fortunately,
pktgen-DPDK implements a software timestamping fea-
ture that can still be utilized in both VMs and Docker
containers. Although less accurate than hardware time-
stamping, it provides a means to compare different soft-
ware switches under the same setup.

p2p scenario – To measure RTT in the p2p scenario,
MoonGen is configured with two threads. One thread gen-
erates synthetic traffic with 64B packets, as used for mea-
suring throughput. The other TX thread periodically in-
jects, as background traffic, Precise Time Protocol (PTP)
packets with specific sequence numbers, collects these spe-
cial PTP packets on their way back from the other port of
the NIC in NUMA node 1, and calculates the round-trip
time based on the difference between TX and RX time-
stamps. These timestamps are generated by the underly-
ing Intel 82599 NIC, under the instruction of MoonGen.

Loopback scenario – The loopback latency test uses the
same settings as the p2p test with R+ set to the corre-
sponding unidirectional loopback throughput. For all the
switches except VALE, each VNF is essentially an instance
of the DPDK testpmd application running in MAC for-
warding mode. Similar to the throughput test, we deploy
testpmd in both VMs and containers using the vhost-user
backend. Again, we cannot show results for Snabb with
containers here due to the issue reported in [102]. For
VALE, we again run a VALE instance as an L2 forward-
ing VNF inside the virtualized environment.

v2v scenario – For the v2v latency test, we cannot lever-
age the hardware timestamping feature of MoonGen inside
virtualized environments. As a result, we have to adopt
different methods for different tools to realize a relatively
fair comparison. Thanks to the good compatibility with
the operating system, standard tools can be used to mea-
sure the latency for VALE in this scenario. We simply con-
figure routing using ip command for each VM. We then
ping the second VM from the first and get the average

11

64B 256B 1024B
0

5

10

15

20

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Unidirectional traffic
64B 256B 1024B

0

5

10

15

20

(b) Bidirectional traffic

testpmd
BESS

FastClick
VPP

OVS-DPDK
snabb

VALE
t4p4s

Figure 4: Throughput for the p2p scenario with unidirectional/bidi-
rectional traffic composed of 64B, 256B, or 1024B packets.

RTT. Note that we cannot do the same for Docker con-
tainers, as netmap’s veth interfaces presented a compati-
bility issue with system tools, and packets were not deliv-
ered across namespaces. A similar issue was also reported
by [103]. We leave the latency measure of VALE switch
with containerized VNFs for future work. Other switches
do not support system tools due to the complete kernel-
bypassing architecture of DPDK. Instead, as mentioned
before, we measure latency using the software timestamp-
ing feature of pktgen-DPDK to measure the RTT. The
setup is the same as the bidirectional v2v throughput test:
we configure one virtio-pci/virtio-user interface for each
VM/container. All these interfaces are attached to the
SUT. In the first VM, we launch an instance of pktgen-
DPDK with the latency test option enabled. Packets are
timestamped and transmitted from one virtio interface to-
wards the SUT, which forwards traffic to the second VM.
The second VM, in turn, bounces the packets back to the
SUT using the DPDK testpmd application. Then the SUT
sends the packets to the first VM. The pktgen-DPDK in-
stance in the first VM timestamps the received packets
and calculates the RTT based on the difference between
RX and TX timestamps. We set the packet size to 96B5

and transmit them at 1 Gbps rate for all the tests. while
not as accurate as hardware timestamping, this approach
can still reveal the main characteristics of the solutions.

5. Experimental Results

We now show the experimental results obtained us-
ing the methodology presented in Sec. 4 to evaluate per-
formance in terms of throughput (Sec. 5.1) and latency
(Sec. 5.2).

5.1. Throughput Tests

p2p scenario – Fig. 4 shows the throughput results for
the p2p scenario. As a simple application that only for-
wards packets without modification, testpmd achieves 10
Gbps with unidirectional traffic regardless of the packet

5This is specifically required for pktgen-DPDK since smaller
packet size always renders 0 µs RTT.

size. When considering unidirectional traffic, all the soft-
ware switches saturate the 10 Gbps link with 256B and
1024B packets, proving that they are all capable of han-
dling realistic traffic (e.g., 850B average packet size in data
centers [104]). For the most stressful input load with 64B
packets, BESS, FastClick, and VPP still saturate the link
at 10 Gbps (about 14.88 Mpps-million packets per sec-
ond). Snabb achieves only 8.74 Gbps, as staging packets
in internal buffers imposes extra overhead. OVS-DPDK
achieves 8.07 Gbps due to the overhead of its match/ac-
tion pipeline. As the synthetic traffic consists of identical
packets, corresponding to a single flow, OVS-DPDK’s flow
cache does not help. VALE switch only achieves 3.36 Gbps
since, by design, it prioritizes memory isolation and there-
fore performs expensive packet copy operations between its
ports, in addition to source MAC learning and flow table
lookup. We have tried reducing its default packet buffer
size to 128B and managed to improve the forwarding rate
to 14 Mpps (at the risk of server crashes). t4p4s achieves
6.91 Gbps because it incurs the overhead of implementing
multiple processing stages, including header parsing/de-
parsing and flow table lookup.

Bidirectional traffic doubles the processing pressure
and can therefore better reflect the forwarding capabil-
ity of software switches under traffic bursts. As shown in
Fig. 4, VALE achieves 7.77 Gbps with 256B traffic, which
is less than its unidirectional result (10 Gbps). This is
mainly due to the twofold packet copying overhead be-
tween the physical NICs. All the other switches reach
20 Gbps forwarding with 256B and 1024B packets, as they
do not incur heavy operations like data copying on their
datapaths. For 64B traffic, BESS, FastClick, and VPP
manage to surpass the 10 Gbps forwarding rate (which
is their throughput under unidirectional traffic) but fail to
reach 20 Gbps due to the overhead of their disparate inter-
nal operations. Specifically, BESS achieves the same result
as the baseline testpmd application with 16 Gbps since it
only performs minimal processing like collecting statistics.
FastClick additionally extracts and updates packet header
fields while VPP performs several verifications. The other
switches achieve less throughput than unidirectional cases
due to the less efficient processing pipelines and/or more
complex internal operations. In particular, VALE suffers
the most and only achieves 2.51 Gbps forwarding rate,
again due to the twofold packet copying overhead.

p2v scenario – Fig. 5 presents results for the p2v sce-
nario. Under unidirectional and reversed traffic, as illus-
trated in Fig. 5-(a)-(d), all the software switches consid-
ered in our evaluation sustain 10 Gbps under 256B and
1024B packets, showing that they are capable of forward-
ing more realistic traffic between physical and virtual en-
vironments. For 64B packets, BESS sustains 10 Gbps in
both virtual environments regardless of the overhead from
the vhost-user, as the tasks it performs are very basic
and simple. The performance impact of the vhost-user
interface on BESS can only be understood with the more

12

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Unidirectional traffic (VM)
4

6

8

10

(b) Unidirectional traffic (CT)

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

(c) Reversed traffic (VM)
4

6

8

10

(d) Reversed traffic (CT)

64B 256B 1024B

5

10

15

20

Th
ro

ug
hp

ut
 (G

bp
s)

(e) Bidirectional traffic (VM)
64B 256B 1024B

5

10

15

20

(f) Bidirectional traffic (CT)

BESS
FastClick

VPP
OVS-DPDK

snabb VALE t4p4s

Figure 5: Throughput in physical-to-virtual (p2v) scenarios with
traffic generation/monitor VNF deployed in virtual machine or con-
tainer. (*) “VM” denotes virtual machine, “CT” denotes container.

stressful bidirectional traffic discussed in the next para-
graph. VALE reaches 3.91/4.21 Gbps (VM) and 4.98/4.31
Gbps (container) with unidirectional and reverse traffic,
which are better than its throughput in the p2p scenario
(3.36 Gbps). This is because the netmap-patched ptnet
driver and veth pair perform efficient packet exchange
with VNFs and impose less overhead than dealing with
a physical interface. All the other switches achieve lower
throughput than their p2p results. As the only difference
between p2p and p2v datapaths lies in the substitution
of the physical interface with a vhost-user virtual inter-
face, therefore, these switches experience a bottleneck in
dealing with the virtualized environments as the vhost-
user backend interface requires to enqueue/dequeue the
virtio rings by copying packets. For example, although
FastClick and OVS-DPDK managed to sustain 10 Gbps
in the p2p scenario, FastClick achieves 6.76 Gbps (VM)
and 6.53 Gbps (container) with unidirectional traffic while
OVS-DPDK only achieves 5.33 Gbps (VM) and 5.28 Gbps
(container), respectively. Snabb presents quite distinct re-
sults: with reversed traffic, it achieves 9.74 Gbps (VM)
and 9.60 Gbps (container); but with unidirectional traffic,
it attains 8.34 Gbps for the VM test and merely 4.33 Gbps
for the container test (approximately 48% difference). We
believe the low throughput with unidirectional traffic when
containers are used comes from the compatibility issue be-
tween the Snabb switch and the virtio-user frontend. The
same issue also occurs in the loopback test discussed be-
low. Snabb also achieves higher throughput with reversed
traffic, the cause for this is still under investigation.

Fig. 5-(e) and (f) illustrate the measured throughput
with bidirectional traffic. For 256B and 1024B packets,
BESS still sustains line rate, i.e., 20 Gbps, but the impact
of vhost-user is noticeable for the other switches. Indeed,

10

100

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Unidirectional traffic (VM)

10

100

(b) Unidirectional traffic (CT)

64B 256B 1024B

10

100

Th
ro

ug
hp

ut
 (G

bp
s)

(c) Bidirectional traffic (VM)
64B 256B 1024B

10

100

(d) Bidirectional traffic (CT)

BESS
FastClick

VPP
OVS-DPDK

snabb
VALE

t4p4s

Figure 6: Throughput in virtual-to-virtual (v2v) scenarios with dif-
ferent traffic patterns and virtual environments. Note that the y-axis
shows the measured throughput in log scale.

VPP, OVS-DPDK, and t4p4s fail to saturate 20 Gbps in
both virtual environments while FastClick and Snabb fail
in the container test, in contrast to the 20 Gbps they
achieved in the bidirectional p2p test. In particular, al-
though Snabb outperforms VPP in the VM test (20 Gbps
vs. 16.96 Gbps), it only achieves 16.38 Gbps in the con-
tainer test and is outperformed by VPP (16.91 Gbps). By
correlating with the p2v unidirectional container test, we
believe the abnormally low throughput causes this degra-
dation. VALE only gets 10 Gbps rate in the VM test due
to the extra overhead imposed by the VALE instance. The
real throughput is expected to be much higher if the ptnet
interface is compatible with netmap’s pkt-gen. So the re-
sults here only represent a lower bound, which can be veri-
fied in the container case (20 Gbps). For 64B traffic, BESS
achieves 10.26 Gbps for VM test and 10.54 Gbps for con-
tainer test respectively, which are much lower than its bidi-
rectional p2p test result (16 Gbps), further illustrating the
impact of vhost-user. VALE attains 8.72 Gbps and outper-
forms the other 5 switches in the container test, thanks to
the efficiency of the patched veth pair. Although it only
achieves 3.47 Gbps in the VM test because of the over-
head of one extra in-path VALE instance, this result is still
higher than its bidirectional p2p throughput (2.51 Gbps),
which indirectly reflects the efficiency of netmap’s ptnet
mechanism. The other switches follow the same trend as
the unidirectional tests. Note that, except for the spe-
cial cases of VALE and Snabb, the other switches achieve
similar throughput in both VM and container tests.

v2v scenario – Results of the v2v throughput test with
both VMs and containers are reported in Fig. 6. In the
unidirectional test, as illustrated in Fig. 6-(a) and (b),
most of the switches achieve at least 10 Gbps through-

13

put with 256B and 1024B traffic. As no physical NICs are
involved in the v2v scenario, the achievable throughput
is only limited by the system bus of our server. Indeed,
VALE achieves 24.80 Gbps (VM) and 21.82 Gbps (con-
tainer) with 256B traffic; for 1024B traffic, its through-
put even reaches 52.95 Gbps (VM) and 48.53 Gbps (con-
tainer). The throughput of BESS, FastClick, VPP, and
Snabb are upper-bounded by 10 Gbps due to the rate lim-
itation of pktgen-DPDK on vhost-user interfaces. The ac-
tual throughput should be higher than this. In our pre-
vious work [24], we used MoonGen inside a VM in the
v2v scenario to accomplish flexible traffic generation be-
yond 10 Gbps. However, MoonGen does not work with
virtio-user frontend interfaces inside the container names-
pace. Therefore, we use pktgen-DPDK in this scenario to
provide a fair comparison for both virtual environments.
A full-fledged traffic generator combining the advantages
of MoonGen and pktgen-DPDK is left for future work.
The current limitation of pktgen-DPDK does not affect
our observation on 64B unidirectional traffic as no switch
exceeds 10 Gbps. In this case, VALE is still the most
performant switch and achieves 9.24/8.08 Gbps for VM/-
container. Compared with its corresponding p2v result
(3.91/4.98 Gbps), it is clear that VALE is more efficient
in both VM and container networking. This is mostly be-
cause of the efficiency of the ptnet/veth zero-copy packet
I/O mechanism. All the other switches achieve through-
put lower than 6.6 Gbps and experience throughput degra-
dation compared to p2v tests due to the extra overhead
introduced by one additional vhost-user interface. In par-
ticular, BESS achieves 9.67 Gbps (VM) and 9.34 Gbps
(container) respectively, which are less than the 10 Gbps
throughput it achieved in p2p and p2v unidirectional tests.
Snabb still achieves distinct throughput with different vir-
tualization environments in the v2v unidirectional test,
with 6.59 Gbps (VM) and 4.03 Gbps (container), due to
its incompatibility with virtio-user frontend inside Docker.

Figs. 6-(c) and (d) illustrate the measured bidirec-
tional throughput for VNFs running in VMs and contain-
ers. VALE presents the highest throughput in the con-
tainer test with 16.24 Gbps for 64B traffic, 44.65 Gbps
for 256B traffic, and 95.55 Gbps for 1024B traffic. Even
in the VM test, it still outperforms most of the other
switches with 5.11 Gbps (64B), 12.72 Gbps (256B), and
31.74 Gbps (1024B), despite the limitation of ptnet and
netmap’s pkt-gen (as explained in prior sections). These
results again demonstrate the efficiency of netmap’s pt-
net/veth in dealing with VNF networking. Other switches
achieve at least 20 Gbps throughput with 1024B traffic due
to the limitation of pktgen-DPDK. For 64B and 256B traf-
fic, BESS achieves the highest throughput in the VM test
with 8.17 Gbps and 20 Gbps and outperforms the others.
It also presents the second-best results after VALE, thanks
to its simple internal operations. FastClick, OVS-DPDK,
VPP, Snabb, and t4p4s also exhibit sightly lower through-
put with bidirectional traffic compared to their unidirec-
tional results, mainly because of the doubled internal pro-

0

1

2

3

4

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Unidirectional 64B (VM)

2

4

6

8

10

(c) Unidirectional 256B (VM)
2

4

6

8

10

(e) Unidirectional 1024B (VM)

1

2

3

4

Th
ro

ug
hp

ut
 (G

bp
s)

(b) Bidirectional 64B (VM)

2

4

6

8

10

(d) Bidirectional 256B (VM)

5

10

15

20

(f) Bidirectional 1024B (VM)

1

2

3

4

Th
ro

ug
hp

ut
 (G

bp
s)

(g) Unidirectional 64B (CT)

2

4

6

8

10

(i) Unidirectional 256B (CT)

4

6

8

10

(k) Unidirectional 1024B (CT)

1 2 3 4 5
0

1

2

3

4

5

Th
ro

ug
hp

ut
 (G

bp
s)

(h)Bidirectional 64B (CT)
1 2 3 4 5

0

2

5

7

10

12

(j)Bidirectional 256B (CT)
1 2 3 4 5

5

10

15

20

(l)Bidirectional 1024B (CT)

BESS FastClick VPP OVS-DPDK snabb VALE t4p4s

Figure 7: Throughput measurement of the loopback scenario with
VNFs deployed in either VMs or containers. The x-axis represents
the service chain length (1-5) and the y-axis represents the measured
throughput (in Gbps).

cessing and packet copying operations through vhost-user
interfaces. Note that Snabb has the worst throughput in
container tests due to its compatibility issue with contain-
ers as explained before. In the VM test, it can still outper-
form OVS-DPDK and t4p4s as they suffer from the greater
overhead of their Match/Action pipelines.

Loopback scenario – Figs. 7-(a)-(f) illustrate the through-
put for the loopback scenario with different input traffic
and VNFs deployed inside QEMU/KVM VMs. In partic-
ular, results for unidirectional traffic are shown in Figs. 7-
(a), (c), and (e). Intuitively, the measured throughput
decreases as the length of the service chain grow since
packets are steered back and forth through the software
switch between the successive VNFs. Since we run each
software switch with a single-core, throughput degradation
becomes more obvious as more VNFs are appended to the
service chain. Besides, we configure VNFs to update desti-
nation MAC addresses. Although this overhead is tiny, it
also accumulates with longer chains. As can be seen, BESS
yields the highest throughput with a single VM. However,
it is outperformed by VALE with two or more chained
VNFs. This is mainly because BESS needs to perform an
increasing number of packet copies as the number of VMs
increases. Even though VALE still needs to copy packets
between the physical ports, this overhead is compensated
by the efficient VM network I/O of ptnet. As shown in
Fig. 7-(e), VALE manages to sustain 10 Gbps for unidi-
rectional traffic with 1024B packets even with four chained
VMs. BESS still outperforms other switches because of its
simple processing. Other switches achieve lower through-

14

put due to the overhead (mainly packet copies) imposed
by vhost-user. Snabb still outperforms OVS-DPDK and
t4p4s with a single VNF but becomes overloaded with two
or more VNFs. When the service chain length reaches 4,
its packet rate becomes constant, as the workload is too
much to be handled with a single core. This is expected
to be alleviated by allocating multiple cores to share the
workload. The throughput of FastClick and VPP are very
close with 64B and 256B traffic, as shown in Fig. 7-(a)
and (c). But with 1024B traffic, FastClick achieves al-
most the same throughput as BESS and outperforms VPP
by a large margin. This is because FastClick has sim-
pler internal processing than VPP, which becomes more
obvious with less stressful traffic. With more intensive
traffic in the case of 64B packets, the optimized vector
processing pipeline of VPP makes it more advantageous
than FastClick [84, 85, 105]. For bidirectional traffic, as
illustrated in Figs. 7-(b), (d), and (f), all the tested soft-
ware switches present decreasing throughput as the ser-
vice chain length grows, as for the unidirectional traffic
case. In particular, VALE experiences significant perfor-
mance degradation, especially for 64B and 256B traffic.
For 1024B traffic, its performance begins to drop when the
service chain length is greater than 2. This is mainly due
to the doubled packet copying overhead between the neigh-
boring ports of sequential VALE instances. The through-
put of Snabb drops by 4 Gbps with 1024B traffic when two
VNFs are added to the chain since bidirectional traffic al-
ready imposes insurmountable overhead. Other software
switches are only able to sustain throughput comparable
to their counterparts in unidirectional experiments, due to
the doubled number of packet copying operations between
their vhost-user backend and the virtio-pci interfaces of
VMs, as well as the doubled processing overhead of the
chained VNFs inside VMs.

Figs. 7-(g)-(l) present the results for the loopback test
scenario with VNFs deployed inside Docker containers. As
explained in Sec. 4.3, experiments for Snabb are omitted
here since we cannot configure its datapath with Docker
containers. Its results for VM tests can give an approxi-
mate estimation for container scenarios. In general, all the
switches follow the same trend as the VM case and their
throughput decreases as the chain length grows due to the
accumulating processing and forwarding overhead. In par-
ticular, VALE fails to achieve the same efficiency as in the
VM case and is outperformed by other switches in most
cases. This result demonstrates that veth, though it works
in a zero-copy manner, is not as efficient as ptnet on service
chains. As VALE achieved similar throughput with veth
and ptnet interfaces in the p2v and v2v scenarios, we spec-
ulate that the bottleneck comes from the VALE instance
inside each container since interconnecting two veth inter-
faces imposes non-negligible switching overhead. All the
other switches achieve comparable throughput to that in
their corresponding VM scenario. Thus, we conclude that
most of the software switches considered in our study can
achieve similar throughput networking VNFs inside either

0.0

0.5

1.0

C
D

F
(0

.1
0R

+
)

0.0

0.5

1.0

C
D

F
(0

.5
0R

+
)

101 102 103
0.0

0.5

1.0

C
D

F
(0

.9
9R

+
)

BESS
OVS-DPDK

VPP
FastClick

snabb
t4p4s

VALE

Figure 8: The CDFs of RTT latency (in µs) for all the software
switches in the p2p test scenario. These results are obtained using
MoonGen’s hardware time-stamping. As the RTT ranges from 4 µs
up to 1000 µs, we plot the x-axis in log scale for better visualization.

QEMU-based VMs or Docker containers.

5.2. Latency Tests

p2p scenario – Fig. 8 shows the CDF of the measured
RTT latency with different input rates. As explained in
Sec. 4.4, we define R+ to be the forwarding rate we ob-
tained in throughput tests, it is thus different for each soft-
ware switch. In general, most of the switches experience
smaller RTT as the input load reduces from 0.99R+ to
0.10R+ since their datapaths become less congested. Un-
der the 0.99R+ rate, the RTTs for t4p4s are very high and
unstable, showing its instability under high loads. Since
the other DPDK-based switches encounter no such prob-
lems, we believe this is due to the inefficiency of the t4p4s
internal pipeline. The hardware abstraction layer of t4p4s
presents a trade-off between performance and platform
independence, and the level of abstraction could be re-
factored to enhance performance. VALE also presents the
second-worst RTT at 0.99R+ because it combines polling
and interrupts for packet I/O, which is less stable com-
pared to pure busy-waiting for packet I/O. Snabb latency
is also quite high mainly because the internal buffers of its
in-path modules prolong the packet journey under high in-
put load. BESS, FastClick, OVS-DPDK, and VPP exploit
polling and batching to achieve low latency. Under 0.50R+

load, the RTTs of t4p4s are almost 10 times lower as the
input traffic is almost 50% less stressful. VALE presents
the worst latency with most of its RTTs distributed be-
tween 30-40 µs. This is because, under a low input rate,
VALE automatically switches to interrupt processing to
save CPU cycles for other tasks. The interrupt-based
packet I/O is usually more time-consuming than poll-mode
due to interrupt propagation latency, context switch la-
tency, and cold data/instruction caches. BESS, Snabb,

15

1 2 3 4

101

102

103

R
TT

 (u
s)

bess
fastclick
vpp

OVS-DPDK
t4p4s

VALE
snabb

(a) 0.10R+ with VNFs deployed in VMs

1 2 3 4

101

102

103

R
TT

 (u
s)

bess
fastclick
vpp

OVS-DPDK
t4p4s

VALE
snabb

(b) 0.50R+ with VNFs deployed in VMs

1 2 3 4

101

102

103

R
TT

 (u
s)

bess
fastclick
vpp

OVS-DPDK
t4p4s

VALE
snabb

(c) 0.99R+ with VNFs deployed in VMs

1 2 3 4

101

102

103

R
TT

 (u
s)

bess
fastclick

vpp
OVS-DPDK

t4p4s
VALE

(d) 0.10R+ with containerized VNFs

1 2 3 4

101

102

103

R
TT

 (u
s)

bess
fastclick

vpp
OVS-DPDK

t4p4s
VALE

(e) 0.50R+ with containerized VNFs

1 2 3 4

101

102

103

R
TT

 (u
s)

bess
fastclick

vpp
OVS-DPDK

t4p4s
VALE

(f) 0.99R+ with containerized VNFs

Figure 9: Latency measurement (as RTT in µs) of the loopback scenario with VNFs in either VMs or containers

VPP, and OVS-DPDK exhibit better RTT reduction, as
the decreased input rates make their processing pipelines
less congested. Under 0.10R+ load, t4p4s achieves a worse
RTT distribution than in the 0.50R+ test. This is a conse-
quence of the extra delay in constituting batches under low
input rates. VALE presents almost the same RTT distri-
bution as under 0.5R+ load since it processes packets with
interrupts. The other switches present better latency with
their RTTs mostly distributed between 4 and 7 µs, thanks
to the low input rate and efficient poll-mode processing.

Loopback scenario – Fig. 9 shows the latency test results
in the loopback scenario with service chain length varied
from 1 to 4. For the sake of space, instead of plotting
the CDFs, we only illustrate the average RTTs for each
software switch with VNFs deployed in VMs, as shown in
Figs. 9-(a)-(c), and in containers, as illustrated in Figs. 9-
(d)-(f). We omit the results for Snabb in the container
test due to its compatibility issue with virtio-user as ex-
plained previously. In general, for all the switches we test,
the latency with 0.99R+ load is always higher than with
0.50R+ load. This is as expected since R+ is only the av-
erage throughput and the actual forwarding rate of each
software switch fluctuates around this. Consequently, an
unstable software switch might fail to sustain 0.99R+ in a
specific period, causing data path congestion and packet
loss. Such a situation rarely happens under 0.50R+ load.
Another significant result is the impact of batch process-
ing of some software switches since, at a low input rate,

time has to be spent to wait for new packets to complete a
batch, thus increasing overall latency. As shown in Figs. 9-
(a) and (d), latency under 0.10R+ load is higher than un-
der 0.50R+ for t4p4s, Snabb, and FastClick, mainly due to
their internal strict batch processing. Although FastClick
flushes its packet buffer by default, its internal batch pro-
cessing mechanism still imposes higher processing latency
at low input rates. We did not observe the same effect
for FastClick and Snabb in the p2p test because the batch
effect could not accumulate as the loopback scenario with
packets traversing FastClick multiple times. All the other
switches do not encounter this issue since they dynami-
cally adjust the batch size, and their RTTs do not increase
so much as the service length grows longer. In all cases,
t4p4s presents the worst latency, reflecting the inefficiency
of its processing pipeline. BESS achieves optimal latency
in all cases because it has the simplest pipeline and only
performs minimal processing on each packet. Note that
Snabb presents a huge leap from the 2-VNF VM test since
it becomes overloaded at this point and fails to keep up
with input traffic. The same phenomenon was observed
in its throughput test. OVS-DPDK also experiences a rel-
atively large leap in the 4-VNF case, for both VMs and
containers, due to similar reasons. In general, most of the
switches achieve similar RTTs with service chains of varied
length deployed in both VMs and containers.

v2v scenario – As MoonGen’s rate control and time-
stamping feature are tightly coupled with physical NICs,

16

Table 3: Summary of use cases for each software switch

Best use cases Remarks

BESS Forwarding between physical NICs and containers Chaining of containerized VNFs
Snabb Fast deployment, runtime optimization Bottlenecked with multiple VNFs
OVS-DPDK Stateless SDN deployments Supports OpenFlow protocol
FastClick VNF chaining Flexible live migration, high latency at low workload
VPP VNF chaining Flexible live migration
VALE VNF chaining with high workload Limited traffic classification and live migration capability
t4p4s Stateful SDN deployments Supports P4 semantics

BESS OVS-DPDK VPP FastClick snabb t4p4s VALE
0

200

400

R
TT

 (
s)

VM
CT

Figure 10: RTT latency (in µs) for the v2v scenario based on pktgen-
DPDK latency test function.

we cannot perform the same latency test to measure RTTs
with different input rates. To provide a fair comparison of
the processing latency for the software switches, we opt
for pktgen-DPDK and explore its latency measurement
feature that works inside both VMs and containers. The
results of v2v latency tests are shown in Fig. 10. The
latency of VALE with containers is not shown due to a re-
ported compatibility issue [103]. For the VM test, VALE
outperforms other switches (only 100 µs), which is in line
with the v2v throughput test results. BESS, FastClick,
VPP, t4p4s, and OVS-DPDK achieve very similar laten-
cies for both VMs and containers, as they all use vhost-
user to interconnect VNFs. BESS achieves the best RTT
among them due to its simplicity, which is coherent with
throughput tests. Snabb presents quite a high RTT with
containerized VNFs. We believe this is due to the compat-
ibility issue between Snabb’s vhost-user backend and the
container-side virtio-user frontend, as explained in Sec. 5.1.
While ptnet requires only two packet copying operations
between VALE ports, solutions based on vhost-user have
to incur four copies on virtio rings.

5.3. Best Match Between Use-Cases and Switches

Based on the previous experimental results, we can
make the following remarks on possible use cases for the
considered switches. These remarks complement the tax-
onomy previously presented in Table 2.

BESS achieves both high throughput and low latency
in p2p, p2v, and 1-VNF loopback scenarios for VMs. It
also achieves optimal performance for all the container-
based loopback tests. It is a viable choice to switch traffic
between physical NICs and one or multiple paralleled VMs,
as well as to steer packets for containerized service chains.

Snabb performs well in most cases but suffers from
overload in the loopback scenario with a chain of more
than 3 VNFs. We also failed to find a solution to im-

plement the loopback test with containers due to a com-
patibility issue. It is easier to deploy than other solutions
based on DPDK or netmap and is thus a good choice when
the time-to-production of specific applications is critical.

OVS-DPDK and t4p4s have the advantage of support-
ing OpenFlow and P4, respectively, and are thus the only
solutions that work with third-party SDN controllers and
newly introduced protocols. OVS-DPDK appears the best
option for a stateless SDN scenario, while t4p4s is prefer-
able when some state is required (e.g., for a firewall).

FastClick and VPP have good performance in all sce-
narios and simplify service migration thanks to the isola-
tion bestowed by virtio-pci/virtio-user frontend and vhost-
user backend. Moreover, unlike BESS, they are compati-
ble with newer hypervisor versions and can, therefore, be
used to build both linear and parallel NFV environments
with reasonable trade-offs. Compared to FastClick, VPP
might be preferred when the latency is the primary con-
cern since it generally has lower RTT and avoids severe
latency degradation at low input rates (e.g., 0.1R+).

Finally, VALE, augmented by ptnet passthrough and
cross-namespace veth, achieves relatively high throughput
in v2v and the loopback scenarios. It is, therefore, well-
suited to construct linear service chains in environments
with high workloads. On the other hand, as ptnet and veth
are highly dependent on the host netmap module, they do
not have the same level of memory isolation as the virtio
para-virtualized driver. Thus, migrating its VNFs may
require synchronization at the host level. Another caveat
is that VALE, as a simple Ethernet switch, has limited
capability for traffic classification compared to the other
solutions and may require enhancement to support more
advanced traffic processing and forwarding features.

6. Conclusion

The emergence of high-speed packet I/O frameworks
and the proliferation of NFV have given rise to intense re-
search on the design of software switches running on COTS
servers. Many different designs have been proposed and
implemented to route traffic between NICs and VNFs on
NFV platforms. In this paper, we have sought to improve
understanding of the throughput and latency performance
of these alternative designs by defining a performance mea-
surement methodology and providing sample results for 7
state-of-the-art proposals.

The methodology is based on four test scenarios; phys-
ical to physical (p2p); physical to virtual (p2v); virtual to

17

virtual (v2v); loopback (with multiple sequentially chained
VNFs); designed to explore the performance of typical
NFV configurations, where traffic is forwarded between
multiple physical and virtual interfaces. In the interest of
reproducibility, the paper describes the experimental setup
in detail, including specifications of tested software and
hardware versions and the packet generation and monitor-
ing tools used. In our evaluation, all the VNFs are hosted
in two most popular virtualized environments, namely vir-
tual machines (QEMU/KVM) and containers (Docker).
The measurement results reveal that no single switch pre-
vails in all scenarios. Such a result was expected, given
the different design objectives of the considered software
switches, but is a useful reminder that the best switch
choice depends significantly on the intended NFV context.
The presented results and related discussion enable a more
informed choice and should guide the design of potential
enhancements to relieve identified bottlenecks.

It is worth noting that the present wide-range com-
parison has required considerable effort to understand the
details of the considered switches to set up and conduct
the experiments. Therefore, we hope that researchers and
developers will be able to profit from our experience, by
further exploring the performance dimensions of existing
and emerging software switches and refining the evaluation
methodology. Our methodology may also be applied to
other switch typologies such as the OpenFlow/P4 switches
widely adopted in SDN networks. While the experimen-
tal campaign provided in this work has focused on pure-
software solutions, it also provides a starting point for both
the configuration process and settings for evaluating such
a different scenario.

Acknowledgments

This work has been carried out at LINCS (http:
//www.lincs.fr) and benefited from the support of
NewNet@Paris, Cisco’s Chair “Networks for the
Future” at Telecom ParisTech (https://newnet.
telecom-paristech.fr). The authors are very grateful
for the collaboration with Massimo Gallo, who coauthored
a preliminary version of this work.

References

[1] Intel, Data Plane Development Kit, Last accessed 2020-10-25.
URL: https://www.dpdk.org/.

[2] ntop, PF RING ZC (Zero Copy), Last accessed 2020-10-25.
URL: https://www.ntop.org/products/packet-capture/pf_

ring/pf_ring-zc-zero-copy/.
[3] L. Rizzo, Netmap: a novel framework for fast packet I/O, in:

USENIX Security, 2012. doi: 10.5555/2342821.2342830.
[4] G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, G. Q.

Maguire Jr, Metron: NFV Service Chains at the True Speed
of the Underlying Hardware, in: USENIX NSDI, 2018. doi:
10.5555/3307441.3307457.

[5] H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro, M. A.
Kaafar, L. Mathy, Splitbox: Toward efficient private network
function virtualization, in: ACM HotMiddlebox, 2016. doi:
10.1145/2940147.2940150.

[6] T. Barbette, C. Soldani, R. Gaillard, L. Mathy, Building a
chain of high-speed VNFs in no time, in: IEEE HPSR, 2018.
doi: 10.1109/HPSR.2018.8850742.

[7] T. Barbette, C. Soldani, L. Mathy, Fast userspace packet pro-
cessing, in: ACM/IEEE ANCS, 2015. doi: 0.5555/2772722.

2772727.
[8] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M.

Swift, T. Lakshman, UNO: Uniflying host and smart NIC
offload for flexible packet processing, in: ACM SoCC, 2017.
doi: 10.1145/3127479.3132252.

[9] N. Van Tu, J.-H. Yoo, J. W.-K. Hong, Accelerating Virtual
Network Functions with Fast-Slow Path Architecture using
eXpress Data Path, IEEE TNSM (2020). doi: 10.1109/TNSM.

2020.3000255.
[10] T. L. Foundation, Open vSwitch with DPDK, 2020. URL:

http://docs.openvswitch.org/en/latest/intro/install/

dpdk/, Last accessed 2020-10-25.
[11] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy,

L. Rizzo, S. Shenker, E2: a framework for NFV applications,
in: ACM SOSP, 2015. doi: 10.1145/2815400.2815423.

[12] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich,
A. Shaikh, Z.-L. Zhang, Parabox: Exploiting parallelism for
virtual network functions in service chaining, in: ACM SOSR,
2017. doi: 10.1145/3050220.3050236.

[13] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, S. Rat-
nasamy, SoftNIC: A software NIC to augment hard-
ware, Berkeley Technical Report No. UCB/EECS-2015-
155 (2015). URL: https://www2.eecs.berkeley.edu/Pubs/

TechRpts/2015/EECS-2015-155.html.
[14] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,

R. Bifulco, F. Huici, ClickOS and the art of network func-
tion virtualization, in: USENIX NSDI, 2014. doi: 10.5555/

2616448.2616491.
[15] K. Yasukata, F. Huici, V. Maffione, G. Lettieri, M. Honda, Hy-

perNF: Building a high performance, high utilization and fair
NFV platform, in: ACM SoCC, 2017. doi: 10.1145/3127479.

3127489.
[16] L. Rizzo, G. Lettieri, VALE, a switched Ethernet for vir-

tual machines, in: CoNEXT, 2012. doi: 10.1145/2413176.

2413185.
[17] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,

S. Shenker, NetBricks: Taking the V out of NFV, in: USENIX
OSDI, 2016. doi: 10.5555/3026877.3026894.

[18] V. Fang, T. Lvai, S. Han, S. Ratnasamy, B. Raghavan,
J. Sherry, Evaluating Software Switches: Hard or Hope-
less?, Berkeley Technical Report No. UCB/EECS-2018-
136 (2018). URL: https://www2.eecs.berkeley.edu/Pubs/

TechRpts/2018/EECS-2018-136.html.
[19] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart,

G. Carle, Throughput and Latency of Virtual Switching with
Open vSwitch: A Quantitative Analysis, Springer JNSM
(2018). doi: 10.1007/s10922-017-9417-0.

[20] S. Shanmugalingam, A. Ksentini, P. Bertin, DPDK Open
vSwitch performance validation with mirroring feature, in:
IEEE ICT, 2016. doi: 10.1109/ICT.2016.7500387.

[21] M. Paolino, N. Nikolaev, J. Fanguede, D. Raho, SnabbSwitch
user space virtual switch benchmark and performance opti-
mization for NFV, in: IEEE NFV-SDN, 2015. doi: 10.1109/

NFV-SDN.2015.7387411.
[22] The Linux Foundation, Open vSwitch, 2019. URL: https://

www.openvswitch.org/, Last accessed 2020-10-25.
[23] T. Zhang, L. Linguaglossa, J. Roberts, L. Iannone, M. Gallo,

P. Giaccone, A benchmarking methodology for evaluating soft-
ware switch performance for NFV, in: IEEE NetSoft, 2019.
doi: 10.1109/NETSOFT.2019.8806695.

[24] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, L. Iannone,
J. Roberts, Comparing the performance of state-of-the-art
software switches for NFV, in: ACM CoNEXT, 2019. doi:
10.1145/3359989.3365415.

[25] fd.io, CSIT, 2019. URL: https://wiki.fd.io/view/CSIT, Last
accessed 2020-10-25.

18

[26] R. Kawashima, H. Nakayama, T. Hayashi, H. Matsuo, Eval-
uation of forwarding efficiency in NFV-nodes toward pre-
dictable service chain performance, IEEE TNSM (2017). doi:
10.1109/TNSM.2017.2734560.

[27] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, D. Rossi,
FloWatcher-DPDK: lightweight line-rate flow-level monitor-
ing in software, IEEE TNSM (2019). doi: 10.1109/TNSM.2019.
2913710.

[28] J. Hwang, K. K. Ramakrishnan, T. Wood, NetVM: High per-
formance and flexible networking using virtualization on com-
modity platforms, IEEE TNSM (2015). doi: 10.1109/TNSM.

2015.2401568.
[29] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Tode-

schi, K. Ramakrishnan, T. Wood, OpenNetVM: A platform
for high performance network service chains, in: ACM Hot-
Middlebox, 2016. doi: 10.1145/2940147.2940155.

[30] D. Hong, J. Shin, S. Woo, S. Moon, Considerations on deploy-
ing high-performance container-based NFV, in: ACM CAN,
2017.

[31] C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu, NFP: Enabling network
function parallelism in NFV, in: ACM SIGCOMM, 2017. doi:
10.1145/3098822.3098826.

[32] Comparing the performance of software switches, 2019. URL:
https://github.com/ztz1989/software-switches/tree/

artifacts, Last accessed 2020-10-25.
[33] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó, M. Tejfel,

High speed packet forwarding compiled from protocol indepen-
dent data plane specifications, in: ACM SIGCOMM, 2016.
doi: 10.1145/2934872.2959080.

[34] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel,
S. Laki, T4p4s: A target-independent compiler for protocol-
independent packet processors, in: IEEE HPSR, 2018. doi:
10.1109/HPSR.2018.8850752.

[35] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
et al., P4: Programming protocol-independent packet proces-
sors, ACM SIGCOMM CCR (2014). doi: 10.1145/2656877.

2656890.
[36] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek,

The Click modular router, ACM TOCS (2000). doi: 10.1145/

354871.354874.
[37] S. Gallenmüller, P. Emmerich, R. Schönberger, D. Raumer,

G. Carle, Building Fast but Flexible Software Routers, in:
ACM/IEEE ANCS, 2017. doi: 10.1109/ANCS.2017.21.

[38] The LuaJIT Project, 2019. URL: http://luajit.org/, Last
accessed 2020-10-25.

[39] Vhost-user Protocol, 2019. URL: https://github.com/qemu/

qemu/blob/master/docs/interop/vhost-user.txt, Last ac-
cessed 2020-10-25.

[40] fd.io, Vector Packet Processing, 2019. URL: https://wiki.fd.
io/view/VPP, Last accessed 2020-10-25.

[41] M. Honda, F. Huici, G. Lettieri, L. Rizzo, mSwitch: a highly-
scalable, modular software switch, in: ACM SOSR, 2015. doi:
10.1145/2774993.2775065.

[42] V. Maffione, L. Rizzo, G. Lettieri, Flexible virtual machine
networking using netmap passthrough, in: IEEE LANMAN,
2016. doi: 10.1109/LANMAN.2016.7548852.

[43] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, S. Ratnasamy, RouteBricks:
exploiting parallelism to scale software routers, in: ACM
SIGOPS SOSP, 2009. doi: 10.1145/1629575.1629578.

[44] S. Han, K. Jang, K. Park, S. Moon, PacketShader: a GPU-
accelerated software router, ACM SIGCOMM CCR (2011).
doi: 10.1145/1851275.1851207.

[45] K. K. Ram, A. L. Cox, M. Chadha, S. Rixner, Hyper-switch: A
scalable software virtual switching architecture, in: USENIX
ATC, 2013. doi: 10.5555/2535461.2535464.

[46] D. Zhou, B. Fan, H. Lim, M. Kaminsky, D. G. Andersen,
Scalable, high performance Ethernet forwarding with Cuck-
ooSwitch, in: ACM CoNEXT, 2013. doi: 10.1145/2535372.

2535379.

[47] Indigo Virtual Switch, https://github.com/floodlight/ivs,
2015. Last accessed 2020-11-10.

[48] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart,
G. Carle, Moongen: A scriptable high-speed packet genera-
tor, in: ACM IMC, 2015. doi: 10.1145/2815675.2815692.

[49] D. Firestone, VFP: A Virtual Switch Platform for Host SDN
in the Public Cloud, in: USENIX NSDI, 2017. doi: 10.5555/

3154630.3154656.
[50] S. Choi, X. Long, M. Shahbaz, S. Booth, A. Keep, J. Marshall,

C. Kim, PVPP: A programmable vector packet processor, in:
ACM SOSR, 2017. doi: 10.1145/3050220.3060609.

[51] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor,
F. Juhász, A. Kőrösi, G. Rétvári, Dataplane specialization
for high-performance OpenFlow software switching, in: ACM
SIGCOMM, 2016. doi: 10.1145/2934872.2934887.

[52] J. Fanguede, M. Paolino, D. Dimitrov, D. R. Virtual, A novel
pflua-based OpenFlow implementation for VOSYSwitch, in:
IEEE FMEC, 2018. doi: 10.1109/FMEC.2018.8364043.

[53] C.-L. Hsieh, N. Weng, NF-switch: VNFs-enabled SDN
switches for high performance service function chaining, in:
IEEE ICNP, 2017. doi: 10.1109/ICNP.2017.8117601.

[54] C.-C. Tu, J. Stringer, J. Pettit, Building an extensible Open
vSwitch datapath, ACM SIGOPS (2017). doi: 10.1145/

3139645.3139657.
[55] J. Tseng, R. Wang, J. Tsai, Y. Wang, T.-Y. C. Tai, Acceler-

ating Open vSwitch with integrated GPU, in: ACM KBNets,
2017. doi: 10.1145/3098583.3098585.

[56] BEHAVIORAL MODEL (bmv2), 2020. URL: https://

github.com/p4lang/behavioral-model, Last accessed 2020-
11-10.

[57] Performance of bmv2, 2020. URL: https://github.com/

p4lang/behavioral-model/blob/master/docs/performance.

md, Last accessed 2020-11-10.
[58] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McK-

eown, J. Rexford, PISCES: A programmable, protocol-
independent software switch, in: ACM SIGCOMM, 2016. doi:
10.1145/2934872.2934886.

[59] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, J. Wu, HyperV: A high
performance hypervisor for virtualization of the programmable
data plane, in: IEEE ICCCN, 2017. doi: 10.1109/ICCCN.2017.
8038396.

[60] R. Rahimi, M. Veeraraghavan, Y. Nakajima, H. Takahashi,
S. Okamoto, N. Yamanaka, A high-performance OpenFlow
software switch, in: IEEE HPSR, 2016. doi: 10.1109/HPSR.

2016.7525645.
[61] R. Doriguzzi-Corin, E. Salvadori, M. Gerola, M. Suñé,

H. Woesner, A datapath-centric virtualization mechanism for
OpenFlow networks, in: IEEE EWSDN, 2014. doi: 10.1109/

EWSDN.2014.19.
[62] N. Bonelli, G. Procissi, D. Sanvito, R. Bifulco, The accel-

eration of OfSoftSwitch, in: IEEE NFV-SDN, 2017. doi:
10.1109/NFV-SDN.2017.8169842.

[63] N. Bonelli, A. Di Pietro, S. Giordano, G. Procissi, On multi–
Gigabit packet capturing with multi–core commodity hardware,
in: PAM, Springer, 2012. doi: 10.1007/978-3-642-28537-0_7.

[64] E. L. Fernandes, E. Rojas, J. Alvarez-Horcajo, Z. L. Kis,
D. Sanvito, N. Bonelli, C. Cascone, C. E. Rothenberg, The
Road to BOFUSS: The Basic OpenFlow User-space Soft-
ware Switch, arXiv preprint arXiv:1901.06699 (2019). doi:
10.1016/j.jnca.2020.102685.

[65] H. Choi, G. Yang, K. Lee, C. Yoo, KVS: High-efficiency
kernel-level virtual switch, in: ACM SoCC, 2017. doi: 10.

1145/3127479.3131615.
[66] R. Laufer, M. Gallo, D. Perino, A. Nandugudi, CLiMB:

Enabling network function composition with Click middle-
boxes, ACM SIGCOMM CCR (2016). doi: 10.1145/2940147.

2940152.
[67] M. Gallo, R. Laufer, ClickNF: a modular stack for custom

network functions, in: USENIX ATC, 2018. doi: 10.5555/

3277355.3277427.
[68] M. Gallo, F. Pianese, vNS: A Modular Programmable Virtual

19

Network Switch, in: ACM SIGCOMM Posters and Demos,
2018. doi: 10.1145/3234200.3234242.

[69] Y. Hayakawa, K. Yasukata, J. Nakazawa, M. Honda, Re-
silient Edge: A scalable, robust network function backend,
IEICE Transactions on Information and Systems (2019). doi:
10.1587/transinf.2018EDP7176.

[70] P. Chaignon, K. Lazri, J. François, T. Delmas, O. Festor, Oko:
Extending Open vSwitch with stateful filters, in: ACM SOSR,
2018. doi: 10.1145/3185467.3185496.

[71] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, F. Risso,
Assessing the performance of virtualization technologies for
NFV: A preliminary benchmarking, in: IEEE EWSDN, 2015.
doi: 10.1109/EWSDN.2015.63.

[72] M. Casoni, C. A. Grazia, N. Patriciello, On the performance
of linux container with netmap/VALE for networks virtualiza-
tion, in: IEEE ICON, 2013. doi: 10.1109/ICON.2013.6781957.

[73] Z. Niu, H. Xu, L. Liu, Y. Tian, P. Wang, Z. Li, Unveiling
performance of NFV software dataplanes, in: ACM CAN,
2017. doi: 10.1145/3155921.3158430.

[74] N. Pitaev, M. Falkner, A. Leivadeasy, I. Lambadarisy, Multi-
VNF performance characterization for virtualized network
functions, in: IEEE NetSoft, 2017. doi: 10.1109/NETSOFT.

2017.8004221.
[75] N. Pitaev, M. Falkner, A. Leivadeas, I. Lambadaris, Char-

acterizing the performance of concurrent virtualized network
functions with OVS-DPDK, FD.IO VPP and SR-IOV, in:
ACM/SPEC ICPE, 2018. doi: 10.1145/3184407.3184437.

[76] G. Lettieri, V. Maffione, L. Rizzo, A Survey of Fast Packet I/O
Technologies for Network Function Virtualization, in: IEEE
HiPC, 2017. doi: 10.1007/978-3-319-67630-2_40.

[77] R. Kawashima, S. Muramatsu, H. Nakayama, T. Hayashi,
H. Matsuo, A host-based performance comparison of 40G
NFV environments focusing on packet processing architec-
tures and virtual switches, in: IEEE EWSDN, 2016. doi:
10.1109/EWSDN.2016.11.

[78] VSperf Home, 2019. URL: https://wiki.opnfv.org/display/
vsperf/VSperf+Home, Last accessed 2020-10-25.

[79] R. Rojas-Cessa, K. M. Salehin, K. Egoh, Evaluation of switch-
ing performance of a virtual software router, in: IEEE Sarnoff
Symposium, 2012. doi: 10.1109/SARNOF.2012.6222733.

[80] P. Emmerich, D. Raumer, F. Wohlfart, G. Carle, Performance
characteristics of virtual switching, in: IEEE CloudNet, 2014.
doi: 10.1109/CloudNet.2014.6968979.

[81] CSIT-1904 - Technical report, 2019. URL: https://docs.fd.
io/csit/rls1904/report/, Last accessed 2020-10-25.

[82] M. Tahhan, B. O’Mahony, A. Morton, Benchmarking Virtual
Switches in the Open Platform for NFV (OPNFV), RFC 8204,
2017. URL: https://rfc-editor.org/rfc/rfc8204.txt, Last
accessed 2020-10-25.

[83] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi,
T. Zinner, R. Bifulco, M. Jarschel, G. Bianchi, Survey
of Performance Acceleration Techniques for Network Func-
tion Virtualization, Proceedings of the IEEE (2019). doi:
10.1109/JPROC.2019.2896848.

[84] D. Barach, L. Linguaglossa, D. Marion, P. Pfister,
S. Pontarelli, D. Rossi, High-Speed Software Data Plane via
Vectorized Packet Processing, IEEE Communications Maga-
zine (2018). doi: 10.1109/MCOM.2018.1800069.

[85] L. Linguaglossa, D. Rossi, S. Pontarelli, D. Barach, D. Marjon,
P. Pfister, High-speed data plane and network functions virtu-
alization by vectorizing packet processing, Computer Networks
(2019). doi: 10.1016/j.comnet.2018.11.033.

[86] R. Russell, virtio: towards a de-facto standard for virtual
I/O devices, ACM SIGOPS (2008). doi: 10.1145/1400097.

1400108.
[87] Virtio-user for Container Networking, 2019. URL:

https://doc.dpdk.org/guides/howto/virtio_user_for_

container_networking.html, Last accessed 2020-10-25.
[88] J. Tan, C. Liang, H. Xie, Q. Xu, J. Hu, H. Zhu, Y. Liu,

VIRTIO-USER: A new versatile channel for kernel-bypass
networks, in: ACM KBNets, 2017. doi: 10.1145/3098583.

3098586.
[89] Github issue tracking system, Native netmap support for

veth interfaces to enable fast container networking, 2017.
URL: https://github.com/luigirizzo/netmap/issues/293,
Last accessed 2020-10-25.

[90] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, J. Turner, OpenFlow:
enabling innovation in campus networks, ACM SIGCOMM
CCR (2008). doi: 10.1145/1355734.1355746.

[91] V. Addanki, L. Linguaglossa, J. Roberts, D. Rossi, Controlling
software router resource sharing by fair packet dropping, in:
IFIP Networking, 2018. doi: 10.23919/IFIPNetworking.2018.

8696549.
[92] Index of Centos/7/images, 2019. URL: https://cloud.

centos.org/centos/7/images/, Last accessed 2020-10-25.
[93] QEMU: the FAST! processor emulator, 2019. URL: https:

//www.qemu.org/, Last accessed 2020-10-25.
[94] Snabb: Maximizing deployment performance, 2019. URL:

https://github.com/snabbco/snabb/blob/master/src/doc/

performance-tuning.md, Last accessed 2020-10-25.
[95] Technical report, VPP: How To Optimize Performance (Sys-

tem Tuning), 2019. URL: https://wiki.fd.io/view/VPP/

How_To_Optimize_Performance_(System_Tuning), Last ac-
cessed 2019-12-20.

[96] pktgen-dpdk - Traffic generator powered by DPDK, 2019.
URL: https://git.dpdk.org/apps/pktgen-dpdk/, Last ac-
cessed 2019-11-25.

[97] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, D. Rossi,
FlowMon-DPDK: Parsimonious per-flow software monitoring
at line rate, in: IFIP/IEEE TMA, 2018. doi: 10.23919/TMA.

2018.8506565.
[98] Source code for netmap traffic generator, netmap/apps/pkt-

gen at master, 2019. URL: https://github.com/luigirizzo/
netmap/tree/master/apps/pkt-gen, Last accessed 2020-10-25.

[99] Technical report, Testpmd Application User Guide, 2019.
URL: https://doc.dpdk.org/guides/testpmd_app_ug/, Last
accessed 2020-10-25.

[100] Source code for QEMU, QEMU fork adding netmap
passthrough networking, e1000 paravirtualized adapter, and
VMPI support, 2019. URL: https://github.com/vmaffione/
qemu, Last accessed 2020-10-25.

[101] DPDK docker image, 2019. URL: https://hub.docker.com/

r/ztz1989/dpdk-suite, Last accessed 2020-10-25.
[102] Github issue tracking system, Question about vhost-user

#1430, 2019. URL: https://github.com/snabbco/snabb/

issues/1430, Last accessed 2020-10-25.
[103] Github issue tracking system, Tlem between network names-

paces in the same host #735, 2020. URL: https://github.

com/luigirizzo/netmap/issues/735, Last accessed 2020-11-
10.

[104] T. Benson, A. Anand, A. Akella, M. Zhang, Understanding
data center traffic characteristics, in: ACM WREN, 2009. doi:
10.1145/1672308.1672325.

[105] D. Barach, L. Linguaglossa, D. Marion, P. Pfister,
S. Pontarelli, D. Rossi, J. Tollet, Batched packet processing
for high-speed software data plane functions, in: IEEE INFO-
COM WKSHPS, 2018. doi: 10.1109/INFCOMW.2018.8406826.

Appendix A. Switch configurations

To enhance reproducibility, we provide the most criti-
cal configuration details for each test scenario.

p2p scenario

Each switch requires a unique configuration to imple-
ment the p2p scenario. We only show the most criti-
cal configuration snippet for each design. For BESS, we

20

composed a configuration script in which physical inter-
faces are hooked to the bessd daemon process with the
built-in PMDPort module. Physical queues (input/out-
put) of the hooked interfaces are instantiated using
QueueInc/QueueOut modules. Packet forwarding is imple-
mented by linking different queues with the right arrow:

inport :: PMDPort(port_id =0 ,...)
outport :: PMDPort(port_id =1 ,...)

in0:: QueueInc(port=inport , qid =0)
out0:: QueueOut(port=outport , qid=0)

in0 -> out0

For FastClick, we compose a similar configuration file
with FromDPDKDevice/ToDPDKDevice modules that hook
and link two physical interfaces as follows:

FromDPDKDevice (0,...)-> ToDPDKDevice (1 ,...)

Note that it is easier just to whitelist the physical inter-
faces using DPDK “-w” option.

For t4p4s, we select its l2fwd application which learns
the source MAC address and forwards packets according
to a predefined flow table. The table is configured with
“destination MAC address/output port” as Match/Action
fields.

For VPP, we specify the PCI addresses of the interfaces
in the configuration file. We interconnect the ports with
the l2patch function, as this is functionally equivalent to
the configuration of other switches:

test l2patch rx port0 tx port1
test l2patch rx port1 tx port0

For Snabb switch we similarly write a custom module
that hooks the ports by PCI addresses and recompile the
Snabb software to make the module executable. Inside the
module, we start a new configuration object and instanti-
ate two logical port “apps” using the PCI port addresses
which are then interconnected through the “link” method:

local c = config.new()
config.app(c, "nic1" ,...,{ pciaddr = pci1})
config.app(c, "nic2" ,...,{ pciaddr = pci2})
config.link(c, "nic1.tx -> nic2.rx")

For OVS-DPDK, we configure a new bridge and at-
tach the physical interfaces to it by specifying their PCI
addresses using the OVS-vsctl command. Then we pop-
ulate the flow table with direct forwarding rules between
the interfaces using the OVS-ofctl command.

For VALE, we need to unload the ixgbe kernel module
and load its netmap counterpart. The physical ports are
thus bound to the netmap device driver. Then we simply
bind physical ports to a VALE instance (in this case vale0)
using the vale-ctl command:

vale -ctl -a vale0:p1
vale -ctl -a vale0:p2

p2v scenario

As for p2p, we need to follow switch specific ap-
proaches. The only difference is that we have to consider
the virtual interface connecting software switches to VNFs.
To interact with virtualized environments such as virtual
machines or containers, each switch must create a virtual
interface. Snabb, VPP, OVS-DPDK, FastClick, and BESS
achieve this using the vhost-user protocol. VALE, on the
other hand, achieves this using ptnet [42]. Some config-
urations are required on the VNF side to implement the
p2v workflow. These are described in Sec. 5. Here we
specifically detail the minimal configuration required for
each software switch. In particular, for BESS we config-
ure a virtual interface “v1” using the PMDPort module by
specifying the name and Unix domain socket path. Then
physical interface “inport” is linked to “v1” to implement
p2v workflow:

inport :: PMDPort(port_id=0, ...)
in0:: QueueInc(port=inport , qid=0)

v1:: PMDPort(vdev="name ,iface=path ,...")

in0 -> PortOut(port=v1.name)

Similarly, for FastClick, t4p4s, and VPP, we create a
virtual interface by specifying the name and socket path
through the DPDK “–vdev” option. Note that, by default,
t4p4s does not work with virtual interfaces. We thus dis-
abled some offloading features and recompiled the source
code to make it compatible with vhost-user. OVS-DPDK
accomplishes the same by setting the type of virtual inter-
face to dpdkvhostuser. The created interfaces behave just
like physical ones and they can be linked to rendering the
intended traffic steering behavior.

Unlike solutions based on DPDK, Snabb implements
its own version of vhost-user backend. Consequently, we
create a virtual interface “vi1” leveraging its customized
“vhostuser” module:

config.app(c,"vi1",vhostuser.VhostUser ,...)

As for VALE, we just create a virtual interface using
vale-ctl and attach it to a VALE instance which relies
traffic from the physical interface to the VNF:

vale -ctl -n v0
vale -ctl -a vale0:v0

v2v scenario

To configure software switches realizing v2v workflow,
we simply instantiate two virtual interfaces and intercon-
nect them as described in the p2v scenario.

loopback scenario

For loopback, physical and virtual interfaces are cre-
ated and interconnected as described for p2p/p2v scenar-
ios. Note that in the loopback scenario, t4p4s relies on
the VMs to modify the destination MAC address of each
traversing packet according to the flow table.

21

