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Abstract—Processing packets in batches is a common technique
in high-speed software routers to improve routing efficiency
and increase throughput. With the growing popularity of novel
paradigms such as Network Function Virtualization, advocating
for the replacement of hardware-based networking modules
towards software-based network functions deployed on com-
modity servers, we observe that batching techniques have been
successfully implemented to reduce the HW/SW performance
gap. As batch creation and management is at the very core of
high-speed packet processors, it provides a significant impact to
the overall packet processing capabilities of the system, affecting
latency, throughput, CPU utilization and power consumption. It
is commonly accepted to adopt a fixed maximum batching size
(usually in the range between 32 and 512) to optimize for the
worst case scenario (i.e. minimum-size packets at full bandwidth
capacity). Such approach may result in a loss of efficiency despite
a 100% utilization of the CPU. In this work we explore the
possibilities of enhancing the runtime batch creation in VPP, a
popular software router based on the Intel DPDK framework.
Instead of relying on the automatic batch creation, we apply
machine learning techniques to optimize the batching size for
lower CPU-time and higher power efficiency in average scenarios,
while maintaining its high performance in the worst case.

I. INTRODUCTION

Software packet processing has become a commonly
adopted alternative to costly, expensive hardware-based pro-
cessing engines [1], [2]. Together with the inherent flexibility
advantages of software-based solutions w.r.t. hardware coun-
terparts, a current trend shows that the performance gap is also
diminishing [3]. As a consequence, several libraries for high-
speed packet processing on pure software such as the Intel’s
DPDK1 or Netmap [4] are being used as building blocks for
a flourishing ecosystem of software middleboxes capable of
performing multi-10-Gbps packet processing on a single CPU
core of commercial off-the-shelf (COTS) servers.

Modern tools for software packet processing, also known
as software routers, incorporate many optimizations such as
processing packets in batches and adopting a kernel-bypass
approach to access the Network Interface Cards (NICs) with
pure user-space drivers and minimize the interference of low-
level system calls by the operating system. In particular,
batching is usually adopted in conjunction with a busy polling
behavior: the CPU continuously performs a loop to verify if
any packet is received at the NIC, then it uses a minimalistic
batch creation algorithm to process a full batch of packets (as

1https://www.dpdk.org/
2Our source code and scripts: https://github.com/pogobanane/vpp-testing

opposed to per-packet processing) and it repeats the loop at
the end of the processing. Batching and busy polling are very
effective in high-load scenarios, where the cost of interrupt
handling per packet could saturate the CPU. In particular, it has
been shown that increasing the batch size positively correlates
with a significant improvement in the packet processing rate,
up to a certain saturation threshold [5], [1]. Therefore, the
achievable throughput is maximized at the cost of a 100% CPU
utilization even in the case of low-load scenarios, resulting in
a lot of wasted CPU cycles and high power consumption.

While the maximum batch size is fixed (usually 32 to 512),
the actual size depends on the number of packets waiting in
the NIC’s input queues. But the actual batch size also affects
the processing efficiency, with small batches requiring more
clock cycles per packet than large ones. This causes a feedback
loop, where oscillating batch size can be observed in scenarios
where the input load does not fully saturate the CPU. Such
a batching approach provides opportunities for improvement:
ideally, in a non-saturated regime (i.e., no packet loss) the
CPU can be relieved of some processing if we keep the batch
sizes large enough to maintain the processing efficiency.

In this paper2, we propose an algorithm to dynamically
allocate batch sizes depending on the traffic condition instead
of the classical busy polling approaches. With the help of a
large dataset collected over hours of experiments with a real
packet processing engine, we first develop machine learning
techniques to find the optimal batching size for different load
scenarios. We then deploy our training model within a software
router, and assess the impact of our approach in terms of saved
clock cycles. The remainder of the manuscript is organized
as follows: Section II provides a background on the relevant
architectural aspects of the software router of our choice
(namely, VPP [6]) and the related work. In Section III we
analyze the possible improvements for the batching algorithm
and present our design space. We then evaluate our system in
Section IV and Section V concludes the manuscript.

II. BACKGROUND AND RELATED WORK

In a softwarized network scenario, a software router is a
piece of code running on a general-purpose server which is
responsible for moving packets from one NIC (or more) to
a network application for further processing. Since NICs can
be both physical or virtual, software routers are fundamental
components of virtualized network systems. When a NIC is
equipped with multiple hardware queues, a software router
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process is usually bound to a single queue and executed by a
single CPU, to allow horizontal scalability while, at the same
time, avoiding inter-process interruptions [7]. The majority
of high-speed software routers can be executed within Linux
environments, and make extensive usage of low-level libraries
such as Intel’s DPDK or netmap [4] rather than relying on
the standard libraries for packet processing. Such libraries
are optimized to maximize the computational efficiency of
the packet processing application, and provide the additional
advantage of avoiding the overhead of the Linux kernel [1].

A. Vector packet processing

As a use case for our work, we select Vector Packet
Processing (VPP), a high speed packet processor originally
developed by Cisco and recently released as an open-source
Linux Foundation’s project named FD.io [6]. VPP provides a
rich feature set for a wide range of hardware and architectures,
and adopts most of the popular design choices to improve
the packet processing rate [1]. To improve modularity and
ease of programming, most of VPP’s features are developed
as individual plugins, that are further organized as nodes
in a processing graph, which represents the desired packet
processing applications. When a physical NIC is controlled by
a DPDK driver, the first node accessed upon packet reception
is the dpdk-input node, which is responsible for querying
packets from the NIC via the DPDK library, creating a batch
with the received packets and passing the full batch to the next
node. Subsequent nodes can differ, depending on the required
network stack to be accessed. For example, in the case of
IPv4 packets, a following node may be the ip4-input that
will parse the IPv4 headers, or a ip6-input that will deal
with IPv6 packets. At the end of the processing, a final output
decision is taken at the dpdk-output node which can choose
to forward packets to another physical or virtual NIC.

With the adoption of receive-side scaling (RSS), VPP’s main
thread can distribute the incoming traffic to multiple worker
threads. Each thread then runs its own instance of the process-
ing graph. Worker threads can be conveniently pinned to cores
and assigned a scheduler via VPP’s configuration. This allows
reaching higher throughput when processing multiple traffic
flows. Since we are interested in changing the batch creation
behavior, we focus our investigation on the dpdk-input node.

B. Batch creation and CPU behavior

The unmodified version of dpdk-input implements a busy-
loop which continuously polls new packets from the NIC using
the call rte_eth_rx_burst. If no packets have arrived, it
simply returns to the beginning of the loop, which leads to
the same node being called again. In this way, while the main
thread is busy waiting for new packets, the CPU is continu-
ously utilized at 100%. If a poll detects some packets queued at
the NIC, the DPDK library tries to retrieve as many packets
as possible until the maximum batch size has been reached
(defaults to a value of 256). It is worth noting that when the
DPDK node detects less than 32 packets waiting at the NIC,
the loop returns immediately as the driver assumes that no
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Figure 1: Oscillation of batch sizes for a L2 forwarding
function that processes a constant 5 Gbit/s traffic.

more packets will be arriving at the queue. This proves useful
in low-load scenarios, as packets are immediately batched and
submitted into the processing graph to keep latency low.

The size of soon-to-be-processed batches highly affects the
computational efficiency of the underlying CPU. Considering
a constant-bit-rate (CBR) scenario, when a large batch is
received the CPU efficiency is very high [1], and as a result,
the processing time per packet is low. Since the polling loop
can quickly return to retrieve more packets, the next poll
will retrieve less packets because of the constant bit rate. A
smaller batch, will result in a lower efficiency and, therefore,
a higher processing time per packet. This will in turn result
in more packets being queued at the NIC, and another new
poll with a larger batch size. This oscillating behavior can
be observed in Figure 1, which shows the number of packets
in a batch as a function of the time, for an average load of
5 Gbit/s. This behavior leads the CPU to switch between higher
power-consumption condition, back to low-energy consump-
tion. Moreover, batch sizes also have an impact on latencies of
the packets [8]. Keeping in mind that the CPU is continuously
utilized at 100 %, we propose a different approach which tries
to (i) minimize the oscillating behavior, (ii) keep the CPU
efficiency always at its maximum and (iii) release the CPU
occupancy by using an idle state which will free some clock
cycles (that can be used by other concurrent applications).

C. Related work

Optimizations of batching behavior are closely related to
our work: for example, SmartBatching [8] aims at adapting
the batching behavior according to an analytical model derived
from the input load, which improves both CPU behavior and
latency. Similarly, Metronome [9] is an approach to replace the
continuous polling with a sleep and wake intermittent mode
and an optimized CPU sleep function. Analytical modeling
is becoming widely adopted to provide previsions on key
performance metrics such as the packet loss or the expected
batch sizes, as done in [10]. Our work differs from the previous
in that it relies on machine learning to adapt to the incoming
input rate, rather than on analytical modeling. This way, we
can relax the assumptions on the input traffic pattern, as we
just need to train our model with realistic traffic. We rely on
the standard Linux nanosleep without any additional kernel
module. A different approach is adopted by Shenango [11],
which divides the available CPU cycles into fine-grain slots,
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Figure 2: The testbed used for our experimental evaluation,
which includes the MoonGen traffic generator, the device
under test and the AI component.

while a separate orchestrator reallocates the CPU cores and
steers the input traffic depending on latency requirements. Our
method is more flexible in that we do not require a fixed time-
slot for the reallocation of CPU cycles.

III. DESIGN SPACE

As explained in Section II, the batch size used by VPP
depends on the load at the NIC. Although VPP tries to create
maximum-size batches in high-load, it may be beneficial to
find a different value in lower load scenarios. For example
it can be useful to keep batches artificially large while, at
the same time, saving some CPU clock cycles for further
processing. In the scenario depicted in Figure 1 this may help
to reduce the batch size oscillations as well as freeing some
CPU clock cycles which can be used for different processing.
In a virtualized environment, CPU cores may be shared with
other applications. With a tuned value for the batch sizes, the
dpdk-input node could then free the CPU core for other
applications. This can be done with the UNIX nanosleep
syscall. Another simple but effective measure could be to scale
the frequency of the CPU clock in order to reduce the power
consumption and reduce the clock cycles allocated for the
busy-polling. Finally, it can be possible to enable the interrupt
mode for very low load scenarios, though this approach would
require a fine tuning of the switching threshold. Table I sum-
marizes the possible actions. We now show how to estimate
the optimal values for the batch sizes.

A. Decision making via ML

The aforementioned modifications are beneficial only in
certain scenarios. Their usage must be adapted to the current
load situation by a decision maker (DM). This process can be
defined through modeling, which however is prone to errors
as it is hard to create a representation of the system that is
sufficiently detailed to capture the low-level details that are
essential for our processing [10]. As the actions influence
latency, throughput, CPU usage and power consumption, the
decision making process must optimize for all of those.
Additionally, most actions will also affect the subsequent state

of the system, thus incurring in feedback actions and non-
linear effects. We opt for a machine learning solution as an
alternative to classical analytical approaches, as it can be used
to approximate a solution for such a complex problem, without
the necessity of manually modeling and tuning the system
model. The DM uses a list of the last batch sizes as input for
its actions. In combination with the parameters to optimize
for and the possible actions to tune, this results in a problem
of high dimensionality. Our ML decision maker is used to
regularly update the threashold configuration for using actions.

B. Architecture overview

We now describe the proposed architecture, as shown in
Figure 2. The device under test (DUT) consists of two parallel
components: the software router, and the decision maker.
Every time the dpdk-input node submits a batch of packets
to the processing graph, it also communicates the batch size
to the DM. The ML algorithm then runs its predictions and
returns the new, updated action instructions which are in turn
read by VPP. For the IPC communication we adopt non-
blocking I/O in order to keep high throughput performance.

For the DM component, it is essential to use fast ML
techniques, as otherwise the efficiency advantages would be
negated by the resource hungry machine learning component.
We selected random forests and ranger [12], as they are
efficient and easy to integrate in VPP.

In theory, it is possible to alter the state of the system by
adopting a combination of all the actions shown in Table I,
depending on the severity of the impact on the processing. For
example, switching to interrupt mode would reduce the load
on the CPU, at the cost of a severe performance degradation.
However, the base Ranger version comes with a limited
interface with no support for multi-dimensional variables.
Therefore the batch selection must be controlled by a single
variable (and thus, a single action can be used). Although all
the mechanisms shown in Table I are implemented, we focus
here on nanosleep actions controlled by a single integer.

Description Implemented Used

release the CPU (nanosleep) ✓ ✓
delay the polling (rte_delay_us) ✓ ✗

interrupt mode (rte_eth_dev_rx_intr_*) ✓* ✗
CPU freq hints (rte_power_freq_up) ✗ ✗

Table I: Proposed actions and their usage by ranger.
* : Implemented, but not functional.

C. Random Forest Training

The ranger API is used for training a forest taking the latest
used batch sizes of VPP as input, and to predict the best time
to nanosleep for. As presented in Figure 2, VPP and ranger run
on the DuT, while load scenarios are performed by the load
generator running MoonGen [13]. White box measurements
like clock cycle counting are conducted on the DuT, and black
box measurements like latency and throughput are collected
by the load generator.



Method msg/s avg (µs) min (µs) max (µs) std dev (µs)

mmap 867,092 1.103 1.024 5.376 0.178
shm 726,068 1.377 1.320 1.024 0.334
fifo 76,029 13.037 10.496 27.396 0.751

pipe 59,972 16.674 14.557 120.320 3.960

Table II: Comparison of IPC with 1000 messages of 4096
bytes each

In order to train the random forest, an iterative process is
used. After each run of the performance measurements, the
success of the forest is evaluated using a reward function. The
reward is then used to refine the prediction values to train for
which combined with the newly collected ranger input batch
sizes make up the new training set. Finally, the next iteration of
the forest can be trained and the next training iteration begins.

We limited our evaluation to six scenarios with different
packet rates: 2, 10, 500, 1000, 5000 and 7500 Mbit/s. Since we
focus on the nanosleep action, we selected low load scenarios
where freeing CPU cores is beneficial, but also included larger
loads to avoid over-fitting.

In each training iteration those six scenarios are run and
used to refine the training set. Finding the correct prediction
results relies on a reward function r. It weights the average
latency l in µs, the average throughput t in packets per second
and the CPU cycles c used by VPP as follows:

r(l, t, c) = −0.5l +
4000t

c ∗ 10−7

Afterwards the range of the reward is limited to the range
[0,−1] using the expected minimum and maximum reward
values rmin = −10 and rmax = 120:

pdeviate(r) = 1− r

|rmin − rmax|
This is the probability with which the latest prediction

plast should be changed. Next the new prediction result to be
trained for is drawn using a random function with a normal
distribution, plast as center and s as standard deviation. It
is based on plast, pdeviate and a constant to guarantee the
continued exploration of new values cexplore = 5:

s(pdeviate) = 100 ∗ p5deviate + cexplore

The more the reward r rises, the smaller becomes pdeviate
which in turn results in an aggressive reduction of s. Using
that system over many training iterations, the random forest
output is able to converge.

IV. NUMERICAL EVALUATION

We numerically evaluate in this section the different com-
ponents of our architecture. We also illustrate the impact that
our machine-learning based software router has on the overall
performance. Our benchmarks are performed on a server with
an Intel Xeon CPU E31230 at 3.20 GHz.

The traffic generated by MoonGen consists of 64 B packets
since it is most demanding scenario for the software com-
ponent of software routers. Other parameters which were not

Stage of Integration Throughput Ratio

Unmodified VPP 14.15 Mpps 100 %
Logging only 13.95 Mpps 99 %

Logging + Exporting 13.94 Mpps 99 %
. . . + Exporting + Ranger load 11.57 Mpps 82 %

. . . + Final trained forest 12.26 Mpps 87 %

Table III: Maximum throughput at different stages integration.

tested, like packet size, can have an impact though as well on
packet processing times and thereby also influence latency.

A. Inter-Process Communication

We evaluate here the solution used for communicating batch
sizes and instructions between VPP and ranger. VPP already
has the elog system3 for in place logging. While small logging
events should be performant, previous works [14] show that
it can significantly impact the performance. Using an open-
source benchmarking suite4, we evaluated alternative IPC
channels (see Table II). Based on those results, we built a
more efficient communication channel using mmap.

Table III summarizes the impact of data collection and
export on VPP’s throughput. Running VPP while logging all
batch sizes into the shared memory, results in a maximum
throughput of 99 %. Running ranger for a single prediction,
meaning exporting the ringbuffer only once to ranger, results
in a similar throughput performance of 99 %. When running
the ringbuffer export and prediction in an endless loop, VPP’s
throughput drops to 11.57 Mpps which corresponds to 82 %
of the performance of unmodified VPP. Compared to other
approaches using elog [14], showing a performance loss of 2
to 3 times, our mmap-based IPC proved to be more efficient.

Scenario Pred./s Std. dev. Batches/Pred.

Random data 22 106 168 2.6
Real IPC 712 46 82.3

Table IV: Ranger predictions rate

B. Ranger performance

We evaluate the prediction rate of ranger with the help of
Table IV, which illustrates how many batches may be pro-
cessed on a fully utilized 10 Gbit/s link per prediction. We first
benchmark ranger with random data and our results showed
22 106 predictions/s in average. With real data on the IPC
channel, the performance drops to only 712 predictions/s. The
number of packet batches nv processed between two ranger
predictions can be calculated from the packet throughput tr,
the average size of a batch vs and the prediction rate pr:
nv = tr/(vs ∗ pr)

With pr = 22 106, we obtain 3 batches per prediction which
is close to optimal. With pr = 712, each prediction will be
used for the next 82 batches. This performance gap could be
improved with an optimized mechanism for the interaction
between the AI and the DUT component.

3https://wiki.fd.io/view/VPP/elog
4https://github.com/goldsborough/ipc-bench
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Figure 3: Convergence of the training in three scenarios.

C. Training

For each load scenario presented in Section III-C, we
evaluated the prediction over the training iterations of the
forest. Figure 3 shows that a convergence cannot be observed.
For the higher loads of 1 Gbit/s and 7.5 Gbit/s, a trend emerges
though: the random forest predicts higher nanosleep times for
smaller load scenarios which is what a human expert would
expect. For the smallest traffic rate used, the training could not
converge. A reason could be that satisfying the reward function
in situations with that little traffic is really hard because the
CPU cycles per packet used by VPP seem to rise non-linearly
for those scenarios. Our experiments show that the nanosleep
time has to be several orders of magnitude higher than 50 µs to
get to a CPU cycle efficiency expected by the reward function.

D. Validation and comparison of the system

Finally, we evaluate our architecture by measuring the
CPU utilization in different scenarios and comparing it to
an unmodified VPP (see Figure 4). Unmodified VPP has
the worker thread running on CPU1. Its utilization is 100 %
regardless of the offered load. The second core runs nothing
and therefore has a utilization of 0 %. Depending on the traffic
its (avg, max) latencies are between (5, 6)µs and (12, 65)µs.

Modified VPP with ranger updating the optimization in-
structions on CPU2 constantly utilizes about 98 %. The worker
thread of VPP on CPU1 now shows a different behavior.
When offered no load, the nanosleep time is set to 30 by
the forest. This results in a utilization of only around 20 %
on CPU1. When offered more load (1000 Mbit/s around time
20 s in Figure 4), the nanosleep time drops and CPU1 raises to
45 % load to process the packets. From offering 1200 Mbit/s
of load onward (at time 31 s in Figure 4), VPP’s worker thread
starts hitting the upper limit of available cycles of CPU1.
The latencies range from (12.5, 54)µs to (13.4, 101)µs. At
a throughput of 12.26 Mpps the maximum performance of the
system is finally found.

V. CONCLUSION

We showed that the CPU utilization of VPP could be
reduced in low load scenarios using random forests for finding
optimization parameters at runtime. Regardless of the added
context switches and complexity, the throughput performance
in high load situations is reduced by only 13 %. Although a
separate core is fully utilized by the ranger thread, future work
could use the same core to save CPU time off VPP worker
threads on multiple cores. Among possible optimizations,
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dynamically reducing ranger’s refresh rate may be a promising
one. Further research is also required for comparative study
and evaluation of the effects on both throughput and latencies
combined, because of the trade-off between CPU efficiency
and processing times. Finally, exploring other random forest
implementations may open possibilities for using more actions,
improving training and implementing online learning to react
to new, unknown traffic patterns.
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