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Our Contributions

• We unify gradient flows, score-based diffusion models, and GANs in a single framework. • We represent generated data as moving particles.

A model is defined by: • a gradient vector field that the particles follow either at inference or training time; • the possibility of incorporating a generator that smooths this movement. • This suggests the existence of hybrid models:

• a generator trained with diffusion guidance (Score GANs); • a GAN trained without a generator (Discriminator Flows). • We experimentally verify our findings.

GANs vs Diffusion

Traditional opposition in the literature.

GANs → Generator trained by discriminating true vs fake data.

• Generator (manifold learning).

• Close to SOTA performance.

• Harder to optimize.

• Fast inference.

Diffusion → Learns to progressively reverse a data degradation process.

• No generator (on the data space).

• SOTA performance.

• Easier to optimize.

• Slow inference.

From PMs to Int-PMs

• We assign to each generated particle x = g θ (z) the same loss as in PMs: L gen (θ) = -E z∼p z h ρ t g θ (z) . • We do not take into account the dependency of ρ t w.r.t. θ t , to mimic PMs: ρ = StopGradient(g θ ♯p z ). • Continuous-time gradient descent:

dθ t dt = -η∇ θ t L gen (θ t ) = η∇ θ t E z∼p z h ρ t g θ t (z)
= ηE z∼p z ∇ θ t g θ t (z)∇h ρ t g θ t (z) .

• Evolution of particles:

dg θ t (z) dt = ∇ θ t g θ t (z) ⊤ dθ t dt = ηE z ′ ∼p z ∇ θ t g θ t (z) ⊤ ∇ θ t g θ t z ′ ∇h ρ t g θ t z ′ .

Particle-Based Framework

Generated particles x t ∼ ρ t follow a gradient vector field ∇h ρ t , i.e. optimize an objective h ρ t .

Wasserstein Gradient

-∇ W F(ρ t ) = -∇ ∂F(ρ ) ∂ρ t Log Ratio Gradient α t ∇ log p data ⋆ k σ(t) RBF -β t ∇ log ρ t Discriminator Gradient -∇ c • f ρ t
where f ρ t discriminates ρ t from p data

Particle Models (No Generator)

• At generation / inference time t:

x 0 ∼ π = ρ 0 , dx t = ∇h ρ t (x t ) dt.
• Independently moving particles.

• Each x t individually follows a gradient ascent path on h ρ t (x t ). • h ρ is usually a predefined functional approximated with neural networks.

Wasserstein Gradient Flows

• Gradient descent for functionals over distributions F (Santambrogio, 2017). 

Score-Based Diffusion

dx t = α t ∇ log p data ⋆ k σ(t) RBF (x t ) dt + 2β t dW t ⇔ -β t ∇ log ρ t dt.

Discriminator Flows

• Particles directly follow the discriminator gradient. • The discriminator is simultaneously trained and used to generate data.

Interacting Particle Models (Generator)

• Training with the same loss:

L gen (θ) = -E z∼p z h ρ t g θ (z) .

• At training time t:

dg θ t (z) = η A θ t (z) ∇h ρ t dt.
• Generalization of PMs where particles interact with each other.

Stein Gradient Flows

• Stein gradient flows (Liu, 2017) are kernelized Wasserstein gradient flows:

dx t = E x ′ t ∼ρ t k x t , x ′ t ∇h ρ t x ′ t dt.
• Int-PMs under mild hypotheses (generalization of Durr et al. ( 2022)). • Hint towards the same h ρ being used in a PM and an Int-PM. 

Score GANs

GANs

• Gradient descent-ascent on the minmax objective yields the generator loss:

L GAN (g θ ) = E z∼p z c • f ρ g θ (z) .

Smoothing Operator

• A θ t (z) is a linear operator on vector fields (kernel integral operator):

A θ t (z) (V ) ≜ E z ′ ∼p z k g θ t z, z ′ V g θ t z ′ , k g θ t z, z ′ ≜ ∇ θ t g θ t z ′ ⊤ ∇ θ t g θ t (z).
• k g θ t is the generator's matrix Neural Tangent Kernel (NTK, Jacot et al., 2018).

• Special case: k g θ t z, z ′ = δ z-z ′ I d (generator with infinite capacity).

• No interaction between particles:

A θ t (z) (V ) = V g θ (z) .
• dg θ t (z) = ∇h ρ t g θ t (z) dt: we retrieve PMs.

• General case: A θ t represents the parameterization of ρ as a manifold.

• A θ t smooths the original vector field ∇h ρ t by convolving it with k.

• Particles interact with each other through generator parameterization. 

Other Models & Flows

Score GANs in Practice

• Two practical issues:

• sliced score matching to train s ρ ϕ ; • scheduling σs w.r.t. training time t.

• We randomly sample σ and also noise the particles:

∇h ρ = ∇ log[p data ⋆ k σ RBF ] -∇ log[ρ t ⋆ k σ RBF ], ≡ ∇h ρ (•, σ) = s p data ψ (•, σ) -s ρ ϕ (•, σ). • Generator update:
• few-step training of s ρ ϕ with denoising score matching; • gradient descent step:

θ ← θ + η E σ∼p σ ,ε∼N (0,σI D ),z∼p z ∇ θ g θ (z) ∇h ρ g θ (z) + ε, σ .

Discr. Flows in Practice

• Discriminator loss:

L d (f ; ρ, p data ) = E ρ [a • f ]-E p data [b • f ]+R(f ; ρ, p data ).
• Naive training: successive f ρ t trainings and ρ t updates.

• For efficiency purposes, we simultaneously learn all timeparameterized discriminators:

f ρ t = f ϕ (•, t).
• Training step: (•, t) to discriminate between x t and p data .

• sample t ∼ U [0, 1] , x 0 ∼ π; • compute x t = -η t 0 ∇ c • f ϕ (•, s) (x s ) ds; • train f ϕ
• Generalization of some gradient flows.

Links

Article

Code and samples

• Code for all models and baselines. • Animated samples.

Experimental Results

• Hybrid models are viable, support theory. • EDM: diffusion (Karras et al., 2022).

Properties

• Discr. flows learn a path to the data distribution, unlike diffusion.

• PMs vs Int-PMs: Int-PMs are prone to mode collapse but are faster than PMs at inference and have better latent space properties.

Perspectives

• Our work paves the way for new hybrid models.

• Model improvements: Score GANs for score distillation, Discr. Flows for generation efficiency. 

•

  Int-PMs and Stein (generalization of Durr et al. (2022)): k g θ t (z), g θ t z ′ = k g θ t z, z ′ in the NTK regime.• Langevin diffusion(Song et al., 2019) is a KL flow.

• Under some hypotheses, GANs are Stein flows

(Franceschi et al., 2022; Yi et al., 2023)

: KL flow for f -divergence GANs, squared MMD for IPM GANs. • As a consequence, under similar hypotheses, Discriminator Flows with the same losses are Wasserstein flows. • Many methods use neural networks to approximate the flow (Alvarez-Melis et al., 2022; Heng et al., 2023).