
HAL Id: hal-04322318
https://hal.science/hal-04322318

Submitted on 4 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Objective Ensemble-Processing Strategies to
Optimize the Simulation of the Western North Pacific

Subtropical High in Boreal Summer
Cenxiao Sun, Zhihong Jiang, Zhenfei Tang, Laurent Li

To cite this version:
Cenxiao Sun, Zhihong Jiang, Zhenfei Tang, Laurent Li. Multi-Objective Ensemble-Processing Strate-
gies to Optimize the Simulation of the Western North Pacific Subtropical High in Boreal Summer.
Geophysical Research Letters, 2023, 50 (23), pp.e2023GL107040. �10.1029/2023GL107040�. �hal-
04322318�

https://hal.science/hal-04322318
https://hal.archives-ouvertes.fr


1.  Introduction
Known as a key component of the East Asian summer monsoon system, the western North Pacific Subtropical 
High (WNPSH) exerts tremendous impacts on climate in Eastern China (C. Li et al., 2021; Luo & Lau, 2017; 
W. Wang et al., 2016; Zhang & Tao, 2003). However, there are still large biases for climate models to simulate 
WNPSH, creating uncertainties for the simulation of the East Asian summer monsoon (Song & Zhou, 2014; 
Zhao et al., 2020; Zhou et al., 2018). It is generally believed that the multi-model ensemble mean (or median) 
can improve the collective performance, since biases of individual models can be offset and canceled out. The 
collective performance can be even further enhanced if the performance of individual models is used as weight in 
the ensemble-processing strategy (Jiang et al., 2015; Li, Jiang, Zhao, & Li, 2021; Tan et al., 2016).

It is worthy of note that most ensemble-processing schemes use algorithms focusing on a single performance or 
cost function. These schemes generally pay less attention to physical processes or constraints relating geophysical 
variables one to another, which constitutes their weakness (Herger et al., 2019; Langenbrunner & Neelin, 2017b). 
Actually, feedbacks relating different geophysical variables may play an essential role in the climate system. It 
would be beneficial if the measuring of model performance is based on such feedbacks or physical processes. 
In the case of WNPSH, its links to sea surface temperatures (SSTs) should be the most important processes to 
be taken into account (He, Zhou, & Wu, 2015; Zeng et al., 2010; Zhou et al., 2009). Especially, tropical and 
subtropical ocean basins are proved to have the largest effects on WNPSH, including the tropical Indian Ocean 
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(Wu et al., 2009; Xie et al., 2009), the Maritime Continent (Chuang et al., 2011; B. Wang et al., 2000; J. Zhu 
et al., 2022), the tropical Pacific (B. Wang et al., 2013; Xiang et al., 2013; Ying & Sun, 2000), and the Atlantic 
(Hong et al., 2014; Zuo et al., 2019).

To improve the performance of physically connected variables in climate models, the concept “Pareto-optimality” 
provides an interesting tool that can optimize multiple objectives simultaneously. It is a concept first used in 
economics by Pareto, referring to an ideal state that one cannot gain more benefits or interests without harm-
ing others through a reallocation of limited resources (Pareto,  1906). While traditional ensemble-processing 
schemes have difficulty in reconciling effects among multiple objectives, the Pareto-optimality potentially offers 
an approach to reach states in which the performance of one climate variable cannot be further improved without 
degeneration of another.

There are a few works reported in the literature using this general idea. Langenbrunner and Neelin (2017a) used 
the Pareto-optimality to adjust tunable parameters of climate models. Subsequently, they also used it to constrain 
the projection of precipitation in California by using the physically related tropical Pacific SST and the 200 hPa 
zonal winds over the west coast of America, and the uncertainty of precipitation changes in the end of 21st 
century is decreased by nearly 70% (Langenbrunner & Neelin, 2017b). A similar conclusion of precipitation 
in California constrained by causal links is also drawn in F. Li et al.  (2022) based on this scheme. In Herger 
et al. (2019) targeting precipitation over Australia, the whole Pacific SST and 500 hPa eastward wind over high 
latitude in the Southern Ocean were taken as constraining co-variables. They furthermore pointed out that it 
is important to associate physical explanations for the relationship among co-variables when a multi-objective 
constraining scheme is used.

As a strategy to treat multi-model ensemble, however, the Pareto optimality has not been assessed against other 
more traditional strategies using weights deduced from model performance measured with single variable or 
each of the individual variables. A major limitation of these traditional strategies is certainly related to the fact 
that they generally can't consider physical links among variables (Jiang et  al.,  2015; W. Li et  al.,  2016; Li, 
Jiang, Zhao, & Li, 2021; Tan et al., 2016), it should be noted that the Pareto-optimal ensemble is also an imper-
fect one. A Pareto-optimal multi-objective scheme faces inevitable risks in model evaluation. In the case that 
a climate model, among all others, performs extremely well in the simulation of variable A but quite poorly 
(though not the worst) in variable B, it may also be chosen as a member of the “Pareto-optimal ensemble.” In this 
case, the Pareto-optimal scheme tends to excessively rely on model performance of a single variable, meaning 
that  the “optimal ensemble” may not represent models with simultaneously good performance for all geophysical 
variables.

To explore these issues, by taking the WNPSH as an example, we make use of the traditional statistic algorithm 
of Rank-based weighting scheme (W. Chen et al., 2011; Jiang et al., 2015) and a newly defined weighting scheme 
to assess the optimization effect of the Pareto-optimal scheme. This study aims at better understanding these 
multi-objective optimization schemes and contributing to researches on future climate projection.

2.  Data and Methods
2.1.  Model and Observation Data

Data used in this study are monthly sea level pressure (SLP) and sea surface temperature (SST) under historical 
simulations from 22 CMIP6 models (as shown in Table S1 in Supporting Information S1), a single member is 
taken from each model. Two reanalysis data sets are taken as observations, including monthly SLP from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation (ERA5) reanalysis with hori-
zontal resolution of 0.25° × 0.25° and the monthly extended 2° × 2° Version 5 reconstructed SST (ERSSTv5) 
(Hersbach et al., 2020; B. P. Huang et al., 2017). Before analysis, all simulated and reanalyzed data are re-gridded 
to a common 2.5° × 2.5° grid. This study focuses on June, July, and August due to the fact that strong impacts of 
WNPSH on East Asian climate are generally in boreal summer.

To reduce the influence from systematic biases of individual CMIP6 models and to amplify the signal of 
large-scale patterns of SLP and SST, the climatology of zonal mean SLP between 0 and 40°N and areal-mean 
SST of the tropical Indo-Pacific basin (here 30°S–30°N, 30°E–70°W) for the studied period is subtracted in 
each model and observation before further processing. Such a preprocessing is a common practice, often used in 
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studies related to WNPSH (X. Chen et al., 2020; He, Zhou, Lin, et al., 2015; Y. Huang et al., 2016). Actually, by 
doing so, we privilege spatial patterns of both SLP and SST, rather than their absolute levels.

2.2.  Ensemble-Processing Methods and Evaluation Metrics

The multi-model ensemble simulations provided by CMIP modelers constitute our basic database. A particularity 
of the Pareto-optimality is that it doesn't optimize a single synthetic cost function, a common strategy in other 
multi-model approaches, but explores joint properties of multiple variables. Each variable expresses an objective 
or a process, and represents a physical constraint. Our Pareto-optimal multi-objective ensemble scheme is adopted 
from Langenbrunner and Neelin (2017b), based on a Python Package designed by Woodruff and Herman (2014).

In our work, to avoid degeneration of the algorithm, it is necessary to perform the optimization over a large-size 
ensemble. Similar to Langenbrunner and Neelin (2017b), we generate a sufficient number of combinations from 
original models by exhaustively combining the 22 CMIP6 models (through arithmetic average) with k (here 
1 ≤ k ≤ 5) randomly selected members (combination 22 choose k, noted as 𝐴𝐴 𝐴𝐴

22

𝑘𝑘
 ). As a result, there are totally 

35,442 (𝐴𝐴

5
∑

𝑘𝑘=1

𝐶𝐶
22

𝑘𝑘
 ) subsets. It is to be noted that the climatology for both SLP and SST is from a general average in 

the studied period and across all members of the sub-ensemble. The metrics for bias assessment between model 
simulations and observations are based on root mean square error (RMSE, applied to climatological spatial 
fields) of all variables, smaller RMSE representing better model performance.

Though the Pareto-optimal multi-model ensemble-processing scheme has the ability to select a subset of samples, 
which improve the performance of one variable without degradation in another, it still faces nonnegligible risk. 
Some members have good simulation skill in one variable but poor skill in another may also be selected. To 
remediate this issue, we define an alternative method named “Least-distance strategy over Pareto-optimality” 
(abbreviated as Least-distance strategy) to further constrain the Pareto-optimal samples to avoid such deficiency. 
The Least-distance strategy is detailed in Text S1 and Figure S1 in Supporting Information S1. The Rank-based 
weighting method (W. Chen et al., 2011), which doesn't take into account any physical links among geophysical 
variables, is used for the purpose of inter-comparison with the above two schemes. The weighting method is given 
in Text S2 in Supporting Information S1.

For the purpose of independent verification, we divide the historical period into the calibration period from 
1961 to 1987 and validation period from 1988 to 2014, both coving 27 years. To evaluate the skill of different 
ensemble-processing methods in reproducing the spatial pattern between the simulation and observation, the 
Taylor diagram and Taylor skill score (TSS) were used (Li, Jiang, Treut, et  al.,  2021; Taylor,  2001; H. Zhu 
et al., 2020), which is described in Text S3 in Supporting Information S1.

3.  Results
3.1.  Determining Co-Variables to Constrain WNPSH

To avoid the general rising effect of geopotential height under global warming which prevents us from using it as 
a surrogate of WNPSH, we choose SLP to represent WNPSH as in Preethi et al. (2017) and X. Chen et al. (2020). 
Furthermore, to enhance the role of large scale SLP patterns, and to reduce the influence of systematic biases 
of individual CMIP6 models, SLP was first subtracted from its zonal mean between 0° and 40°N. It is clear that 
this preprocessing preserves the spatial pattern of SLP (Figure S2 in Supporting Information S1). The shading 
in Figure S2a in Supporting Information S1 indicates the inter-model standard deviation of SLP biases in the 
whole historical period (1961–2014). Figure S2b in Supporting Information S1 shows the counterpart after the 
pre-processing. It can be seen that large inter-model spread exists. The largest standard deviation over the north-
east Pacific reflects the important dispersion of the center of the North Pacific Subtropical High. Meanwhile, the 
second center of large dispersion over the northwest Pacific shows large diversity among models for its western 
extension. Since the western extension of WNPSH is the most important feature for East Asian climate, we thus 
select this region (15°–40°N, 120°–180°E, red boxes in Figure S2 in Supporting Information S1) to represent 
WNPSH.

Previous studies concluded that there are tight physical relationships between SST and WNPSH. For the sake of 
completeness and objectivity, we can reconfirm their links at interannual scale with a Singular Value Decom-
position (SVD) analysis applied to the pre-processed SLP over the Northwest Pacific and SST over the tropical 
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Indo-Pacific sector, with long-term trend previously removed. Results in the calibration period (1961–1987) 
are displayed in Figure S3 in Supporting Information S1. The leading SVD (SVD1), which explains 57.7% of 
the total square covariance, shows a strong SLP center in the western North Pacific (Figure S3a in Supporting 
Information S1). Areas of significant positive correlation are found over the North Indian Ocean, the Maritime 
Continent and the tropical eastern Pacific, while significant negative correlation lies over the Central Pacific 
(Figure S3b in Supporting Information S1). Actually, it is believed that warm SST over the Indian Ocean can 
affect WNPSH through its capacitor effect (Wu et al., 2009; Xie et al., 2009), and warm anomalies of SST in the 
Maritime Continent and in the Eastern Pacific can enhance WNPSH through anomalous descending motions, 
induced by the intensified Hadley circulation (He, Zhou, & Wu, 2015; J. Zhu et al., 2022) and the weakened 
Walker circulation (Y. Li et al., 2010; Ying & Sun, 2000). Cold SST anomalies in the Central Pacific can further-
more inhibit the local precipitation and convection, leading to intensification of WNPSH (B. Wang et al., 2013; 
Xiang et al., 2013).

The relationship between SST and SLP at the level of inter-model biases is further explored in order to build the 
multi-objective constraining scheme, by performing a similar SVD analysis, but applied to the inter-model variability 
of models' climatological fields in the calibration period. SVD1 is shown in Figure 1, displaying the heterogeneous 
correlation maps of SLP biases (Figure 1a) and SST biases (Figure 1b). SVD1 accounts for 66.0% of the total square 
covariance, representing the main relationship between the biases of the two simulated variables. The high correlation 
in Figure 1a in the Northwest Pacific reveals that the inter-model biases of WNPSH are significantly correlated with 
SST biases. Two large regions of significant positive correlation appear near the Maritime Continent and Eastern 
Pacific, meaning that models with overestimated SST here may tend to simulate stronger WNPSH bias. A significant 
negative correlation is located in the central Pacific (Figure 1b), suggesting that underestimating SST here may also 
lead to a corresponding overestimated WNPSH. These features in Figure 1 are consistent with what shown in Figure 
S3 in Supporting Information S1, though their nature is different, revealing that the inter-model relationship in clima-
tological biases of SST and SLP is consistent with the observed interannual variability that is physically generated.

Based on the above discussion of the relationship between SLP and SST in observation and across climate 
models, we finally choose SST from three key oceanic basins as WNPSH's co-variables in our multi-objective 
constraining algorithm. They are the Maritime Continent (MC: 20°S–15°N, 80°–125°E), the tropical central 

Figure 1.  Leading Singular Value Decomposition heterogeneous correlation maps for the standardized inter-model biases of pre-processed sea level pressure (SLP) 
(a) and tropical Indo-Pacific sea surface temperature (SST) (shading in panel (b)) in the calibration period (1961–1987). Dotted areas represent statistically significant 
correlations according to a 10% level two-sample t-test. The black box in panel (a) outlines the western North Pacific Subtropical High target region, and those in panel 
(b) represent the key regions of SST as constraining co-variables, including the Maritime Continent (MC: 20°S–15°N, 80–125°E), the tropical central Pacific (CP: 
5°–25°N, 135°E–160°W), and eastern Pacific (EP: 15°S–15°N, 80–120°W). (c) The standardized corresponding principal components of CMIP6 models, shown by 
numbers. The abscissa represents SST and the ordinate SLP, the correlation coefficient and p-value are marked at the bottom right. The gray lines in panel (c) show the 
value of 0 and red line represents the regression.
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Pacific (CP: 5°–25°N, 135°E–160°W) and the tropical eastern Pacific (EP: 15°S–15°N, 80°–120°W), highlighted 
by the black boxes in Figure 1b.

3.2.  Multi-Objective Pareto Optimality Versus Ranking With Multiple Variables

In this section, we quantitatively assess the performance of climate models in reproducing the climatological 
spatial pattern of SLP and SSTs, with the two multi-objective optimization methods, that is, the Pareto-optimality 
and the Least-distance strategy. The performance of the traditional statistic algorithm of Rank-based weighting 
scheme (with multiple variables independently considered) is also presented as a reference to explore the effec-
tiveness and efficiency of the two multi-objective Pareto-optimality schemes, which take into account the physi-
cally based links among geophysical variables.

3.2.1.  Pareto-Optimal Multi-Model Ensemble-Processing Scheme

The RMSE of the four co-variables (SLP and three SST) is used as the model performance metrics. Smaller 
RMSE means better performance. The Pareto-optimal algorithm tends to select a subset of samples with smaller 
RMSE for the four co-variables, satisfying the exigence of improving the performance of one variable without 
degrading any others. Results are displayed in Figure S4 in Supporting Information S1 in the form of scatter 
plot. Each axis represents the corresponding co-variable's RMSE. It is clear that the Pareto-optimality operation 
successfully selected a subset of states, with much smaller RMSE, situated at the edge of the gray-dot cloud. This 
implies that the Pareto-optimality considers all co-variables and adjust them simultaneously, and the processes 
linking the co-variables entered into action during the optimization.

For a given Pareto-optimal subset, its composition of CMIP6 models shows a fixed configuration which allows us 
to deduce models' weight if we only consider the Pareto-optimal ensemble mean. For example, if a Pareto-optimal 
subset contains five models, a number of 0.2 (1/5) is the number of hits for each of the five models in the ensem-
ble. The same calculation can be applied to a Pareto-optimal ensemble, regardless of its size (1815 here).

3.2.2.  Least-Distance Strategy Over Pareto-Optimality

As mentioned in Introduction, there are some risks in the Pareto-optimal multi-model ensemble scheme. To 
explore this point, we define the least-distance strategy to further constrain the Pareto-optimal subset. A threshold 
for each co-variable is determined with a percentile criterion for the Pareto-optimal samples. Histograms of these 
Pareto-optimal samples are shown in Figure S5 in Supporting Information S1, following each of the four axes. To 
ensure equality of all co-variables, a same percentile (here the 90th one, shown by purple dash lines in Figure S5 
in Supporting Information S1) is used to select the four different thresholds. Pareto-optimal sub-samples falling 
in the 4-dimensional space circled by the selected thresholds can then form a new subset, shown by purple dots  in 
Figure S4 in Supporting Information S1, containing only 150 samples. In terms of model weighting, we can 
express weights in a same way as practiced for the Pareto-optimal scheme.

3.2.3.  Rank-Based Weighting Scheme

To compare with the two multi-objective optimization methods, the traditional statistic algorithm of Rank-based 
weighting scheme is used. Sorting the RMSE of CMIP6 models for each co-variable and the weights can be 
obtained from models' rank. It should be noted that though we use four co-variables in the Rank-based weighting 
method, the process of ranking is independent from each other. No physical links are considered when ranking.

Let us now compare the two multi-objective optimality schemes and the Rank-based scheme in terms of model 
weighting, as shown in Figure  2, which ranks models from left to right following weights obtained by the 
Least-distance strategy. It can be seen that the three lines have similar behaviors, showing that they all capture 
the basic effects of CMIP6 models. Actually, 9 out of the top 10 models and 7 out of the bottom 10 models 
are common among all ensemble-processing schemes. Due to the additional constraining conditions over 
Pareto-optimality, the Least-distance strategy shows the largest gradient, indicating that this scheme enhances the 
effect of well-performed models and weakens the poorly behaved ones to a greater extent. Weights provided by 
the Rank-based method are the flattest, meaning that it is the least discriminant.

3.3.  Performance Evaluation

The evaluation is given in the independent validation period (1988–2014). Taylor diagrams and TSSs are used 
to assess the overall skills (Figure 3). The performance is improved in all the weighted results compared to the 

 19448007, 2023, 23, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
107040 by C

ochrane France, W
iley O

nline L
ibrary on [02/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

SUN ET AL.

10.1029/2023GL107040

6 of 9

simple arithmetic mean (CMIP6-MME). The Pareto-optimal scheme has a good performance, whose correlation 
coefficient is bigger and the standard deviation ratio is closer to 1, compared to the Rank-based weighting method 
and CMIP6-MME. TSS is also obviously higher in the Pareto-optimal scheme, with 0.995, 0.990, 0.922, and 
0.960 for SLP, MC, CP, and EP-SST, respectively. The Least-distance strategy shows further improvement. All 
co-variables are closer to the observation in Taylor diagrams, and the TSS is 0.996, 0.989, 0.945, and 0.965 for 
SLP, MC, CP, and EP-SST, respectively. Though TSS of MC-SST is slightly lower than the counterpart in the 
Pareto-optimal scheme, the Least-distance strategy, as a whole, can be regarded as the best-performed method. 
Such a configuration shows clearly that the Least -distance strategy is successful in eliminating the few samples 
of the Pareto-optimality with relatively large RMSE (although they do lie in the smaller-RMSE part among all 
samples). As regards the Rank-based weighting method, it shows better performance than CMIP6-MME, but its 
skill is much behind the Pareto-optimality and the Least-distance strategy.

The spatial patterns of SLP climatology, together with its biases, obtained with the four ensemble-processing 
schemes are shown in Figure S6 in Supporting Information S1 for the independent validation period. It is not a 
surprise that all ensemble-processing schemes capture the main features of SLP. However, WNPSH in CMIP6-
MME, with a westward extension, is obviously too strong, compared to the observation (shown by green contours 
in Figure S6 in Supporting Information S1). The spatial distribution of biases clearly reveals such an overestimation 
(Figure S6e in Supporting Information S1), showing large positive biases over the Northwest Pacific, by more than 
1.6 hPa. The weighting schemes improve the result. In Figures S6b–S6d in Supporting Information S1, it can be seen 
that all of them improve the characteristics of WNPSH, make it closer to the observation. Positive biases over the 
Northwest Pacific are effectively reduced to a level of 0.7 and 0.4 hPa in the Pareto-optimal and Least-distance strat-
egy schemes, which is a reduction of 56% and 75% relative to CMIP6-MME. However, SLP around 30°N, 130°E 
is a little underestimated in the two multi-objective optimal schemes, this is because the high-weighted CMIP6 
models represent relatively low SLP in this area. The Rank-based weighting scheme also reduces the bias, but only 
to a level of about 1 hPa (Figure S6h in Supporting Information S1). The RMSE in the studied area (black boxes 
in Figure S6 in Supporting Information S1) is 0.33/0.32/0.53 hPa in the Pareto-optimal/Least-distance/Rank-based 
schemes, respectively. That is a reduction of 55/57/28% relative to CMIP6-MME (in which RMSE is 0.74 hPa).

The simulated spatial distribution of the tropical Indo-Pacific SST is displayed in Figure S7 in Supporting Infor-
mation S1. It is obvious that the bias of SST is also reduced in the Pareto-optimal and Least-distance strategy 
schemes, compared to the Rank-based scheme (Figure S7 in Supporting Information S1). Overall, the largest 

Figure 2.  The models' weights obtained by the Pareto-optimal scheme (red dots), Least-distance strategy scheme (purple 
dots), and Rank-based weighting scheme (yellow dots). The models of x-axis are ordered by weights of Least-distance 
strategy from the highest weights to the lowest. The dashed line indicates equal-weights for all models (0.045, i.e., 1 divided 
by the number of models).
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improvement occurs in Least-distance strategy, which is consistent with the evaluation shown in Figure 3. These 
results indicate that, compared to the traditional Rank-based weighting scheme, the multi-objective schemes with 
physical links considered have stronger ability to improve model performance, and the Least-distance scheme 
imposes further constraints to the Pareto-optimal subset.

4.  Discussion and Conclusion
The approach of ensemble simulations with multiple models is a common effort of the international commu-
nity to tackle numerous climate issues. It is generally believed that the collective performance can be enhanced 
through an optimal usage of the ensemble. Most of ensemble-processing strategies, however, use criteria involv-
ing a single variable (often the variable of relevant climate interest or a more-elaborated compound index), while 
the simulation ability of different climate models varies greatly for different variables. The lack of multiple 
constraints constitutes a shortcoming for this kind of practices. In the climate system, geophysical variables are 
physically connected to each other. A multi-objective optimization applied to multiple co-variables provides 
an interesting way to assess such processes relating multiple variables. In this work, we want to promote the 
multi-model ensemble-processing strategies that involve multiple objectives, which mimics the physically based 
links among variables in the climate system.

The Pareto optimality was then used to conduct multi-objective optimization, and a further scheme called 
Least-distance strategy was also elaborated and applied to the multi-model ensemble simulations at our disposal. 
The latter selected a Pareto-optimal subset with simultaneous short distance to the observation for all involved 
variables. The Rank-based weighting method that independently evaluates the different objectives was also used 
as a reference. It doesn't take into account any potential physically based links among climate variables. As an 
example of application, this work targets SLP of WNPSH, with SST from three physically linked oceanic basins 

Figure 3.  Taylor diagram (a–d) showing the sea level pressure, MC-SST, CP-SST, and EP-SST of individual CMIP6-models (gray numbers) and four ensemble 
schemes of CMIP6-MME (black symbols), Pareto-optimal scheme (red symbols), Least-distance strategy (purple symbols), and Rank-based weighting scheme (yellow 
symbols) during the validation period (1988–2014). The number of CMIP6 models are the same as in Figure 1. (e) Taylor skill score of four co-variables simulated by 
four ensemble schemes. Different colors represent different ensemble scheme, and different symbols represent different co-variables.
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as co-variables. Improvements can be seen in the two multi-objective schemes in simulation of both WNPSH 
and SST, compared to the simple arithmetic mean across CMIP6 models. They also perform better than the 
Rank-based weighting method, emphasizing the importance of physical links in processing multi-model ensem-
ble simulations.

It should be noted that all members of the Pareto-optimal subset (also called Pareto front) are not ideal states. The 
Pareto-optimality stipulates that “one cannot gain more benefits or interests without harming others when allocat-
ing limited resources,” which means that it faces the risk of selecting members which have poor skill (though still 
better than most other members in the raw ensemble) in one variable, but selected due to their better performance 
in another variable. This issue was not discussed in previous studies. To take it into account, we added a further 
constraint: the least distance from observation. This scheme shows the best performance in both SLP and SST 
climatology. The results confirm that there are some Pareto-optimal members with relatively poor performance 
and such members can be eliminated by the Least-distance strategy.
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