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Abstract
Understanding the spatio-temporal distribution of species is a cornerstone of ecology and conservation.
By pairing species observations with geographic and environmental predictors, researchers can model
the relationship between an environment and the species which may be found there. To advance the state-
of-the-art in this area with deep learning models and remote sensing data, we organized an open machine
learning challenge called GeoLifeCLEF 2023. The training dataset comprised 5 million plant species
observations (single positive label per sample) distributed across Europe and covering most of its flora,
high-resolution rasters: remote sensing imagery, land cover, elevation, in addition to coarse-resolution
data: climate, soil and human footprint variables. In this multi-label classification task, we evaluated
models ability to predict the species composition in 22 thousand small plots based on standardized
surveys. This paper presents an overview of the competition, synthesizes the approaches used by the
participating teams, and analyzes the main results. In particular, we highlight the biases faced by the
methods fitted to single positive labels when it comes to the multi-label evaluation, and the new and
effective learning strategy combining single and multi-label data in training.

Keywords
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1. Introduction

Land use changes and global warming transform ecosystems at an alarming rate ([1]), but their
local impact on biodiversity is highly context-dependent and difficult to predict. Regularly
monitoring species composition at high spatial resolution (≈50 m) and continental or global
extent would enable to understand in real time how species communities and biodiversity
indicators (e.g. diversity, habitat condition, presence of endangered species) respond to global
changes in order to take effective actions, but it is largely unfeasible. Nevertheless, species
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composition predictions across space and time from deep learning-based species distribution
models (deepSDMs, [2, 3]) are a promising alternative as these models can efficiently exploit
complex and high spatial resolution geographic predictors, including remote sensing data, to fill
the sampling gaps ([4, 5]). However, the scarcity, imbalance and heterogeneity of the available
species observations and environmental data are major impediments to the implementation of
species distribution models at this resolution.

Standardized biodiversity observation data, such as presence-absence surveys in small plots,
can only cover a very limited spatial extent and is costly to renew. New biodiversity monitoring
schemes, such as crowdsourcing programs (e.g. Pl@ntNet, iNaturalist, Observation.org) are
a complementary data source, as they provide millions of presence-only (PO) species records
with precise geo-location every year. However, PO records do not inform about the local
absence of the non-observed species ([6]), only show a small portion of species communities in
under-sampled areas, are biased towards certain species, and thus carry many biases when used
in species distribution models (see e.g. [7, 8]). Therefore, the evaluation of species distribution
models on PO data induces important evaluation biases only due to the sampling patterns,
as pointed out by the previous GeoLifeCLEF campaign ([9]). This highlights the need for an
evaluation procedure based on exhaustive sampling of species communities at high spatial
resolution. In addition, a small number of standardized species observations, e.g. presence-
absence (PA) plots, can also help solve many sampling biases of the PO data when jointly
integrated into species distribution model calibration, while enabling to capitalize on the rich
information hidden in the mass of PO data ([10, 11]). Even when using comprehensive PA data,
it is difficult to model and map biological groups with large taxonomic diversity such as plants,
i.e. more than 10 thousand species in Europe, with a few species being very common and a vast
majority of them being rare. This problem is referred to as strong class imbalance in the domain
of machine learning.

Remote sensing data is a central resource to characterize environment at high spatial or
temporal resolution, but its integration into species distribution models is quite recent ([4]). This
environmental data is precious to complete the environmental landscape at coarser spatial scale,
as characterized by climatic, soil or land cover descriptors, but the different spatial resolutions
makes it difficult to integrate in classical deep learning architectures.

For this new open model evaluation campaign, called GeoLifeCLEF 2023, we have assembled
an open dataset at a European scale to investigate these problems and designed the evaluation of
the multi-label prediction of species composition at high spatial resolution based on standardized
PA data for the first time in GeoLifeCLEF. To summarise, the difficulties of the challenge include:
multi-label learning from a large amount of single positive labels and a small number of partial
multi-label samples, strong class imbalance, large-scale, learning from multiple type of predictors,
including multi-band satellite images and time-series.

2. Dataset and Evaluation Protocol

We briefly describe below the dataset of GeoLifeCLEF 2023, i.e. the species observations and
environmental predictors made available to train models, and its evaluation protocol, namely
the standardized PA data used for evaluation and evaluation metric. We acknowledge that a



Figure 1: GeoLifeCLEF 2023 aimed at developing and evaluating models that predict plant species
composition at high spatial resolution (∼10m) from diverse type of input environmental predictors,
by calibrating them on two types of species observations: Opportunistic presence-only records and
standardized presence-absence surveys.

more detailed description of the dataset components, structure (e.g. files and links between
them) and generation protocol is provided in the dedicated data paper ([12]). The competition
was hosted by Kaggle1.

Observation data. The training species observation data was composed, on the one hand, of
more than 5 million plant species PO records (species name, geo-location, time, etc.) and, on
the other hand, of around 5.9 thousand presence-absence (PA) surveys, all collected between
2017 and 2021, and with a geo-location uncertainty under 100 m. The PO data was extracted
from the Global Biodiversity Information Facility (GBIF, [13]), combining 13 trusted source
datasets, including three international citizen science programs (Pl@ntNet, iNaturalist RG,
Observation.org) and regional datasets, favouring a large spatial coverage across Europe (38
countries). Each PA survey consisted in the exhaustive inventory of all plant species in a small
plot of 10 to 400m². The PA data was composed of four source datasets covering France and Great
Britain, namely the "Données de l’inventaire forestier national de l’IGN", the "National Plant
Monitoring Scheme (Great Britain)", the "Conservatoire Botanique National Mediterranéen"
and the "Conservatoire Botanique National Alpin". The PO and PA data overall covered 10,038
species, i.e. most of the European flora. This species observation data was provided to inform
the model outputs, keeping in mind that the PO data only partially represented the local species
composition and was subject to various sampling biases. Indeed, we recall that a PO record of

1www.kaggle.com/competitions/geolifeclef-2023-lifeclef-2023-x-fgvc10

www.kaggle.com/competitions/geolifeclef-2023-lifeclef-2023-x-fgvc10


one species does not inform about the absence of other species: an observer might not have
reported another species because it was difficult to detect at this time, to identify, or because it
was simply not interesting to this observer. The PA surveys were provided to control for the
sampling biases in model calibration.

Environmental predictors. We also provided spatialized geographic and environmental
data to be used as predictors, i.e. input for model predictions. For each species observation
(in PO and PA), we provided a four-band 128x128 satellite image at 10 m resolution around
the occurrence location and satellite quarterly time series of the past values for six spectral
bands at the location (over 20 years). Besides, we provided various environmental rasters at
the European scale, including climatic, soil, land cover, human footprint and elevation variables.
These three types of input environmental predictors are illustrated in Figure 2. We also provided
monthly rasters of four climatic variables from which it was possible to extract time series of
climatic variables for any observation. All predictors are summarized in Table 1 along with
their source and spatial resolution.

Train-test split. A spatial block hold-out on a grid of width and height of 50 km was performed
to split the PA surveys into a validation set of 5,948 surveys (≈ 20%), provided for model training,
and a test set of 22,404 surveys (≈ 80%), for which the sampled species where hidden from
the participants. The location of the validation and test surveys is represented in the map of
Figure 3. This spatial block hold-out split strategy is employed to limit the effect of the spatial
auto-correlation in the data when evaluating the models and assess their ability to extrapolate
to new regions [14].

Evaluation metric. GeoLifeCLEF 2023 was proposed as a multi-label classification task. The
main evaluation metric for the Kaggle competition was the micro 𝐹1-score computed on the PA
test set. The 𝐹1-score is a measure of overlap between the predicted and actual set of species
present, averaged over the test PA surveys. Each survey 𝑖 is associated with a set of ground-truth
labels 𝑌𝑖, i.e. the set of plant species present at 𝑖. For each survey, participants provided a list of
predicted labels 𝑌 𝑖,1, 𝑌 𝑖,2, . . . , 𝑌 𝑖,𝑅𝑖 . The micro 𝐹1-score is then computed using

𝐹1 =
1

𝑁

𝑁∑︁
𝑖=1

TP𝑖

TP𝑖 + (FP𝑖 + FN𝑖)/2

Where

⎧⎪⎨⎪⎩
TP𝑖 = Number of predicted labels truly present, i.e. |𝑌 𝑖 ∩ 𝑌𝑖|
FP𝑖 = Number of labels predicted but absent, i.e. |𝑌 𝑖 ∖ 𝑌𝑖|
FN𝑖 = Number of labels not predicted but present, i.e. |𝑌𝑖 ∖ 𝑌 𝑖|

The micro 𝐹1-scores are reported for the 19 main methods tested in the challenge in Table 2.
We also provided in this table the "Score sp.", a macro-averaged 𝐹1 score where true positive,
false positive and false negative are counted per species to compute its score, which is then
averaged over species.



Figure 2: Illustration of the environmental data for an occurrence collected in northern Switzerland
(lon=8.5744;lat=47.7704) in 2021. A. The 1280x1280m satellite image patches sampled in 2021 around the
observation. B. Quarterly time series of six satellite bands at the point location since winter 1999-2000.
C. Three example bioclimatic images (65x65km) around the observation, extracted from the provided
environmental rasters.



Table 1
Summary of the environmental predictors associated with the species observations, source and spatial
resolution.

Name Description Source Resolution

Climate

19 rasters of
historical

bioclimatic
variables

(1981-2010)
traditionally used

in SDMs

CHELSA ∼1 km

Montly
Climate

4 variables from
January 2000 to
december 2019

CHELSA ∼1 km

Soil
9 pedological

rasters
Soilgrids ∼ 1 km

Elevation
Elevation above

sea level
ASTER ∼ 30 m

Land cover
According to IGBP
classification (17

classes)
MODIS 500 m ∼ 500 m

Human
footprint

7 pressures on the
environment for
1993 and 2009

Venter et al., 2016 ∼ 1km

Satellite
imagery

RGB and NIR
patches centered

on each
observation and
taken the same

year

Sentinel-2 10 m

Satellite
time series

Time series of six
quarterly satellite
bands values since

winter 1999

Landsat 30 m

3. Participants and methods

Seven participants from four countries participated in the GeoLifeCLEF 2023 challenge and
submitted a total of 130 entries (i.e. runs, see 4). In Table 2, we report the performance achieved
by the main documented methods of the participants as well as the baseline methods that we
developed. Hereafter, we briefly describe those different methods:

3.0.1. Participants’ methods

• KDDI research: This team trained various convolutional neural networks (CNN), all
based on the ResNet backbone (ResNet34 and 50). One of the CNNs was trained solely

https://chelsa-climate.org/exchelsa-extended-bioclim/
https://chelsa-climate.org/exchelsa-extended-bioclim/
https://soilgrids.org
https://lpdaac.usgs.gov/products/astgtmv003/
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1/#overview
https://datadryad.org/stash/dataset/doi:10.5061/dryad.052q5
https://stac.ecodatacube.eu/
https://stac.ecodatacube.eu/


Figure 3: The locations of the validation (red) and test (blue) presence-absence (PA) surveys. The 22
thousand test PA labels were hidden from the participants and used for model evaluations, while the
five thousand validation PA were provided to them to help control sampling biases in model calibration.

on the 19 bioclimatic rasters, while others were multi-modal networks with a late fusion
layer to merge the different modalities used (see Table 2). The best performing run was an
ensemble of the best models based on a simple average of their output. The best models
were trained in three steps, firstly on the PA plots with a binary cross-entropy loss, then
fine-tuned on the PO records with a cross-entropy loss, and finally fine-tuned again on
the PA with the binary-cross-entropy loss. This team carried an ablation study showing
the importance of these three steps. The detailed methodology of this team is explained
in their working note ([15]).



• Jiexun Xu: This researcher focused on the tabular environmental data only, i.e he did
not use the spatial structure of the environmental co-variates nor the remotes sensing
images and times series. The model used is XGBoost, which was trained on the PA plots
only based on the following predictors: climate, soil, land cover and the detailed human
footprint variables. He also added the one-hot encoded species presences in GBIF in a
1km radius of these plots as input variables.

• Lucas Morin: This researcher optimized a K-Nearest Neighbor predictor using only the
spatial coordinates and the PA plots.

• QuantMetry: This team trained various models on the PA data, and their one was a
ResNet50 using only the Sentinel2 satellite images (RGB+NIR) as input. The model was
pre-trained on the satellite images in a prior work and fine-tuned to the PA data in the
challenge.

• Nina van Tiel: This researcher used a small CNN, with two convolutional layers and two
fully connected layers on the RGB images, along with the bioclimatic, soil and land-cover
rasters, trained on the PA plots.

• Ousmane Youme: This researcher focused solely on the Landsat time series data at
the location of the PA plots. He used a Conv1D neural network model with a binary-
cross entropy loss. A common probability threshold was used to convert the predicted
species-wise presence probabilities into a set of predicted species.

3.0.2. Organizer’s baselines

• MAXENT: It is a modeling approach widely used in ecology to predict the distribution
of a given species based on tabular predictors. The model creates a pre-defined set of non-
linear transformations of the environmental predictors consistent with the theoretical
ecological response of species to environmental gradients (e.g. quadratic and threshold
response functions, see [16]). The statistical model is equivalent to Poisson regression
modeling the count of a species per location ([17]). We fitted one MaxEnt model per
species present in the PA plots. The species count was set to one when present or zero
otherwise. The predictors included were the climate, soil, land cover and the detailed
human footprint variables, but only a subset of these variables were included for species
with a small number of observations. One random subset of the provided PA plots was
used to train all species models. After a fit, the coefficient to transform MaxEnt intensity
function into a presence-probability (through the cloglog transform) was calibrated on
the training set per species, and a F1 score was computed on the remaining plots per
species. We then computed the F1-micro score on this sub-validation set as a function
of the number of species kept for prediction by decreasing species-wise F1, the left-out
species being always predicted absent. We thus determined that it was optimal to keep
only the 391 most trustable species models in prediction (MaxEnt best sp. in Table 2). To
aggregate the predicted species-wise presence probability into a predicted set, we selected
the 𝑆 species with highest probability, where 𝑆 was the rounded sum of probabilities
over all kept species. We also submitted the predictions based on all species models.

• Environmental Random Forest: Random forests are also widely used in species distri-
bution modeling based on a set of tabular environmental predictors. The Env. Random



Forest models were trained on the same predictors as MaxEnt and on the PA plots. One
Random Forest was trained per species found among PA plots and its hyper-parameters
were optimized through a cross-validation grid search. The procedure to aggregate the
predicted species probabilities into a predicted set was the same as for MaxEnt.

• Spatial Random Forest: This version of the Random Forest used only the spatial
coordinates of the PA plots as predictors. The procedure to aggregate the predicted
species probabilities into a predicted set was the same as above.

• PA species co-occurring with nearest PO species: Conditionally to the presence of
each species, we computed the proportion of presences of all other species among the PA
plots. Then, for each test location, we combined the species probabilities conditionally to
the species observed in the PO data in a 1 km radius into a predicted species set through a
weighted average. A given species weight was its marginal proportion of presence among
validation PA plots.

• Constant predictor: This baseline always predicts the same set of species, i.e. the 𝐾
species that are the most frequent in the validation PA data and where 𝐾 maximizes the
micro-F1 score on the validation PA (top-25 species).

• Spatial kNN PO: This baseline implements a k-nearest neighbor method based on the
spatial coordinates of the PO data (longitude and latitude). All the species present in the
k-nearest neighbors are returned as present. Several values of k (30, 50, 100 and 500) were
evaluated on the public leaderboard and only the best one (k=100) is reported here.

4. Global results of the evaluation

KDDI research got the best performance of the challenge (best score=0.273 with KDDI Ensemble,
Table 2), with their ensemble of multi-modal CNNs trained on the combination of PO and
PA data. Their best runs had a considerably larger performance than the following group of
participants, whose best performances were comparable: Jiexun Xu (2nd, best score=0.226), L.
Morin (3rd, best score=0.217), QuantMetry (4th, best score=0.208). These three teams achieved
a similar best performance by using only the PA data, but they used very different models, i.e.
respectively boosted trees using the environmental variables, a purely spatial nearest neighbor
predictor and a CNN based on satellite images. The results of these three teams were also
comparable, even though slightly below, to the best baseline method: Maxent best sp. PA
(score=0.228, Table 2). The two remaining participants that documented their methods (N. van
Tiel, 5th with max. score=0.16; O. Youme, 6th with max. score=0.136) had a lower score than
the constant predictor baseline (score 0.162), and their best performance was achieved using
CNNs, whose size was smaller in comparison to the ones of other participants who used this
such models.

Different participants (i.e. KDDI team, L. Morin and organizers) reported that, despite the
size of the PO data, calibrating models on this data alone did not work well. For instance,
our Nearest Neighbors method based on the PO data performed poorly (baseline Spatial KNN
PO, score=0.056, Table 2) compared to the Nearest Neighbors method based on the PA data
submitted by L. Morin (Morin KNN PA, score=0.217). Besides, the multimodal CNN of KDDI
Research performed poorly when it was initially calibrated on the PA and then fine-tuned on



Table 2
The 18 main documented results of GeoLifeCLEF 2023 ordered by decreasing main score (F1 micro) -
the acronyms PA and PO respectively stand for Presence Absence, i.e. the validation multi-label data
was used to fit the model, and Presence-Only which means that the single label data was used.

Team Method name Model Predictors Score Score Sp.

KDDI KDDI Ensemble
Ensemble
of CNNs

Satellite rgb,
nir, soil,

climate, human

0.273 0.028

KDDI KDDI PA/PO/PA
Multi-

modal CNN
Satellite rgb,

nir, soil,
climate, human

0.251 0.031

Baseline Maxent
best sp. PA

Poisson
regression

climate, soil,
land cover,

human

0.228 0.016

JiexunXu
XG-Boost enviro.

PA
XG-Boost

climate, soil,
land cover,

human

0.226 0.030

KDDI KDDI PO/PA
Multi-

modal CNN
Satellite rgb,

nir, soil,
climate, human

0.223 0.019

L. Morin Morin KNN PA
Nearest

Neighbors
lon/lat 0.217 0.017

Quantmetry Satellite CNN ResNet50 Satellite
RGB-NIR

0.208 0.022

KDDI KDDI PA
Multi-

modal CNN
Satellite rgb,

nir, soil,
climate, human

0.198 0.022

Baseline Spatial RF PA
Random
Forest

lon/lat 0.193 0.006

Baseline Enviro. RF PA
Random
Forest

0.191 0.005

Baseline PA assemblage
from nearest PO

Nearest Neighbors
+ Cooccurrence

lon/lat 0.167 0.014

Baseline Constant PA Constant
predictor

None 0.162 0.002

N. van Tiel van Tiel’s CNN CNN
Satellite rgb,
soil, climate,

human

0.160 0.004

O. Youme time-series
CNN PA

CNN Time-series 0.136 0.021

Baseline Maxent
all sp. PA

Poisson
regression

climate, soil,
land cover,

human

0.106 0.024

KDDI KDDI PA/PO
Multi-

modal CNN
Satellite rgb,

nir, soil,
climate, human

0.073 0.021

KDDI KDDI PO
Multi-

modal CNN
Satellite rgb,

nir, soil,
climate, human

0.058 0.014

Baseline Spatial KNN PO
Nearest

Neighbors
lon/lat 0.056 0.032



Figure 4: Results (F1-micro) ranked by decreasing order for the 139 valid runs submitted to GeoLifeCLEF
2023, including 9 main organizer baselines.

the PO (KDDI PA/PO, score=0.073) or solely calibrated on the PO (KDDI PO, score=0.058), while
it performed well when fine-tuned on the PA (KDDI PO/PA, score=0.223, and KDDI PA/PO/PA,
score=0.251).

Still, the PA data alone had only a few records for thousands of species. One of the symptoms
of this is that the Maxent baseline including all species models (Maxent all sp. PA, score=0.106)
performed poorly compared to its version where species models were filtered based on their
predictive performance (Maxent best sp. PA, score=0.228). Furthermore, KDDI research
drastically increased the performance of their multimodal CNN by combining the PA and PO
data in its training (KDDI PA/PO/PA, score=0.251) compared to its training on the PA data alone
(KDDI PA, score=0.198). Besides, this team showed again that model ensembling can improve
performances with their best run (KDDI ensemble, score=0.273, Table 2).

5. Complementary analysis

A strong class detection bias in PO data. The number of species presences in the PO
and PA data were totally unrelated (Figure 5), even when restricting the PO to the same area
sampled in the PA data. As a direct consequence, when generating a predictive method to the
PO data (e.g. KDDI PO), one tends to over-estimate the commonness of the most observed
species compared to their commonness in PA surveys. It appears as the main explanation of the
performance collapse of KDDI PO and KDDI PA/PO (scores=0.058 and 0.073, Table 2) compared
to KDDI PO/PA and KDDI PA/PO/PA (scores=0.223 and 0.251).



Figure 5: Number of presences in the presence-absence (PA) data versus number in the presence-only
(PO) data for all the species present in the PA data, in the natural (left) and decimal logarithmic scales
(right). Each species is one point. The number of presences in the PA surveys includes validation and
test surveys. The PO data are here restricted to a radius of 1km around these PA surveys, so that these
numbers reflect the same sampled habitats.

Room for improvement in set size control. Another source of error when using the PO
data is the predicted set size, because a local set of PO data generally under-represent local
species communities due to false absences. It appeared that few participants explicitly optimized
set size error in validation. For instance, all methods of the KDDI team predicted a constant
set size of 20, which was, on average, 6.5 species more than the actual test species average set
size (Bias of their best run KDDI Ensemble in Table 3). Hence, KDDI Ensemble was less accurate
for set size (Abs. error=10.4, Table 3) compared to simpler methods (Abs. error=6.7, 8.2 and 8.3
for resp. MaxEnt best sp. PA, Enviro. RF PA, Spatial RF PA) whose workflow accounted for this
aspect. An extreme case is the baseline method Spatial KNN PO which used the set of species
found among the 100 nearest PO records as prediction, inducing a large positive bias (Bias of
58.25). However, even using The PA data for model training or validation doesn’t necessarily
induce a control on set size error. For instance, the predicted sets of the baseline method MaxEnt
all sp. PA were far too large (Bias of 49.9, see Table 3), while restricting the modeled species to
the ones with the best to predictive performance resulted in the best error on set size (Bias of
-2.3 and Abs. error of 6.7 in Table 3) and a far better main score (MaxEnt best sp. PA, score=0.223,
see Table 2). The method to aggregate species-wise predicted probabilities into a predicted set
might importantly impact set size error. For instance, the Time-series’ CNN PA, developped by
O. Youm, used a binary-cross entropy loss and a single threshold on the species-wise predicted
probability of presence to determine the predicted set of species. It resulted in a much larger
set size error (Abs. error 15.1 in Table 3) compared to the PA methods that took the sum of the
species-wise presence probabilities as the predicted set size such as MaxEnt best sp. PA (Abs.



error of 6.7), Enviro RF PA (Abs. error of 8.2) and Spatial RF PA (Abs. error of 8.3).

Table 3
Table of set size errors for a subset of the methods whose set prediction procedure was documented.
Abs. error is the average (over surveys) of the absolute value of the set size error, while Bias is the mean
(signed) set size error.

Team Method name Abs. error Bias
Baseline MaxEnt best sp. PA 6.688 -2.273
Baseline Enviro. RF PA 8.206 2.026
Baseline Spatial RF PA 8.284 1.394

Quantmetry Satellite CNN PA 9.437 2.140
Baseline PA assemblage from nearest PO 9.771 5.079

KDDI KDDI Ensemble 10.435 6.546
Jiexun Xu XG-Boost enviro. PA 12.957 8.098
Baseline Constant PA 14.449 12.546
O. Youm time-series CNN PA 15.151 10.930
Baseline Maxent all sp. PA 50.555 49.949
Baseline Spatial KNN PO 58.29 58.25

Performance depended on datasets and habitats. We computed the F1-micro per dataset
of the test set for eleven documented methods of the challenge (Figure 6). For all of them, we
observed the same variations of performance across datasets: The performance was highest
for the dataset "Inventaire Forestier IGN" (max=0.43 for KDDI Ensemble), it was much smaller
for the dataset "National Plant Monitoring UK" (max=0.2 for KDDI Ensemble), but it was in
general higher in the latter than in the two remaining datasets, namely "CBNMed" (max=0.16
for KDDI Ensemble) and "CBNA" (max=0.11 for XG-Boost enviro. PA). This is firstly explained by
the different regional and habitat coverage of these datasets: "National Plant Monitoring UK"
covers many habitats Great Britain, "Inventaire Forestier IGN" only covers french forest habitats,
while "CBNMed" and "CBNA" cover respectively all habitats of the French mediterranean region
and the French alpine region. As the "Inventaire Forestier IGN" is more habitat specific, the
species composition is more homogeneous between the surveys compared to "CBNMed" and
"CBNA", which are particularly diverse in plant habitats. Indeed, the "Inventaire Forestier IGN"
shows a slower species accumulation when increasing the number of surveys (Figure 7), despite
its much larger spatial extent. Besides, the difficulty of predicting the species composition is
probably increased in the "National Plant Monitoring UK" given that the set size is compared to
the "Inventaire Forestier IGN" (8.9 vs 19.8, Figure 7).

6. Discussion and Conclusion

For the first time in the GeoLifeCLEF series, we assembled a large test set of standardized
presence-absence data, allowing to avoid the many evaluation biases due to the sampling issues
of the more commonly available presence-only data, as noted the previous year [9]. We also
provided a new type of remote sensing predictor, namely the satellite multi-band time-series.



Figure 6: F1-micro score per method and PA dataset in GeoLifeCLEF 2023 test set.

The dataset assembled for the occasion forms a reference in the domain of species distribution
modeling, in particular the problem of species composition prediction at very high spatial
resolution and large extent, and will soon be published in a data paper ([12]).

GeoLifeCLEF has never offered so many possibilities, but has also never been so complex. This
is probably one of the reasons why we observed a smaller participation than last year. Several
participants acknowledged a likely significant room for improvement for their approaches given
more time. Still, they developed very diverse methods using almost all types of predictors, and
the KDDI research team even managed to combine the presence-only and presence-absence
data to maximise their predictive performance to win the challenge [15], over-performing, by
far, our best baseline.

We observed an evidently large room for improvement in our ability to exploit the rich
information hidden in the masses of opportunistic PO data for predicting species composition
in space. The challenge goes beyond this particular problem, and touches the proper integration
of single positive labeled data for multi-label classification in machine learning ([18, 19]). We
highlighted two central sources of errors arising from the bias in the way the single positive
label is sampled, i.e. class detection biases and set size control. The true set size cannot be



Figure 7: Number of species observed versus number of randomly selected surveys per dataset in the
test set of GeoLifeCLEF2023.

assessed from PO, because a record of a species does not inform us on the absence of the
others, except if we can make further assumptions on the sampling process, as for instance by
modeling the detection process (e.g. [20]). Furthermore, we cannot assume that the proportion
of species observed in PO is constant for a given area, due to the tremendous variations in
sampling effort across space [21]. Most participants methods significantly over-predicted set
size, coherently with the optimization of main score (micro-F1) which favours larger predicted
set for less accurate models. Nevertheless, it seems like many participants did not optimize
the predicted set size. Further, there is likely a large room for improvement on the step of
assemblage of discrete set predictions from quantitative model outputs to predict useful species
compositions. We have also seen that the class detection bias is very strong in the PO data
through a comparison with the objective PA data. This is likely due to the fact that in large
opportunistic crowdsourcing programs (e.g. Pl@ntNet, iNaturalist), observers tend to focus
on the most detectable, easy to identify and charismatic plant species. Set size variations and
class detection bias can controlled by a calibration step on the PA data. The KDDI approach
illustrated it (e.g. KDDI PA/PO/PA method) with their original learning scheme ([15]), optimizing



a cross-entropy loss on the PO data, followed by an optimization of a binary-cross-entropy on
the PA data, thus compensating for the class detection bias. Their predictions could be improved
by accounting for set size variability. Indeed, one could capitalize on the set size information
encoded in the species-wise presence probabilities, as for instance, the set size expectation.

Another important perspective is to better integrate the diverse available predictors whose
formats and spatial or temporal resolutions are very different. Participants often built models
based on one type of predictor, like satellite images (e.g. Satellite CNN of Quantmetry), time-
series (e.g. time-series CNN PA of O. Youme) or tabular environmental variables (e.g. XG-Boost
enviro. PA from Jiexun Xu). Yet, the KDDI team developed an efficient multi-modal CNN with
late fusion of three CNNs respectively based on climatic rasters, soil rasters, and a stack of
satellite images and the human footprint raster (KDDI PA/PO/PA), which improved compared to
their climatic CNN alone. Besides, it would be interesting to evaluate the potential of this late
fusion approach compared to a more simple ensembling method, or the potential further gain of
end-to-end learning, which is generally a more difficult task. Anyways, not relying on a single
type of predictor appears all the more important under predictor error, as the spatio-temporal
patterns of error may differ from one predictor to the other. For instance, soil predictors are
much less trustable for high latitudes [22], while cloudiness may obscure the information of
satellite time-series in oceanic areas. Quantifying model predictive uncertainty and its variations
across predictions may be a critical step towards a better integration of multi-modal models, as
for instance through conformal prediction approaches.

Except the simple baseline PA assemblage from nearest PO, no method used species co-
occurrences to our knowledge, namely the statistical relationship between species through
space. This is surprising given the current emphasis about such approaches in the domain of
species distribution modeling and ecology ([23]) and the existence of deep learning models
using these properties ([24]).

In conclusion, an agenda for further methodological research could be decomposed into
four main tasks: (i) integrating diverse predictors, particularly time-series of remote sensing or
climatic variables, (ii) integrating diverse observation data types to correct sampling biases, for
which the use of appropriate data model, through e.g. multi-head models, such as Poisson point
processes have proven their worth ([10, 11]), (iii) addressing the aggregation of quantitative
predictions into discrete set prediction, and (iv) better exploiting species relationships across
space in deep learning models. We also note that, as the toolbox of deep species distribution
model grows, it becomes more difficult to identify practices that consistently bring progress
across contexts. Therefore, we once again emphasize the importance of experimental design,
step-by-step complexification and the transparent description of results, in order to extract the
best knowledge out of machine learning challenges.
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