
HAL Id: hal-04322004
https://hal.science/hal-04322004v1

Submitted on 6 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Learning Based Branch and Bound for Maximum
Common Subgraph Related Problems

Yanli Liu, Chu-Min Li, Hua Jiang

To cite this version:
Yanli Liu, Chu-Min Li, Hua Jiang. A Learning Based Branch and Bound for Maximum Common
Subgraph Related Problems. The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-
20), Feb 2020, New York, United States. pp.2392-2399. �hal-04322004�

https://hal.science/hal-04322004v1
https://hal.archives-ouvertes.fr

The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A Learning Based Branch and Bound
for Maximum Common Subgraph Related Problems

Yanli Liu,1,4,5 Chu-Min Li,2∗ Hua Jiang,3† Kun He1‡
1Huazhong University of Science and Technology, China

2MIS, Université de Picardie Jules Verne, France
3Yunnan University, China

4WuHan University of Science and Technology, China
5State Key Lab. for Novel Software Technology, Nanjing University, China

yanlil2008@163.com, chu-min.li@u-picardie.fr, huajiang@ynu.edu.cn, brooklet60@hust.edu.cn

Abstract

The performance of a branch-and-bound (BnB) algorithm
for maximum common subgraph (MCS) problem and its re-
lated problems, like maximum common connected subgraph
(MCCS) and induced Subgraph Isomorphism (SI), crucially
depends on the branching heuristic. We propose a branching
heuristic inspired from reinforcement learning with a goal of
reaching a tree leaf as early as possible to greatly reduce the
search tree size. Experimental results show that the proposed
heuristic consistently and significantly improves the current
best BnB algorithm for the MCS, MCCS and SI problems.
An analysis is carried out to give insight on why and how re-
inforcement learning is useful in the new branching heuristic.

Introduction
A graph is a logic model to describe a set of objects and
the relationship of the objects abstracted from real-world
applications. Given two graphs G and H , it is often cru-
cial to determine the similarity of G and H . The Maxi-
mum Common induced Subgraph (MCS) problem was in-
troduced for this purpose, consisting in finding a graph
with as many vertices as possible that is isomorphic to
an induced subgraph in both G and H . If we require the
induced subgraph to be connected, then it is called the
Maximum Common Connected induced Subgraph (MCCS).
They are NP-hard and widely occurs in applications such
as image or video analysis (Bunke and Messmer 1995;
Liu and Lee 2001), information retrieval (Cao, Yang, and
Wang 2011), biochemistry (Giugno et al. 2013; Cootes,
Muggleton, and Sternberg 2007; Faccioli et al. 2005), pat-
tern recognition (Solnon et al. 2015; Conte et al. 2008;
Cordella et al. 2004) and cheminformatics (Raymond, Gar-
diner, and Willett 2002). A related problem called induced
Subgraph Isomorphism (SI) is to decide whether a small
graph G occurs inside a graph H .

Many approaches have been designed to address MCS
and MCCS, see, e.g, (McCreesh et al. 2016; Mcgregor

∗The first two authors contribute equally to this paper.
†Corresponding author.
‡Corresponding author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2010; Bahiense et al. 2012; Levi 1973; Hoffmann, Mc-
Creesh, and Reilly 2017; Lodi and Zarpellon 2017). Some
techniques of constraint programming for filtering domain
are used in SI algorithms (Solnon 2010; Cordella et al. 2004;
Zampelli, Deville, and Solnon 2010; Bonnici and Giugno
2017). In this paper, we focus on the branch-and-bound
(BnB) scheme for the MCS and extend it to the MCCS
and SI. Examples of existing BnB algorithms for the MCS
can be found in (Mcgregor 2010; Ndiaye and Solnon 2011;
McCreesh, Prosser, and Trimble 2017).

It is well-known that the performance of a BnB algorithm
crucially depends on its branching heuristic. The branching
heuristic in McSplit (McCreesh, Prosser, and Trimble 2017),
the current best BnB algorithm for the MCS, aims at min-
imizing the number of branches for the current branching
point and uses vertex degree to rank the vertices. Unfortu-
nately, due to the NP-hardness of the MCS, the BnB search
tree size may not be predictable in general using vertex de-
gree or any other static feature of a graph.

In this paper, we propose to use reinforcement learning
(RL) to discover which branching choice yields the greatest
reduction of the search tree by trying them during the search.
Specifically, we consider the BnB algorithm as an agent and
each branching choice as an action. When the agent takes an
action, it receives a reward determined by the consequence
of this action, which in our context is the reduction of the
search space. The score of the action depends on the ac-
cumulated rewards it received in the past. Then, at every
branching point, the agent selects an action with the greatest
score to branch on.

We implement our branching heuristic on top of Mc-
Split, and design a new algorithm called McSplit+RL. The
new algorithm is extensively evaluated on 24,761 MCS in-
stances from diverse applications (biochemical reaction, im-
ages analysis, 3D, 4D objects, complex networks), including
the large instances used in (McCreesh, Prosser, and Trim-
ble 2017) for evaluating McSplit. Since McSplit is already
highly efficient, most instances are very easy for both Mc-
Split and McSplit+RL, and can be solved by all tested algo-
rithms within 10s. We exclude these easy instances that do
not need learning to be solved, and the too hard instances
that none of the tested algorithms can solve within the time

2392

limit. There remain 2790 instances. Empirical results show
that McSplit+RL solves 7.1% instances more than McSplit.
Considering the high performance of McSplit and the noto-
rious difficulty of MCS, these results show the effectiveness
of combining reinforcement learning in designing branching
heuristic for the BnB search. We also use the new branching
heuristic to solve the SI and MCCS problems. Empirical re-
sults show that it is also effective.

We also carry out an empirical analysis to give insight on
why and how the learning approach is effective, suggesting
that the performance of McSplit+RL is due to its more diver-
sified search allowing it to find an optimal solution earlier
than McSplit.

Problem Definition
Consider a simple (unweighted, undirected), labelled graph
G = (V,E, λ),where V is a finite set of vertices, E ⊆ V ×
V is a set of edges, and λ is a label function that assigns
to each vertex v ∈ V a label value λ(v). If the labels are
the same for all vertices, then the labelled graph is reduced
to an unlabelled graph. Two vertices u and v are adjacent
iff (u, v) ∈ E. The degree of a vertex v is the number of
its adjacent vertices. A subset V ′ ⊆ V induces a subgraph
G[V ′] = (V ′, E′, λ′) of G, where E′ = {(u, v) ∈ E|u, v ∈
V ′}, and ∀v ∈ V ′, λ′(v) = λ(v).

Given a pattern graph Gp = (Vp, Ep, λp) and a target
graph Gt = (Vt, Et, λt), the Maximum Common induced
Subgraph (MCS) problem is to find a subset V ′

p ⊆ Vp and
a subset V ′

t ⊆ Vt of the greatest cardinality and a bijection
φ : V ′

p → V ′
t such that: (1) |V ′

p | = |V ′
t |, (2) ∀v ∈ V ′

p ,
λp(v) = λt(φ(v)), and (3) given any v, v′ ∈ V ′

p , v and v′

are adjacent in Gp if and only if φ(v) and φ(v′) are adja-
cent in Gt. In other words, the MCS is to find a maximum
subgraph Gp[V

′
p] and a maximum subgraph Gt[V

′
t] such that

G[V ′
p] and Gt[V

′
t] are isomorphic. Gp[V

′
p] or Gt[V

′
t] is called

a maximum common induced subgraph of Gp and Gt. The
vertex pair (v, φ(v)) is called a match.

Let V ′
p = {v1, v2, . . . , v|V ′

p |}, an optimal solu-
tion of the MCS is denoted as a set of matches
{(v1, φ(v1)), (v2, φ(v2)), . . . , (v|V ′

p |, φ(v|V ′
p |)}.

A variant of MCS called Maximum Common Connected
induced Subgraph (MCCS) problem requires that the max-
imum common induced subgraph is connected. Another
variant called induced Subgraph Isomorphism (SI) requires
V ′
p = Vp.

Branch and Bound for MCS
Given two graphs Gp and Gt, the BnB algorithm depicted
in Algorithm 1 gradually constructs and proves an optimal
solution using a depth-first search. During the search, the al-
gorithm maintains two variables: curSol, the solution under
construction; and maxSol, the best solution found so far. In
addition, every vertex v of Gp is associated with a subset
α(v) of vertices of Gt that can be matched with v. In the
beginning, curSol and maxSol are initialized with ∅, and
α(v) is initialized to be the set of all vertices of Gt having
the same label as v. The call of MCS(Gp, Gt, α, ∅, ∅) returns
a maximum common subgraph of Gp and Gt.

At each branching point, the algorithm first calls
overestimate(Gp, Gt, α) to compute an upper bound UB
on the cardinality of the best possible solution that can be
found from this branching point. It then compares UB with
maxSol. If UB≤ |maxSol|, a solution better than maxSol
cannot be found from this branching point, and the algo-
rithm prunes the current branch and backtracks. Otherwise,
it selects a not-yet matched vertex v from Gp and tries to
match v with every vertex w in α(v), and updates α accord-
ingly before it recursively calls MCS(·). As a consequence
of matching v with w, (v, w) is added into curSol, and for
each not-yet matched v′ of Gp, α(v′) is updated as follows:
If v′ is adjacent to v, remove all vertices non-adjacent to
w from α(v′); otherwise, remove all vertices adjacent to w
from α(v′).

Note that after updating α(v′), ∀w′ ∈ α(v′), v is adjacent
to v′ in Gp iff w is adjacent to w′ in Gt, so that the match
(v′, w′) can be further added into curSol. If a solution bet-
ter than maxSol is found in a leaf of the search tree, the
algorithm updates maxSol by curSol before backtracking.

Algorithm 1 MCS(Gp, Gt, α, curSol,maxSol)

Input: Gp = (Vp, Ep, λp), the pattern graph; Gt =
(Vt, Et, λt), the target graph; α, a mapping Vp �→ 2Vt ;
curSol, the solution under construction; maxSol, the best
solution found so far.
Output: maxSol

1: if ∀v ∈ Vp, α(v) = emptyset then
2: if |curSol| > |maxSol| then
3: maxSol← curSol;
4: end if
5: return maxSol;
6: end if
7: UB ← |curSol| + overestimate(Gp, Gt, α);
8: if UB ≤ |maxSol| then
9: return maxSol;

10: end if
11: v ← a vertex from Gp such that α(v)
= ∅;
12: for each vertex w in α(v) do
13: α′ ← α; α′(v)← ∅;
14: for each vertex v′ in Gp do
15: remove w from α′(v′);
16: if v′ is adjacent to v in Gp then
17: remove the vertices non-adjacent to w in Gt

from α′(v′);
18: else
19: remove the vertices adjacent to w in Gt from

α′(v′);
20: end if
21: end for
22: maxSol←MCS(Gp, Gt, α

′,
curSol ∪ {(v, w)},maxSol);

23: end for
24: α(v)← ∅;
25: return MCS(Gp, Gt, α, curSol,maxSol);

An important issue for implementing Algorithm 1 is how

2393

Figure 1: An example for the MCS problem.

to implement α, which determines how to select a vertex v
in line 11 and how to design the overestimate(·) function.
A natural way is to explicitly create a list of vertices of Gt

for each vertex v of Gp. With this implementation, Ndiaye
and Solnon (2011) represent each vertex of Gp as a vari-
able whose domain is a set of vertices of Gt. Then, they
select a vertex with the smallest domain in line 11, and use
a soft all-different constraint in the overestimate(·) function
to compute a bound. The difficulty in this implementation of
α is that given a vertex w in Gt, it is not straightforward to
know the number of variables whose domain contains w. If
the domain of a vertex v is the smallest and contains a ver-
tex w of Gt, but w also occurs in the domain of many other
vertices of Gp, branching on v may not be the best choice to
minimize the search tree size.

McCreesh et al. (2017) use an elegant way to represent
α based on the fact that many vertices of Gp have the same
domain during the search. Thus the vertices of Gp having
the same α value should be put together to have a compact
representation of α. The following example illustrates this
representation and its use in Algorithm 1.

Example 1 Figure 1 shows two undirected and unla-
belled graphs Gp and Gt, Vp = {0, 1, 2, 3, 4}, Vt

= {a, b, c, d, e, f}. Initially, α(v) = {a, b, c, d, e, f}
for each vertex v of Gp, represented using the pair
{〈(0, 1, 2, 3, 4), (a, b, c, d, e, f)〉}.

Then, vertex 0 is chosen in line 11 for branching. The first
match added into curSol is (0, a). Consequently, (1, 2, 3, 4)
is split into (1, 2, 3) and (4), and (b, c, d, e, f) is split into
(b, c, e, f) and (d), because vertices 1, 2 and 3 are adja-
cent to the matched vertex 0, while vertex 4 is not; and
vertices b, c, e and f are adjacent to the matched vertex
a, while vertex d is not. The updated α is then represented
by {〈(4), (d)〉, 〈(1, 2, 3), (b, c, e, f)〉}, meaning α(4) = {d}
and α(1) = α(2) = α(3) = {b, c, e, f}.

Note that the splitting of (0, 1, 2, 3, 4) and (a, b, c, d, e, f)
is equivalent to removing b, c, e and f from α(4), and d from
α(1), α(2) and α(3).

More generally, a pair 〈V ′
p , V

′
t 〉 is called a label class

in (McCreesh, Prosser, and Trimble 2017), where V ′
p (V ′

t)
is a subset of Vp (Vt), meaning that α(v) = V ′

t for each
v ∈ V ′

p . Let D be the set of label classes. When a new
match (v, w) is added into curSol, Algorithm 1 splits each
label class 〈V ′

p , V
′
t 〉 in D into two label classes 〈V ′

1p, V
′
1t〉

and 〈V ′
2p, V

′
2t〉 in lines 14 – 21, so that the vertices in V ′

1p

(V ′
1t) are all adjacent to v (w) and the vertices in V ′

2p (V ′
2t)

are all non-adjacent to v (w). Note that V ′
1p and V ′

2p, as well
as V ′

1t and V ′
2t, are disjoint.

This representation of α enables the following branching
heuristic and bound computation in (McCreesh, Prosser, and
Trimble 2017).
• Given a label class 〈V ′

p , V
′
t 〉, there are |V ′

p |×|V ′
t |matches

to try. So, McCreesh et al. first select a label class such
that max(|V ′

p |, |V ′
t |) is the smallest and then select a ver-

tex with the greatest degree in V ′
p in line 11 for branching,

which is similar in spirit to choosing a label class 〈V ′
p , V

′
t 〉

with the smallest |V ′
p | × |V ′

t | and then breaking ties using
vertex degrees. This heuristic is better than the heuristic in
(Ndiaye and Solnon 2011) consisting in selecting a label
class with the smallest |V ′

t |.
• Let D be the set of label classes at a branching point.

A label class 〈V ′
p , V

′
t 〉 can offer at most min(|V ′

p |, |V ′
t |)

matches to curSol. So, the overestimate(Gp, Gt, α) func-
tion in (McCreesh, Prosser, and Trimble 2017) computes
and returns

∑
〈V ′

p ,V
′
t 〉∈D min(|V ′

p |, |V ′
t |), which is equiv-

alent to the bound given by the soft all-different constraint
in (Ndiaye and Solnon 2011) but is simpler to compute.
Nevertheless, the branching heuristic in (McCreesh,

Prosser, and Trimble 2017) depends heavily on vertex de-
grees and may not result in the smallest search tree. In the
next section, we will propose a new branching heuristic in-
spired by reinforcement learning.

Learning Rewards for Branching
Reinforcement learning is recently a rapid growing research
area. In reinforcement learning, we have agents in an un-
certain environment. Each agent is a learner and decision
maker who needs to discover which actions yield the most
reward by trying them, and the goal is to maximize a numer-
ical reward signal. Specifically, the agent interacts with the
environment by taking actions and observing the impact of
its actions to the environment. When the agent takes an ac-
tion, it receives a reward related to its goal from the environ-
ment. It has a value function that transforms the cumulative
rewards it received over time to a score of the action, repre-
senting a prediction of rewards in the future for this action.
So, the agent should take an action with the maximum score
among all available actions at each step so as to achieve its
goal. See (Sutton and Barto 2018) for a comprehensive pre-
sentation of reinforcement learning.

Although the principle of reinforcement learning is simple
and intuitive, it is not easy to define the reward of an action
and the value function because a small change in the reward
and the value function can have a drastic negative effect for
the agent to achieve its goal. So, the definition of the reward
and the definition of the value function are the key issues in
applying reinforcement learning scheme to solve an NP-hard
problem.

In order to solve the MCS and its related problems using
the reinforcement learning scheme, we regard Algorithm 1
as an agent. It has a goal of reaching a search tree leaf as
early as possible so as to reduce the search tree size as much
as possible. The agent needs to successively select and add

2394

a match (v, w) into curSol. However, it usually has many
choices of (v, w) at each step and does not know which
choice is better. So, we regard each choice of (v, w) as an
action. Then, it remains to define the reward of the action
(v, w) and the value function.

There are many possibilities to define the reward of the
action (v, w) and the value function. Below we present three
different definitions, each with a particular consideration.

Reward based on the reduction of UB
As can be seen in Algorithm 1, the algorithm reaches a leaf
when UB ≤ |maxSol|. So, reducing UB quickly allows to
reach a leaf quickly. Thus, we define the reward R for an ac-
tion (v, w) to be the reduction of UB after taking this action.
Specifically, let D be the set of label classes before taking
an action (v, w) and D′ the set of label classes obtained by
splitting the label classes in D according to their adjacency
to v and w in lines 14 – 21 of Algorithm 1. R(v, w) can be
quickly computed as follows.

R(v, w) =
∑

〈V ′
p ,V

′
t 〉∈D min(|V ′

p |, |V ′
t |) −∑

〈V ′′
p ,V ′′

t 〉∈D′ min(|V ′′
p |, |V ′′

t |)
Our value function maintains a score Sp(v) (St(w)) for

each vertex v ∈ Vp (w ∈ Vt), which are initialized to 0. Each
time R(v, w) is computed, Sp(v) and St(w) are updated as
follows:

Sp(v)← Sp(v) +R(v, w)
St(w)← St(w) +R(v, w)

At each branching point (line 11 of Algorithm 1),
we first select a label class 〈V ′

p , V
′
t 〉 with the smallest

max(|V ′
p |, |V ′

t |), and a vertex v in V ′
p with the greatest score

Sp(v). Then, for each w in V ′
t in the decreasing order of

score St(w), we match v and w, and recursively continue
the search after adding match (v, w) into curSol. All ties
are broken in favor of a vertex with the maximum degree.

Using Sp(v) and St(w) to select a branching match (v, w)
in Algorithm 1 in this way, we obtain McSplit+RL, which is
implemented on top of McSplit.

Reward based on the reduction rate of UB
The reward R(v, w) defined in the previous subsection is
based on the reduction of UB. For example, when UB is
reduced by 10 by matching v to w, R(v, w) is 10. However,
a reduction of 10 does not has the same signification when
UB is 100 or when UB is 1000. In order to take into account
the magnitude of UB in the reward, we define RRate(v, w)
based on the reduction rate of UB.
RRate(v, w) = R(v, w)/

∑
〈V ′

p ,V
′
t 〉∈D min(|V ′

p |, |V ′
t |)

The value function is defined as follows.
Sp Rate(v)← Sp Rate(v) +RRate(v, w)
St Rate(w)← St Rate(w) +RRate(v, w)

As Sp(v) and St(w), Sp Rate(v) and St Rate(w) are
initialized to 0. Using Sp Rate(v) and St Rate(w) instead
of Sp(v) and St(w) to select a branching match in Mc-
Split+RL, we obtain a variant McSplit+RLRate.

Computing the score of a match (v, w)
The reward R(v, w) can also be used to compute the score
of the match (v, w).

SPair(v, w)← SPair(v, w) +R(v, w)
SPair(v, w) is initialized to 0 for each pair (v, w). Using

Sp(v) to select v as in McSplit+RL, and for each w in V ′
t in

the decreasing order of score SPair(v, w), instead of St(w),
select the branching match (v, w), we obtain another variant
McSplit+RLPair.

Empirical Evaluation
All experiments were performed on Intel Xeon CPUs E5-
2680 v4@2.40 gigahertz under Linux with 4G memory.
The cutoff time is 1800 seconds for each instance. We first
present the algorithms (also called solvers) and the bench-
marks used in the experiments, then present and analyze the
experimental results.

Solvers
• McSplit (McCreesh, Prosser, and Trimble 2017): An im-
plementation of Algorithm 1 using the label class represen-
tation of the α mapping. It is an order of magnitude faster
than the previous state-of-the-art for unlabelled and undi-
rected MCS instances. It can also sovle labelled graphs.
• McSplit↓ (McCreesh, Prosser, and Trimble 2017): A

variant of McSplit using a top-down strategy to call the
main McSplit method to search for a solution of cardinal-
ity k = |Vp|, k − 1, k − 2, . . . and backtracks when the
bound is strictly less than the required cardinality, and ter-
minates when a solution of the required cardinality is found.
This strategy is similar to the k↓ algorithm (Hoffmann, Mc-
Creesh, and Reilly 2017). McSplit↓ is specially designed for
the large subgraph isomorphism instances for which McSplit
is beaten by k↓.
• McSplit SBS (Archibald et al. 2019): A variant of Mc-

Split using biased value-ordering and nogood recording with
restarts.
• McSplit+RL: Our implementation of Algorithm 1 on

top of McSplit with reinforcement learning using R(v, w),
Sp(v) and St(w) to select a branching match (v, w)
• McSplit+RL↓: A variant of McSplit+RL using the top-

down strategy of McSplit↓.
• McSplit+RLPair: A variant of McSplit+RL that uses

Sp(v) to select v and SPair(v, w) to select w when selecting
the branching match (v, w).
• McSplit+RLRate: A variant of McSplit+RL using re-

ward RRate and value functions Sp Rate and St Rate, in-
stead of R, Sp and St, to select the branching match (v, w).
•McSplit SI: An implementation of McSplit adapted for

the SI problem. Given a pattern graph Gp and a target graph
Gt, it backtracks as soon as it discovers that a vertex of Gp

cannot be matched with any vertex of Gt (i.e., UB < |Vp|).
• McSplit+RL SI: An implementation of McSplit+RL

adapted for the SI problem in the same manner as Mc-
Split SI.
• Glasgow (Archibald et al. 2019): A state-of-the-art al-

gorithm for the SI problem using biased value-ordering and
nogood recording with restart.
• McSplit+RL SI NG: An implementation of

McSplit+RL SI with nogood recording (Lee, Schulte,
and Zhu 2016; Lecoutre et al. 2007) as in Glasgow for the
SI problem.

2395

Benchmark datasets
The benchmark datasets include 24,761 instances, divided
into two sets.
• Biochemical reactions instances describing the bio-

chemical reaction networks from biomodels.net 1. All the
136 graphs are directed, unlabelled bipartite graphs having 9
to 386 vertices. Every pair of graphs gives an MCS instance,
resulting in 9316 Bio instances (including 136 self-match
pairs).
• Large subgraph isomorphism and MCS instances (Hoff-

mann, McCreesh, and Reilly 2017; McCreesh, Prosser, and
Trimble 2017). This benchmark dataset includes real-world
graphs and graphs generated using random models, such as
segmented images, modelling 3D objects, and scale-free net-
works 1. Pattern graphs range from 4 vertices to 900, and tar-
get graphs range from 10 vertices to 6,671. There are totally
15,445 instances, including: 6278 images instances from
images-CVIU11 (43 pattern graphs and 146 target graphs,
each pair of pattern graph and target graph resulting in an
instance); 1225 LV instances given by each pair of graphs
(including two identical graphs) among the 49 graphs se-
lected in (McCreesh, Prosser, and Trimble 2017) from the
LV dataset; 3430 largerLV instances from the above 49 LV
graphs as the pattern and the remaining 70 graphs as the tar-
get in the LV dataset; 3018 Mesh (6 pattern graphs and 503
target graphs), 24 PR15, 200 phase, 100 Scalefree and 1170
Si instances used in (McCreesh, Prosser, and Trimble 2017).

Performance of the proposed approach
MCS problem. Figure 2 compares McSplit, McSplit SBS,
McSplit+RL, McSplit+RLPair, and McSplit+RLRate on the
24,761 instances. We exclude the too easy instances that are
solved by all the five solvers within 10s (The average run-
times of McSplit and McSplit+RL on these easy instances
are 0.43s and 0.46s, respectively) and the too hard instances
that cannot be solved by any solver within the time limit.
There remain 2,790 instances in Figure 2 to show the ability
difference of these solvers. Note that easy instances do not
need any learning to be solved. So, it is natural that learning
does not make difference for easy instances.

The three solvers with reinforcement learning (RL) solve
more instances than the two solvers without RL, showing
the robustness of RL in solving MCS. In particular, Mc-
Split+RL solves 140 more instances than McSplit. Note that
McSplit+RL and McSplit share the same implementation
and their only difference is RL. Considering the high per-
formance of McSplit and the notorious difficulty of MCS,
the results indicate that RL is very effective to solve MCS.

Among the three solvers with RL, the simplest one, Mc-
Split+RL, is the best. The fact that McSplit+RL is better than
McSplit+RLPair suggests that it is more effective to con-
sider the individual impact of a vertex than the impact of a
pair of vertices.

In order to test the compatibility of RL with the top-
down strategy in McSplit↓, we compare McSplit+RL↓ and

1Available at http://liris.cnrs.fr/csolnon/SIP.html

Figure 2: Cactus plot of the solvers of MCS on 2,790 MCS
instances after excluding too easy and too hard instances.

McSplit↓ on the 24,761 MCS instances in Figure 3, by ex-
cluding the too easy instances that both solvers solve within
10s (The average runtimes of McSplit↓ and McSplit+RL↓
on these easy instances are 0.43s and 0.51s, respectively)
and the too hard instances that none of the two solvers solves
within the time limit. Note that McSplit↓ and McSplit+RL↓
also share the same implementation, but differs in the
branching heuristic. McSplit+RL↓ solves 101 more in-
stances than McSplit, showing that RL is compatible with
the top-down strategy.

Figure 3: Cactus plot of two solvers of MCS on 2,288 in-
stances after excluding too easy and too hard instances.

MCCS problem. We run McSplit, McSplit+RL,
McSplit+RLPair, and McSplit+RLRate on 15,445 MCS
instances, but require the solvers to output a maximum
common connnected induced subgraph (excluding the
Biochemical reaction instances because McSplit does not
support directed graphs for MCCS problem). McSplit+RL
solves 3.0% more instances than McSplit, As illustrated
in Figure 4 after excluding the too easy instances that are
solved by all the four solvers within 10s (The average

2396

runtimes of McSplit and McSplit+RL on these easy in-
stances are 1.09s and 1.35s, respectively) and the too hard
instances that none of the four solvers within the time limit.
The results show the effectiveness in solving the MCCS
problem.

Figure 4: Cactus plot of four solvers of MCCS on 966 in-
stances after excluding too easy and too hard instances.

SI problem. We applied our learning strategy to the SI
problem to solve 14,220 instances by excluding the directed
graph Bio and the too simple instance dataset LV from the
24,761 instances. We run McSplit SI, McSplit+RL SI, Glas-
gow and McSplit+RL SI NG to solve these instances. Fig-
ure 5 shows the results after excluding the too easy in-
stances that all the four solvers solve within 10s (The av-
erage runtimes of McSplit SI and McSplit+RL SI on these
easy instances are both 0.12s.) and the too hard instances
that none of the four solvers solves within the time limit.
McSplit+RL SI (McSplit+RL SI NG) solved 7.6% (7.3%)
more instances than McSplit SI (Glasgow). Note that Glas-
gow is a solver dedicated for solving the SI problem us-
ing the nogood recording technique. The adding of RL and
the nogood recording technique of Glasgow in McSplit SI
makes McSplit+RL SI NG substantially better than Glas-
gow, showing the effectiveness of our learning technique for
the SI problem. This result also shows the compatibility of
RL with the nogood recording technique of Glasgow.

Further Analysis
The experimental results presented in the previous subsec-
tion show that our reinforcement learning approach consis-
tently improves McSplit for the MCS, MCCS and SI prob-
lems. We believe that the performance of McSplit+RL is due
to the fact that it is able to find an optimal solution earlier
than McSplit, so that it can prune the search more easily in
line 8 of Algorithm 1. To confirm this, we divide the search
of McSplit or McSplit+RL into two phases. In phase 1, Mc-
Split or McSplit+RL finds an optimal solution s. Then, in
phase 2, McSplit or McSplit+RL proves the optimality of s
by showing that there exists no better solution. So, we dis-
tinguish the time for finding an optimal solution in phase 1
and the total solving time in the two phases.

Figure 5: Cactus plot of four solvers of SI on 431 instances
after excluding too easy and too hard instances.

Figure 6 compares McSplit and McSplit+RL in terms of
the finding time and the total solving time. The two curves
of McSplit form the same shape as the two curves of Mc-
Split+RL, suggesting that the performance of McSplit+RL
compared with McSplit is due to the ability of McSplit+RL
to find an optimal solution quickly.

Figure 6: Cactus plot of McSplit and McSplit+RL for MCS
on the same set of the 2,790 instances as in Figure 2. A point
(x, y) in a curve means x instances for which an optimal so-
lution is found within y seconds or for which the total solv-
ing time (phase 1 + phase 2) is within y seconds.

So, the question is: why McSplit+RL can find an opti-
mal solution earlier than McSplit in general? An explana-
tion is that reinforcement learning allows more diversified
search. In fact, McSplit always selects the vertex v of the
maximum degree in the label class 〈V ′

p , V
′
t 〉 with the small-

est max(|V ′
p |, |V ′

t |), concentrating the branching on a small
subset of vertices with high degree. On the contrary, a vertex
with low degree can have high score in McSplit+RL and can
be selected in a branching point. Therefore, more vertices
can participate in branching in McSplit+RL to allow more

2397

diversified search.
Let bp(v) (bt(w)) denote the number of times a vertex v

in the pattern graph Gp (w in the target graph Gt) is used
for branching at line 11 (line 12) of Algorithm 1. Table 1
compares the standard deviation of bp(v) (bt(w)) when Mc-
Split and McSplit+RL solves a set of instances randomly
selected from the subsets. This standard deviation with Mc-
Split+RL is significantly smaller than with McSplit in most
cases, confirming that more vertices participate in branching
in McSplit+RL than in McSplit.

Table 1: Comparison of the standard deviation of bp(v) (and
bt(w) in parentheses) in McSplit and McSplit+RL, where
bp(v) is the number of times (in 105) a vertex v in Gp is
selected for branching. |Vp| (|Vt|) denotes the numbers of
vertices of pattern (target) graphs.

SubSet-Gp-Gt |Vp| |Vt| McSplit McSplit+RL
Bio-030.txt-061.txt 50 73 623.74(204.04) 187.68(50.20)
Bio-022.txt-046.txt 38 31 309.68(79.55) 1227.46(458.42)
Bio-001.txt-018.txt 46 79 5214.98(545.06) 1720.57(214.56)
Images-p11-t10 15 3506 0.02(0.00) 0.02(0.00)
Images-p43-t113 89 2877 83.54(0.19) 16.49(0.07)
Images-p24-t119 21 5376 2.81(0.00) 0.95(0.00)
Images-p29-t120 22 4301 1.28(0.00) 0.61(0.00)
LV-g10-g18 41 64 1002.25(1.28) 1419.91(1.78)
LV-g12-g19 48 64 953.03(180.30) 13.22(5.98)
LV-g11-g21 42 64 4.10(1.00) 3.26(0.99)
LV-g10-g17 41 64 241.36(20.52) 271.18(5.43)
LargerLV-g11-g78 42 627 2.33(0.27) 0.43(0.07)
LargerLV-g12-g55 48 256 3580.15(73.53) 345.12(30.99)
LargerLV-g13-g70 49 501 234.17(0.61) 187.58(1.66)
LargerLV-g6-g72 19 561 33.90(0.09) 0.02(0.00)
LargerLV-g6-g71 19 501 0.02(0.00) 0.14(0.00)
PR15-p1-t 83 4838 0.27(0.02) 0.54(0.02)
PR15-p9-t 68 4838 0.24(0.00) 0.16(0.00)
Si-si2 b03m m200.05 40 200 3.19(0.94) 0.16(0.03)
Si-si2 m4Dr2 m256.02 51 256 1169.12(127.65) 460.27(70.89)

Related Work
Solving NP-hard problems based on reinforcement learn-
ing belongs to a class of look-back heuristics that share
some similarities in spirit but are very different in concep-
tion when applied to solve different problems.

The branching heuristic proposed in (Boussemart et al.
2004) is for solving the CSP problem. In this heuristic, no
action is rewarded. Instead, the number of times each con-
straint is violated is recorded during the search. At a branch-
ing point, the variable involved in the constraints that were
most frequently violated in the past is chosen as the branch-
ing variable.

The branching heuristic VSIDS proposed in (Zhang et al.
2001) is for solving the SAT problem. When a clause is vi-
olated during the search, a conflict analysis is carried out
and each variable encountered in the conflict analysis is re-
warded by a constant. Most awarded variables are not as-
signed by decision in VSIDS but by unit propagation, and
the award of an assignment does not depend on its individual
consequence, which is different from our approach where
only decisions are awarded and the award of a decision is
not a constant but depends on its immediate consequence.

The branching heuristic LRB proposed in (Liang et al.
2016) is also for solving the SAT problem. LRB explicitly
uses the reinforcement learning scheme. When a variable x
is assigned a value, an interval of time I begins for x and

ends when backtracking cancels this assignment. The ratio
of the number of dead-ends involving x to the total number
of dead-ends during I is the reward to x. The score of x is
the exponential recency weighted average of all rewards x
received.

The branching heuristic proposed in (Refalo 2004) is
tested on the multiknapsack, magic square, and Latin square
completion problems in their decision version. In these prob-
lems, the impact of an assignment, i.e., the ratio of the re-
duction of the search space size due to the assignment to the
search space size, does not vary much during the search. So,
the average impact of an assignment in the past is the score
of this assignment. The score of a variable is computed by
summing the scores of all possible assignments this variable
can receive at the current branching point.

In our approach for MCS, MCCS and SI, we can consider
a match (v, w) as an assignment to v and the reduction of
UB as the impact of (v, w). There are two differences with
the approach of (Refalo 2004).

• The approach of (Refalo 2004) is designed to solve deci-
sion problems. So, many assignments are made due to unit
propagation (i.e., when a variable has only one value in its
current domain, the assignment has to be made). However,
our approach is designed for optimization problems. So,
almost all assignments are made by branching decision.
In other words, the branching heuristic in our approach is
more frequently used than in (Refalo 2004).
• The impact of an assignment for MCS, MCCS and SI

varies much, so that the average impact is not very mean-
ingful for estimating the importance of a vertex at a
branching point. So, the score of a vertex in our approach
is the sum (instead of the mean) of the impacts of all as-
signments it received in the past. A consequence of this
heuristic is that vertices with greater score have more
chance to be branched on, making their score greater and
greater. This allows a natural intensification as search pro-
ceeds for MCS, MCCS and SI, in addition to the diversi-
fication allowing more vertices to participate in branching
explained in the previous section.

Conclusion
In this paper, we propose a reinforcement learning based
branching heurstic, and introduce a new branch and bound
algorithm for the maximum common subgraph (MCS) prob-
lem and its two variant problems, maximum common con-
nected induced subgraph (MCCS) problem and induced sub-
graph isomorphism (SI) problem. Our method of selecting
the branching node differs to existing heuristics as it dynam-
ically learns the effectiveness of the branching node on the
search tree. The weights of vertices are the rewards of the
searching used to guide the search. Extensive experimental
results show that the proposed method is more broadly ap-
plicable to maximum common subgraph related problems.

In the future, we plan to apply our approach to solve other
combinatorial optimization problems such as MaxSAT. In
fact, branching heuristics in a BnB procedure for MaxSAT
remain rudimentary since longtime, that might be greatly
improved using a similar learning based approach.

2398

Acknowledgements
This work is supported by the National Natural Science
Foundation of China (Grants 61472147, 61671338 and
61473213) and the Matrics platform of Université de Pi-
cardie Jules Verne.

References
Archibald, B.; Dunlop, F.; Hoffmann, R.; McCreesh, C.; Prosser,
P.; and Trimble, J. 2019. Sequential and parallel solution-biased
search for subgraph algorithms. In Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research - 16th
International Conference, CPAIOR 2019, Thessaloniki, Greece,
June 4-7, 2019, Proceedings, 20–38.
Bahiense, L.; Manic, G.; Piva, B.; and de Souza, C. C. 2012. The
maximum common edge subgraph problem: A polyhedral investi-
gation. Discrete Applied Mathematics 160(18):2523–2541.
Bonnici, V., and Giugno, R. 2017. On the variable ordering in
subgraph isomorphism algorithms. IEEE/ACM Trans. Comput. Bi-
ology Bioinform. 14(1):193–203.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting systematic search by weighting constraints. In Proceed-
ings of the 16th Eureopean Conference on Artificial Intelligence,
ECAI’2004, including Prestigious Applicants of Intelligent Sys-
tems, PAIS 2004, Valencia, Spain, August 22-27, 2004, 146–150.
IOS Press.
Bunke, H., and Messmer, B. T. 1995. Efficient attributed graph
matching and its application to image analysis. In Image Analy-
sis and Processing, 8th International Conference, ICIAP ’95, San
Remo, Italy, September 13-15, 1995, Proceedings, 45–55.
Cao, N.; Yang, Z.; and Wang, C. 2011. Privacy-preserving query
over encrypted graph-structured data in cloud computing. IEEE
Computer Society 6567(6):393–402.
Conte, D.; Foggia, P.; Sansone, C.; and Vento, M. 2008. Thirty
years of graph matching in pattern recognition. Pattern Recogni-
tion & Artificial Intelligence 18(03):265–298.
Cootes, A. P.; Muggleton, S. H.; and Sternberg, M. J. 2007. The
identification of similarities between biological vetworks: appli-
cation to the metabolome and interactome. Molecular Biology
369(4):1126–1139.
Cordella, L. P.; Foggia, P.; Sansone, C.; and Vento, M.
2004. A (sub)graph isomorphism algorithm for matching large
graphs. Communications in Computer and Information Science
26(10):1367–1372.
Faccioli, P.; Provero, P.; Herrmann, C.; Stanca, A. M.; Morcia, C.;
and Terzi, V. 2005. From single genes to co-expression networks:
Extracting knowledge from barley functional genomics. Plant
Molecular Biology 58(5):739–750.
Giugno, R.; Bonnici, V.; Bombieri, N.; Pulvirenti, A.; Ferro, A.;
and Shasha, D. 2013. Grapes: A software for parallel searching on
biological graphs targeting multi-core architectures. PLOS ONE
8(10):1–11.
Hoffmann, R.; McCreesh, C.; and Reilly, C. 2017. Between sub-
graph isomorphism and maximum common subgraph. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., 3907–3914.
Lecoutre, C.; Sais, L.; Tabary, S.; and Vidal, V. 2007. Recording
and minimizing nogoods from restarts. JSAT 1(3-4):147–167.
Lee, J. H. M.; Schulte, C.; and Zhu, Z. 2016. Increasing nogoods
in restart-based search. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., 3426–3433. AAAI Press.

Levi, G. 1973. A note on the derivation of maximal common sub-
graphs of two directed or undirected graphs. CALCOLO 9(4):341–
352.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K. 2016.
Learning rate based branching heuristic for SAT solvers. In Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th Interna-
tional Conference, Bordeaux, France, July 5-8, 2016, Proceedings,
123–140.
Liu, J., and Lee, Y. T. 2001. Graph-based method for face identifi-
cation from a single 2d line drawing. IEEE Transactions on Pattern
Analysis and Machine Intelligence 23(10):1106–1119.
Lodi, A., and Zarpellon, G. 2017. On learning and branching: a
survey. TOP 25(2):207–236.
McCreesh, C.; Ndiaye, S. N.; Prosser, P.; and Solnon, C. 2016.
Clique and constraint models for maximum common (connected)
subgraph problems. In Principles and Practice of Constraint Pro-
gramming - 22nd International Conference, CP 2016, Toulouse,
France, September 5-9, 2016, Proceedings, 350–368.
McCreesh, C.; Prosser, P.; and Trimble, J. 2017. A partitioning
algorithm for maximum common subgraph problems. In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, 712–719.
Mcgregor, J. J. 2010. Backtrack search algorithms and the maxi-
mal common subgraph problem. Software Practice & Experience
12(1):23–34.
Ndiaye, S. N., and Solnon, C. 2011. CP models for maximum com-
mon subgraph problems. In Principles and Practice of Constraint
Programming - CP 2011 - 17th International Conference, CP 2011,
Perugia, Italy, September 12-16, 2011. Proceedings, 637–644.
Raymond, J. W.; Gardiner, E. J.; and Willett, P. 2002. RASCAL:
calculation of graph similarity using maximum common edge sub-
graphs. Comput. J. 45(6):631–644.
Refalo, P. 2004. Impact-based search strategies for constraint
programming. In Principles and Practice of Constraint Program-
ming - CP 2004, 10th International Conference, CP 2004, Toronto,
Canada, September 27 - October 1, 2004, Proceedings, 557–571.
Springer.
Solnon, C.; Damiand, G.; de la Higuera, C.; and Janodet, J. 2015.
On the complexity of submap isomorphism and maximum com-
mon submap problems. Pattern Recognition 48(2):302–316.
Solnon, C. 2010. Alldifferent-based filtering for subgraph isomor-
phism. Artif. Intell. 174(12-13):850–864.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning: An
introduction second edition. MIT Press, Cambridge.
Zampelli, S.; Deville, Y.; and Solnon, C. 2010. Solving subgraph
isomorphism problems with constraint programming. Constraints
15(3):327–353.
Zhang, L.; Madigan, C. F.; Moskewicz, M. H.; and Malik, S. 2001.
Efficient conflict driven learning in a boolean satisfiability solver.
In Proceedings of the 2001 IEEE/ACM International Conference
on Computer-aided Design, ICCAD ’01, 279–285. Piscataway, NJ,
USA: IEEE Press.

2399

