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Abstract—Federated learning (FL) enables multiple parties to
collaboratively train a machine learning model without sharing
their data; rather, they train their own model locally and send
updates to a central server for aggregation. Depending on how
the data is distributed among the participants, FL can be
classified into Horizontal (HFL) and Vertical (VFL). In VFL,
the participants share the same set of training instances but
only host a different and non-overlapping subset of the whole
feature space. Whereas in HFL, each participant shares the
same set of features while the training set is split into locally
owned training data subsets.

VFL is increasingly used in applications like financial
fraud detection; nonetheless, very little work has analyzed its
security. In this paper, we focus on robustness in VFL, in par-
ticular, on backdoor attacks, whereby an adversary attempts to
manipulate the aggregate model during the training process to
trigger misclassifications. Performing backdoor attacks in VFL
is more challenging than in HFL, as the adversary i) does not
have access to the labels during training and ii) cannot change
the labels as she only has access to the feature embeddings. We
present a first-of-its-kind clean-label backdoor attack in VFL,
which consists of two phases: a label inference and a backdoor
phase. We demonstrate the effectiveness of the attack on three
different datasets, investigate the factors involved in its success,
and discuss countermeasures to mitigate its impact.

Index Terms—Federated Learning, Backdoor, Security

1. Introduction

Federated learning (FL) [23] is increasingly used as a
privacy-enhancing technique for distributed machine learn-
ing in a number of applications ranging from vision [15, 18]
to fraud detection [11, 43]. The main idea behind FL is to
train local models on multiple datasets hosted separately by
different participants. Training does not explicitly require
exchanging data samples; rather, each participant submits
their local model to a central server, which aggregates them
to generate a global model shared back to all participants.

FL can be classified into two kinds, depending on how
the training data is split among participants. The most
common setting is known as Horizontal FL (HFL), with the
training data being split across the sample space. That is,
each participant hosts different training data points sharing

the same feature set. The participants also share the same
classifier architecture. In each round of HFL, participants
locally train, e.g., a classifier, and aggregate the local models
to build a global classification model using aggregation
algorithms like FedAvg or FedSGD [23, 45]. Eventually,
the model converges, and the parameters are finalized.

Vertical FL (VFL). VFL adopts a split-learning architecture
for training [12, 30, 36, 39, 40]. Each local participant only
hosts a subset of the (raw) features of the training data;
more precisely, each of them maintains a bottom model
to transform raw features to feature embedding vectors. In
each training round, the participants first share the feature
embeddings with the server, which hosts the class labels of
the training data. The VFL server locally trains a top model
for classification using the labels and the feature embeddings
received from the participants. Then, it propagates the gra-
dient of the classification loss with respect to the feature
embeddings so that each participant can update the bottom
models using backpropagation.

As a rapidly emerging technology, VFL is particularly
useful when the feature set to be analyzed is distributed
across different organizations. For example, bank account
information and financial transaction records can be jointly
used to evaluate the financial risk of an entity. The two data
sources are usually owned by different entities, e.g., banks
and insurance companies. By collaborating through VFL,
organizations can gain valuable insights from data without
compromising the confidentiality of sensitive information.

Motivation. Previous work has showed that HFL is prone to
backdoor attacks [2, 3, 33, 38, 43, 48]. That is, adversarial
participants can join the federated network and submit mali-
ciously crafted models to mislead the joint model on trigger-
embedded inputs. Usually, backdoor attacks in FL work with
trigger-free inputs and cause more harm to the integrity
of FL systems than untargeted poisoning attacks, which
deteriorate the accuracy of the global model indiscriminately
on any input [7, 42]. These attacks are often considered a
roadblock preventing the trustworthy deployment of FL in
security-critical applications, e.g., video surveillance [20] or
threat mitigation [25].

While backdoor attacks in HFL have been studied ex-
tensively, it remains an open research problem to assess
their feasibility and effectiveness in VFL. In particular,
VFL’s split-learning design poses a unique challenge to



successfully perform backdoor attacks like in HFL. First of
all, participants in VFL cannot access or modify the labels
hosted by the server. That is, it is hard for a participant acting
as a backdoor attacker to produce backdoor training samples
composed of pairs of trigger-embedded training features and
the attacker-desired target labels [2]. As a result, we cannot
simply adapt the attack approaches proposed in the context
of HFL [2, 3, 33, 38, 43, 48] to VFL.

Second, each participant cannot access the feature sub-
sets of other participants; the adversary can only manipulate
the features that they control to perform poisoning. The
flexibility of injecting backdoor perturbation to the feature
space is thus limited, in contrast to backdoor attacks in HFL,
where the attacker can change any of the features for the
poisoning purpose.

Technical Roadmap. In this work, we present a first-of-its-
kind study of backdoor attacks in VFL. First, as the attacker
does not know the true labels of each training data instance,
we set out to investigate whether backdoor attacks can be
executed in VFL without access to the labels. To do so, we
design a novel backdoor attack, which we call BadVFL. The
adversary relies on a label inference attack to reconstruct the
labels of its data samples; then, she selects the source and
target classes and injects a trigger using a saliency map (i.e.,
the most important regions) to some of her data samples, and
submits the feature embeddings to the top model. This way,
BadVFL aims to directly force the average distance between
each backdoored data point and those of the target class to
be close in the feature embedding space.

Second, we assess the effectiveness of the attack across
different datasets and examine the factors contributing to
its performance as well as its impact on the primary task
accuracy. Finally, we explore three possible countermeasures
to mitigate BadVFL, namely, 1) backdoor defenses proposed
in centralized learning like Neural Cleanse [37], 2) differ-
entially private noise perturbation-based methods [33], and
3) anomaly detection-based methods [43].

Main Findings. Our work yields the following results:

1) Clean-label backdoor attacks are feasible and pose
realistic threats to model integrity in Vertical Fed-
erated Learning (VFL) systems when a fraction of
the participants are adversarial. For instance, in a
two-party VFL setting using the CIFAR-10 dataset,
the adversary can reach an Attack Success Rate
(ASR) of 85% with a random selection of source
and target classes, while the main task accuracy
is decreased by only 4%. The attack can even be
improved, through optimal selection of classes, to
89% ASR, with a 5% accuracy reduction in main
task performance.

2) Different factors affect the effectiveness of the at-
tack. For instance, deciding when to abort the label
inference phase and initiate the backdoor attack
is a challenging task for the attack to be effec-
tive. Moreover, the choice of the source and target
classes impact both the attack’s performance and
the utility. Other important factors that need to

be considered as part of the adversarial strategy
include trigger window size, poisoning budget, and
auxiliary data.

3) The attack can be somewhat mitigated through dif-
ferential privacy or anomaly detection, even though
further work is needed to bring them to fruition.
That is not the case for centralized learning defense
methods, such as Neural Cleanse (NC) [37], as
NC detects trigger signals in the input images to
a machine learning system. Whereas in VFL, the
server can only apply NC to the low-dimensional
feature embeddings of the raw image, which makes
NC less sensitive to the trigger-based perturbation
in the feature space.

2. Preliminaries

2.1. Vertical Federated Learning (VFL)

In VFL, the sample space is the same for all partici-
pants’ data, but the datasets differ in the feature space. In
other words, each participant hosts the same set of training
instances but owns different and non-overlapping features
of the same training instances.

VFL can have two architectures, VFL without [40] and
with model splitting [36]. The former follows a peer-to-peer
decentralized learning process, requiring the participants to
exchange intermediate results to compute the gradient/model
updates. We focus on the latter, i.e., VFL with model
splitting, which follows the idea of split learning [12, 36].

In the model splitting setting [30, 36], the model is
divided into a top model and some bottom models. The
server hosts the top model as a classifier module. The
bottom models, owned by the participants, are applied as
encoders to transform the raw features of each participant
into embedding feature vectors. The top model receives the
feature embeddings generated by the participants as input
features, and the feature embeddings are then mapped to
the corresponding class labels.

We detail the training process for VFL with model
splitting in Algorithm 1 [12].

2.2. VFL System Model

We work with a VFL system involving K participants
(K ≥ 2) hosting separate feature subsets and a server. We
denote the training features as xi ∈ Rm and label yi of one
training instance zi as xi = {xi,0, xi,1, xi,2, ...xi,m}. The
server owns only the class labels {y1, y2, y3, ..., yn} of all
n training data instances. The K local participants split the
feature space in Rm into disjointed subsets. Each of them
privately owns one subset of the features of all the training
instances. These participants do not have direct access to
the class labels, nor are they allowed to access the feature
subsets of the others. We refer to them as feature-hosting
participants.



Algorithm 1 Training VFL with model splitting [12, 36]

Require: top model param θtop, bottom model params θ1, θ2, ...,
θK , true labels y, learning rate η

1: procedure MAIN

2: Initialize θtop and θ1, θ2, ..., θK
3: while stopping epoch not met do
4: for each batch b of sample Ids do
5: for k = 1 to K do
6: ok ←PARTICIPANTFORWARDPROP(θk, b)

7: oall ←CONCATBOTTOMMODELS(o1, ..., ok)
8: ofinal ← θtop(oall)
9: L ← LossFunc(ofinal, y)

10: gtop ← ∂L
∂θtop

11: θtop ← θtop − η · gtop
12: for k = 1 to K do
13: Bk ← ∂L

∂ok

14: Bk ← Bk · ∂ok
∂θk

15: θk ← θk − η ·Bk

16: function PARTICIPANTFORWARDPROP(θ, b)
17: return θ(b) � bottom model forward outputs

In a VFL system, for any given input xi, each
feature-hosting participant trains their bottom models (de-
noted as Bi), which transforms the hosted feature sub-
space Rmi (mi < m) into a low-dimensional embed-
ding space Rki , i.e., Ei = Bi({xi,i1 , xi,i2 , ..., xi,imi

}) =
{ei,i1 , ei,i2 , ..., ei,iki

}. The label-hosting server trains a top
model as the classification module. It receives the feature
embeddings Ei from all the participants as input and maps
them to the prediction of the class label.

The VFL training protocol is an iterative process. In
each round of VFL training, each participant first submits
the feature embeddings Ei generated from their raw feature
sets (lines 5–6 in Algorithm 1). The label-hosting server
receives the embeddings, aggregates and feeds them into the
classification module (lines 7–8), updates the classification
module, and computes the gradient of the loss function �
with respect to the embeddings of each participant (lines
10–11), Ei, ∂�/∂Ei. The gradient vector is then propagated
back to the local participants to update the parameters of
their bottom models Bi(i = 1, 2, 3, ...,K) (lines 13–15).

3. The BadVFL Attack

In this section, we introduce the BadVFL attack. First,
we introduce the threat model, then summarize the chal-
lenges of building effective backdoor attacks in VFL. Fi-
nally, we discuss BadVFL’s attack methodology.

3.1. Threat Model

Adversary’s Goal. We consider an adversary with a similar
goal as traditional backdoor attacks against machine learning
models [3]. The adversary can operate in one of two modes:

1) Single Attacker Mode: One of the participants is con-
trolled by the adversary, who aims to insert a trigger pattern
T into the features owned by the feature-hosting partici-
pants. When the input instance embeds the trigger pattern T

into the corresponding feature subspace Rmi , the classifier
trained with VFL is supposed to predict an adversary-
designated class label or perform normally otherwise.

2) Multi-Attacker Mode: We consider M (for M < K) par-
ticipants being controlled by the adversary. She decomposes
a backdoor trigger T into M sub-trigger patterns and inserts
each of the M sub-trigger pattern into the feature subspaces
hosted by M of K feature-hosting participants. The mode
aims to capture colluded backdoor attacks, whereby the
compromised M participants jointly enforce the backdoor
learning task to memorize the trigger T in the VFL classifier.

Adversary’s capabilities. We assume that the adversary
can access the training features hosted by the M compro-
mised participants. She can manipulate the feature subspaces
hosted by the compromised feature-hosting participants,
e.g., by inserting the backdoor trigger or sub-trigger pat-
terns into the feature subspaces Rmi of each compromised
feature-hosting participant i. However, the adversary does
not control the server; thus, she cannot directly access the
labels of the training data nor the top model trained by the
server. Moreover, the adversary cannot access or manipulate
the bottom models owned by the non-compromised feature-
hosting participants.

Adversary’s knowledge. The adversary can access the fea-
ture embedding Ei committed by the bottom model of each
compromised feature-hosting participant i. She can also
access the gradient vectors ∂�/∂Ei sent by the server to the
compromised participants. To mount an attack, we assume
the adversary may collect a set of auxiliary data instances
sharing the same feature distribution and label space as the
true training data. This is a realistic assumption, as, e.g.,
the adversary can get additional images carrying the same
labels beyond the true training data. This setting is also used
in label inference attacks [12].

3.2. Challenges with Backdoor Attacks in VFL

Despite progress in poisoning attacks against HFL sys-
tems, the difficulty of conducting backdoor attacks in VFL
can be ascribed to the lack of access to: 1) the loss function
and 2) the training labels. We now elaborate on this.

Loss function. The malicious participants controlled by the
adversary cannot access the loss function or the classifier
used by the server. Only the server can define the loss func-
tion to train the top-layer classification module or modify the
architecture of the top-layer classifier function. Therefore, to
launch a backdoor attack, the malicious participants cannot
change the loss function of the classifier to adapt to the back-
door learning task as done in [32]. Moreover, the malicious
participants cannot introduce additional model architectures,
such as GANs, to facilitate the attacks [27], but must follow
the server’s learning loss in the attack process.

Training labels. The malicious participants cannot directly
access or modify the training labels used by the server.
Therefore, unlike in classical backdoor attacks, the adversary
cannot directly introduce the backdoor training samples



composed of pairs of the trigger-embedded feature vectors
and the attack-desired class label into the VFL training set.

3.3. Attack Methodology

To address these challenges, our novel attack, which we
call BadVFL, follows a two-staged attack pipeline. We first
describe it for the Single Attacker Mode.

Model Extraction Stage. Given a feature-hosting partici-
pant Pk in the VFL architecture compromised by the ad-
versary, Pk first infers the labels of the training samples
{xi}. Each xi on this malicious participant is composed of
the values of the feature subset assigned to the participant,
denoted as xi,i1 , xi,i2 , xi,i3 , ..., xi,im . It is easy for the ad-
versary to collect a small set of labeled / partially labeled
auxiliary data instances sharing the same label space. The
auxiliary data samples do not overlap with those in the true
training data. We denote the auxiliary training data set as
S. The adversary can feed these auxiliary training instances
to the bottom model of the malicious participant (noted as
Badv) hosted by Pk to produce the feature embeddings of
the auxiliary data.

Next, the adversary can train a classifier using the feature
embeddings and labels of the auxiliary data via a standard
supervised learning protocol or a semi-supervised learning
method if the auxiliary data instances are partially labeled.
The classifier will be used as a surrogate model to the top
model trained by the server; we denote it as ĥ. ĥ is assumed
to have a different model architecture from the true top
model; in reality, the malicious participant should not know
the definition of the top model or how it is trained.

The result of the model extraction stage is to locate the
source and target classes of the BadVFL attack, as well as
identify the training data instances of the two classes.

Backdoor Trigger Insertion Stage. We denote the source
and target classes of training data instances for the backdoor
attack as {xs

i} ∈ Ds and {xt
i} ∈ Dt, respectively. We

randomly pick a subset Dsub
s from the source class of data

Ds. Next, we follow the strategy of clean-label backdoor at-
tacks [50] to inject the trigger signal to the training samples
in Dsub

s . The objective function of inserting the trigger into
the VFL system is given in Equation 1 below.

The goal is to force the feature embeddings of the
perturbed training samples from Dsub

s embedded with the
adversary-designated trigger signal in the source class to
move close to those of the training instances of the target
class. The dirty-label backdoor attacks[2] directly intro-
duce the pairs of trigger-embedded training features and
adversary-desired class labels into the training data to set
up the association between the trigger-embedded input and
target class label. Nevertheless, the adversary in VFL cannot
change the class labels of the training data set, as these are
privately owned by the server. Thus, an alternative way is
to perturb some training instances of the target class to drag
them close to the trigger-embedded instances in the source
class. The intuition is that if the perturbed instances of
the target class are similar enough to the trigger-embedded

Figure 1: An example of how the BadVFL attack works on
a data point in a two-party VFL setting with one attacker.

instances of the source class, the trained classifier will not
be able to differentiate them and thus misclassify the trigger-
embedded instances as the target class.

Equation 1 is as follows:

B∗
adv = argmin

Badv

∑

i

‖Badv(x̂
sub,s
i )−Badv(x

t
i)‖2fro

s.t. x̂sub,s
i = xsub,s

i + δ, ‖δ‖L2 ≤ ε

(1)

where δ is the backdoor trigger specified by the adversary
and embedded in the training data instances of the source
class. xsub,s

i ∈ Dsub
s is the training samples selected from the

source class to inject the backdoor trigger. Badv(x̂
sub,s
i ) and

Badv(x
t
i) are the feature embeddings of the trigger-perturbed

samples in the source class and those of the perturbation-free
samples in the target class respectively. We include ‖‖fro
and ‖‖L2 are the Frobenius and L2 norm. ε is a designated
bound of the poisoning noise injected into the target class
of training data.

In addition to setting up the mapping between the trig-
gered instances in the source class and the target class
label in the embedding space, we also require the backdoor
perturbation injected to the selected data Dsub

s to be as small
as possible, as posed by the L2 distance based constraint in
Equation 1.

We aim to minimize trigger-induced modifications to the
backdoor perturbed training data Dsub

s in the source class
to make sure that the classifier can misclassify the trigger-
embedded input to the target class. Too much perturbation
may completely change the contents of the perturbed data
Dsub

s and acts as a smoking gun to human annotators. Fur-



thermore, arbitrarily large trigger perturbation can cause un-
controllable bias to the feature embeddings of the poisoned
data, which fails attack. Note that this constraint is widely
adopted in poisoning attacks of machine learning models
[14], which is employed to avoid introducing unexpectedly
large poisoning noise to the training data and smoothing the
learning process of data poisoning.

Learning the perturbation noise is, in general, a challeng-
ing non-convex and high-dimensional optimization problem.
By anchoring the perturbed training data around the noise-
free training data, learning the perturbation noise using
gradient descent can be made stable and effective. Once we

generate the backdoored training data {x̂sub,s
i } belonging to

the source class s, we replace the selected subset Dsub
s with

the corresponding poisoned data D̂sub
s . With this perturbed

training dataset, we resume tuning the bottom model h
following the training protocol of VFL. An example of
backdoogr injection in a two-party VFL setting by a single
attacker is illustrated in Figure 1.

Multi-Attacker Mode. Finally, we extend BadVFL to work
with more than one adversary (thus, the number of partici-
pants must be greater than two). In this setting, the attacker
is required to divide the trigger into sub-triggers. These
sub-triggers are then assigned among the participants she
controls, which makes the attack more challenging. Also,
the auxiliary dataset is now shared among all compromised
participants. This means that each attacker has access to the
same set of auxiliary data, which may help their attacks.

The malicious participants start by conducting label
inference attacks individually but vote to achieve more accu-
rate label estimation. When they have reached a consensus
on the label estimate, they introduce triggers to the source
and target classes simultaneously.

4. BadVFL Pipeline

In this section, we discuss in detail the four-step pipeline
of the BadVFL attack. We start with the single-attacker
mode; the pipeline can be applied to the multi-attacker mode
with minor changes. Without loss of generality, we assume
two participants in a VFL system, one of them controlled
by the adversary. The other feature-hosting participant and
label-hosting server are both benign.

Step 1: The adversary estimates the labels of the training in-
stances hosted by the malicious participant using the labeled
auxiliary dataset S.

Step 2.1: The adversary randomly picks two classes of
training images, i.e., class S (the source class) and class
T (the target class), denoted as Random Selection. The
adversary can clone the training images of the source class
and inject the backdoor trigger into the cloned training
images. We denote the training images of class S and T
as {xS

i }) (i=1,2,3,...,NS) and {xT
j } (j=1,2,3,...,NT ). The

cloned and backdoored images of class S are denoted as
{x̂S

i }(i = 1, 2, 3, . . . , NS), where x̂S
i = xS

i + δ, with δ
being the backdoor trigger.

Besides Random Selection, the adversary can also
choose the source and target classes for the backdoor attack
based on the averaged pairwise distance between the feature
embeddings of the source and target class. We name this
setting as Optimal Selection in the following. Essentially,
after the label inference phase, the adversary roughly knows
the labels of each data point. In Optimal Selection, she
computes the average pairwise distance between the training
data points in the two classes. The value denotes the dis-
tance between two classes of data points in the embedding
space. The adversary repeats the process for every pair of
classes and eventually finds the pair of classes with the
least average pairwise distance. Intuitively, if the feature
embeddings belonging to the source and target class are
close to each other, it will be easy for the adversary to make
the poisoned training samples in the target class similar to
the trigger-embedded training instances of the source class
in the embedding space. This can maintain the same level
of attack performance while simultaneously improving the
overall performance of the main task. We will discuss how
Optimal Selection improves the backdoor attack later in our
experimental evaluation.

Step 2.2: The adversary then computes the Jacobian-based
saliency map (gradient map) [29] of the training images
{xS

i } using the locally trained classifier f̂ . We use Gi to
denote the saliency map of a training image i hosted by the
adversary. The adversary uses a 3-by-3 (or 5-by-5) sliding
window to deliver a pass over a source training image in
{x̂S

i }. She chooses the sliding window with the highest
average gradient magnitudes to inject the backdoor trigger
δ. The saliency map measures the sensitivity of the classifi-
cation loss with respect to each area of the input image.
High/low saliency values imply that any modification to
the corresponding image area causes large/small fluctuations
in classification loss. We choose the image areas of high
saliency values as the target to inject backdoor triggers.
Our aim is to bring as much change as possible to the
classification loss by adding the trigger of the limited size.

Step 3: The adversary randomly picks p% of samples from
{xT

i } and replaces them with the corresponding poisoned
training data learned by Equation 1. The adversary tunes
the poisoning noise added to the selected training data from
the target class according to Equation 1. The modified set of
training instances is denoted as D̂. The feature embeddings
of D̂ (noted as Badv(D̂)). The attack strength is propor-
tional to the number of backdoored training instances; i.e.,
more injected backdoor training samples (a larger p%) yield
stronger attacks and vice versa.

Step 4: The adversary receives the gradient of the loss
function with respect to the submitted embedding Badv(D̂)
and propagates back the gradient to different parameters
of the bottom model Badv. The VFL training process is
conducted using Step 3 and Step 4 iteratively until the
training process converges.

Multi-Attacker Mode. In this mode, we assume there are
K > 2 participants in the VFL system, and at least two
of them are malicious. The malicious participants vote to



achieve consensus over the label estimates of the training
data. Based on that, each conducts the backdoor trigger
injection step individually using the assigned sub-triggers
following the steps from Step 2.2 to Step 4. During the
injection stage, the malicious participants use the same
poisoning budget p%.

5. Experimental Evaluation

This section measures BadVFL’s effectiveness, starting
with a single attacker and two VFL participants. We in-
vestigate the impact of several factors in the attack setting,
i.e., the number of VFL training rounds used for the model
extraction stage, how the source/target classes are selected,
the poisoning budget, how the trigger is inserted into the
training data, and the size of the backdoor trigger for image
datasets. We then extend our evaluation to the multi-party
setting (K > 2 participants), considering both single and
multi-attacker modes.

5.1. Dataset

Our experiments use three image datasets (CIFAR-
10 [17], CIFAR-100 [17], and CINIC-10 [9]) and one tabular
dataset (Criteo [8]). In CIFAR-10, the training and testing set
sizes are, respectively, 50,000 and 10,000, and the number of
classes is 10. CIFAR-100 has the same number of images but
100 classes. CINIC-10 has 10 classes and 270,000 images,
of which 180,000 are used for training and 90,000 for
testing. In all image datasets, images are 32×32 pixels.
Criteo is a real-world dataset used for predicting ad click-
through rates, which employs both categorical and continu-
ous features. We choose it as embedding backdoor signals
into Criteo features, leading to incorrect click-through rate
estimations, might cause commercial leaders to make wrong
selling/purchasing decisions with respect to one or several
specific products. The dataset consists of 80,000 training
and 20,000 testing samples, and the number of classes is 2.

We use the same training and testing sizes and follow
the model splitting setting proposed in [12]. For the image
datasets, we use a ResNet-18 architecture for the bottom
model, while, for the top model, the feature embeddings
generated by ResNet-18 are taken as input to a Fully Con-
nected Neural Network 4 (FCNN-4). For the Criteo dataset,
we use a Fully Connected Neural Network 3 (FCNN-3) for
both bottom and top models.

5.2. Attack Settings

We focus on both two-party and multi-party VFL set-
tings. Unlike HFL, which can often include thousands of
participants, VFL typically involves only a few; in fact, two-
party VFL seems to be the most common setting [5, 12].

For the three image datasets, we split them vertically
into K parts (K being the number of participants in the
VFL system), as done in previous work [12, 21, 22]. For

Criteo, we adhere to the method outlined in [12]. Although
this includes categorical and numerical attributes, we only
consider the latter and ignore the former for the attack; for
this reason, all numerical attributes are initially projected
into a hash space of 213 dimensions. We then halve the
dimensions of the attributes, resulting in both the benign
participant and the adversary holding 212 dimensions each.

For image datasets, we use 5×5 and 3×3 pixel sliding
windows separately to inject the trigger into a target image.
The attacker selects half of the numerical features and
changes their value to a fixed value that falls outside the
usual range of values. Following [44], we gradually increase
the percentage of poisoning data points (denoted as p% in
the algorithm flow) to traverse different poisoning budget
values in our experiments.

To measure the effectiveness of the backdoor attack, we
measure the Attack Success Rate (ASR) of BadVFL over
the testing data. More precisely, ASR is computed as the
fraction of the backdoor samples that are correctly classified
as the attacker-desired class.

Recall that BadVFL consists of two phases: model ex-
traction and backdoor poisoning (see Section 4). To execute
the attack, the total number of rounds should be divided
between the two phases. We denote the total number of VFL
training rounds with TotalRounds. We assume up to Rn

rounds are used for extracting the classification module and
estimating the labels. The remaining TotalRounds−Rn

rounds are dedicated to generating poisoning samples in the
feature embedding space and performing backdoor attacks
following the VFL protocol.

We evaluate the performance of the attack using both
Random Selection and Optimal Selection of the source and
target classes. For the former, we assume that the adversary
randomly picks two classes; for the latter, the adversary uses
the estimated class labels to categorize training data hosted
by the malicious participants into separate groups. She then
computes the average pairwise distance between a pair of
groups in the feature embedding space of the bottom model
owned by the adversary. The distance measures how close
the two groups of training samples are in the embedding
space. Finally, the adversary chooses the two classes with
the least average pairwise distance as the source and target
class of the backdoor attack.

5.3. Two-Party Experiments

In the two-party experiments, the features are divided
among two participants. For image datasets, each data sam-
ple (an image) is vertically split into two halves from the
middle, with each participant holding half. Following [12],
we assume the adversary has an auxiliary dataset of, respec-
tively, 40, 400, 40, and 100 data points, uniformly sampled
from each class of the training datasets of, respectively,
CIFAR-10, CIFAR-100, CINIC-10, and Criteo.

Fig. 2 reports the accuracy of the main learning task
during 100 rounds. We set the total number of rounds
(TotalRounds) to 100 for an aggregated model with
acceptable classification performance over the testing set.



Figure 2: Main Task Accuracy (MTA) over 100 rounds with
no attack.

Dataset Accuracy Precision Recall

CIFAR-10 0.81 0.83 0.78
CIFAR-100 0.74 0.75 0.70
CINIC-10 0.73 0.72 0.72
Criteo 0.71 0.74 0.69

TABLE 1: Performance of the main task in the two-party
setting, under no attack, after 100 rounds.

Table 1 reports the accuracy of the main task model, along
with precision and recall, under no attack after 100 rounds.
The results are averaged over five runs of sampling train-
ing/testing data using a with-replacement sampling strategy.

We experiment with a gradually decreasing poisoning
budget of p% = 50%, 10%, 5%, and 1%. We set the size
of the sliding window between 3×3 and 5×5 pixel with
all image datasets. Fig. 3 presents some examples of back-
doored images. The location of the trigger in image datasets,
is determined by the saliency map that was generated during
training which differs for each data sample.

Choosing Rn. It is a challenging task to set the value
Rn (denoting the round when the label inference stops
and the backdoor attack begins), aiming to determine the
optimal threshold between label inference and backdoor
attack phases. To address this issue, we conduct experiments
with different rounds, treating each as a possible value for
Rn, We also measure the main task accuracy after all rounds.

Fig. 4 reports the accuracy of the label inference attack,
main task, and BadVFL’s ASR, with the number of rounds
rangings from 10 to 90. Table 2 reports the ASR and
main task accuracy. The results suggest that selecting Rn

at approximately 60 yields the highest ASR for CIFAR-
10 and CIFAR-100 and 70 for CINIC-10 and Criteo. They
also show the impact of appropriate Rn values over the
attack performance; intuitively, it should be neither too large
nor too small. Larger Rn values yield lower ASRs, as
fewer training rounds are dedicated to tuning the bottom
and top layer models to memorize the association between
the trigger-embedded training samples and attacker-desired
class labels. Whereas smaller Rn values do not provide
accurate label estimation to the attacker, which significantly
decreases ASR.

In our experiments, we empirically set Rn so that the

CIFAR-10 CIFAR-100 CINIC-10 Criteo
ASR MTA ASR MTA ASR MTA ASR MTA

R
ou

nd
N

um
be

r
(R

n
) 10 0.35 0.81 0.25 0.74 0.23 0.73 0.20 0.71

20 0.43 0.80 0.31 0.74 0.35 0.73 0.31 0.71
30 0.73 0.79 0.42 0.73 0.42 0.72 0.37 0.70
40 0.75 0.78 0.52 0.73 0.56 0.72 0.45 0.70
50 0.79 0.78 0.60 0.72 0.62 0.71 0.63 0.69
60 0.85 0.77 0.78 0.70 0.71 0.70 0.72 0.68
70 0.80 0.78 0.76 0.71 0.74 0.69 0.79 0.67
80 0.61 0.80 0.61 0.72 0.61 0.71 0.64 0.69
90 0.37 0.81 0.47 0.72 0.50 0.71 0.51 0.71

TABLE 2: ASR and main task accuracy (MTA) with dif-
ferent numbers of rounds as per Fig. 4.

Dataset Poisoning Random Selection Optimal Selection
Budget ASR MTA ASR MTA

CIFAR-10
10%

0.85 0.77 0.89 0.76
CIFAR-100 0.78 0.70 0.81 0.67
CINIC-10 0.74 0.69 0.77 0.67

CIFAR-10
5%

0.72 0.80 0.84 0.81
CIFAR-100 0.64 0.73 0.78 0.71
CINIC-10 0.61 0.72 0.72 0.71

TABLE 3: Random vs. Optimal Selection of source and
target classes using two poisoning budgets.

main learning accuracy of the VFL model reaches around
70% of the testing accuracy obtained at the convergence
of VFL training. The idea is to let the VFL model close
to convergence. This way, the model extraction and label
estimate results are more stable and accurate than those
obtained at the earlier stage of the training process. Fig. 5
shows the ASR of the BadVFL attack continues to increase
with more rounds dedicated to the backdoor poisoning stage
of BadVFL. Before the training process stops, using more
rounds for poisoning can force the top model on the server
to better fit the association between the backdoor trigger-
embedded training samples and the desired class labels.
BadVFL is a clean-label backdoor attack process, with the
key idea to increase the overlapping between the feature
embeddings of the triggered source class data samples and
those of the target class samples, which causes a drop in the
utility of the main learning task.

Source and Target Class Selection. We experiment with
the Optimal Selection approach to select the source and
target classes, having the adversary compute the pairwise
similarity relation between classes using feature embed-
dings. The source and target classes are chosen once the
label estimates are obtained, i.e., after 60 and 70 rounds,
respectively, for CIFAR-10/CIFAR-100, and CINIC-10.

Table 3 presents the results of the experiments. The
poisoning budget and the window size are the same for
both selections. The (source class, target class) pairs selected
at random for the CIFAR-10, CIFAR-100, and CINIC-10
datasets are (airplane, automobile), (bus, train), and (ship,
truck), respectively. However, the (source class, target class)
pairs selected for optimal performance for the CIFAR-10,
CIFAR-100, and CINIC-10 datasets are (dog, cat), (bee,
beetle), and (dog, cat), respectively. The optimal selection
approach chooses the source and target class that stay close



(a) CIFAR-10 (b) CIFAR-10 (c) CIFAR-100 (d) CIFAR-100 (e) CINIC-10 (f) CINIC-10

Figure 3: Examples of images (left side owned by the attacker) embedded with the backdoor trigger in three datasets. Two
sliding window sizes, 3×3 and 5×5, are used for this purpose.
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(b) CIFAR-100 (c) CINIC-10
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(d) Criteo

Figure 4: Main Task Accuracy, label inference attack accuracy, and ASR for the two-party setting over different values of
Rn, which denotes the point when the inference attack process ends and the backdoor attack begins. The poisoning budget
is 10%, sliding window is 5×5 for image datasets, and source and target classes are randomly selected.

Figure 5: Performance of the backdoor attack in different
rounds, following the same setting as in Fig. 4.

to the feature embedding space. This facilitates the adver-
sary: the closer the inter-class distance is, the easier it is
for her to make the perturbed instances of the target class
closers to the triggered instances of the source class. Note
that the optimal selection is not applicable in Criteo dataset
as there are only two classes.

From Table 3, we observe a significant improvement
in BadVFL’s ASR with Optimal Selection. We also find
that the main task accuracy (MTA) is slightly lower than
that of the Random Selection setting. The clean-label attack
strategy in BadVFL increases the overlapping between the
source and target class in the feature space. On the one
hand, Optimal Selection causes more inter-class overlapping
than Random Selection, which strengthens the attack. On the
other hand, it unavoidably causes confusion in the decision

Poisoning CIFAR-10 CIFAR-100 CINIC-10 Criteo
Budget ASR MTA ASR MTA ASR MTA ASR MTA

50% 0.93 0.70 0.84 0.60 0.82 0.62 0.88 0.63
10% 0.85 0.77 0.78 0.70 0.74 0.69 0.79 0.67
5% 0.72 0.80 0.64 0.71 0.61 0.71 0.70 0.73
1% 0.61 0.81 0.47 0.73 0.55 0.73 0.58 0.74

TABLE 4: ASR and main task accuracy (MTA) with dif-
ferent poisoning budgets in BadVFL.

boundary of the target classifier, which results in a drop in
MTA. Nevertheless, using Optimal Selection increases ASR
more than the loss in MTA over the three datasets. This
confirms the benefits of using Optimal Selection in boosting
the attack performances of BadVFL.

Moreover, Table 3 shows that by using the Optimal
Selection approach, we can reduce the poisoning budget
and achieve a better main task accuracy with a similar
ASR. For example, in the CIFAR-100 setting with a 5%
poisoning budget, using Optimal Selection produces an ASR
of 78% compared to the 10% poisoning budget in the
random selection approach.

Poisoning Budget. We also vary the poisoning budget
and present the corresponding results in Table 4. When
increasing the poisoning budget, the effectiveness of the
backdoor attack (i.e., the ASR) increases accordingly. This
is consistent with the design principle of the BadVFL-based
backdoor attack. More perturbed training instances injected
into the training data set of the target class can cause more
significant overlapping between the source and target class
in the feature embedding space. The increasingly larger



Sliding CIFAR-10 CIFAR-100 CINIC-10
Window Size ASR MTA ASR MTA ASR MTA

3×3 0.79 0.80 0.72 0.73 0.70 0.71
5×5 0.85 0.77 0.78 0.70 0.74 0.69

TABLE 5: ASR and main task accuracy (MTA) in image
datasets with different sliding window sizes (other factors
are same as in Fig. 4).

overlapping help boost ASR. However, main task accuracy
decreases at the same time. The reason is that increasing
inter-class overlapping between the source and target class
makes the two classes more difficult to differentiate, which
leads to more misclassification. Also note that, in a two-
party setting, the adversary holds half of the features and has
an equal contribution as the benign participant; this explains
why the poisoning budget has a significant impact on the
accuracy of the main learning task.

How to embed the trigger. We first experiment with a
varying size of the injected trigger in image datasets. We
evaluate the attack performance using two different sliding
window sizes; see Table 5. We observe that increasing the
size of the trigger will slightly decrease the accuracy of the
main task. As the adversary sets up an association between
the trigger and the label, a larger size of the trigger can bring
a stronger signal to learn the association and eventually
increases the ASR.

We also focus on the effectiveness of using a saliency
map to guide the trigger embedding step. The loss of the
target classifier is more prone to the perturbation added to
the image areas of high salient values. In theory, embedding
trigger signals to the highly salient areas causes a large
change in the classification boundary and yields high ASR.

We experimentally confirm the benefits of using the
saliency map, and report the resulting ASR/MTA on CIFAR-
10 in Table 6 when the trigger is inserted randomly into the
selected training images without using a saliency map. In
this experiment, the attacker does not rely on the saliency
map to insert the backdoor. Rather, she randomly selects an
area to insert the backdoor. To ensure a fair comparison, we
let the adversary execute the attack five times using different
random areas and then compute ASR and MTA.

When comparing the results in Table 6 to those using the
saliency map in Table 5, it is clear that the attack worsens
when the trigger is added randomly into the data sample.
By contrast, using the saliency map boosts ASR from 0.62
to 0.85, with a marginal impact on the accuracy of the main
task (MTA dropping slightly from 0.78 to 0.77).

In machine learning research, saliency maps are also
known as axiomatic attribution measurements of classifiers.
According to previous work [6, 46], although the salient
areas are sensitive to noise perturbation, these areas of high
saliency values do not necessarily contribute the most to the
overall classification performances Thus, perturbing these
areas does not necessarily reduce overall accuracy.

Overlapping Auxiliary and Training Data Space. In the
previous experiments, we assumed that the auxiliary dataset

Dataset Saliency Map Random Insertion
ASR MTA ASR MTA

CIFAR-10 0.85 0.77 0.62 0.78

TABLE 6: ASR and main task accuracy (MTA) with an
attacker employing a saliency map vs. randomly inserting
the backdoor.

Dataset Overlapping (%) ASR MTA LIA

CIFAR-10
70%

0.85 0.76 0.55
CIFAR-100 0.77 0.70 0.41

CIFAR-10
40%

0.84 0.76 0.34
CIFAR-100 0.75 0.69 0.32

TABLE 7: ASR, main task accuracy (MTA), and label in-
ference accuracy (LIA) with 70% and 40% overlap between
the attacker’s auxiliary data and training space.

shares the same label space as the true training data. Next,
we study the impact of reducing the overlapping percentage
of the label space between the auxiliary and training dataset
on the performance of our backdoor attack. We assume the
former only contains the labeled data points belonging to
K classes out of total N and unlabeled data points not
belonging to these K classes. We train the label inference
module classifier so that it can recognize samples from all of
the K classes. However, any samples beyond the K classes
will be considered “unrecognized class” by the classifier.
We then run the new classifier on the training data to infer
the labels and initiate the backdoor attack.

To this end, we perform experiments with K = 7
and K = 4 on the CIFAR-10 and CIFAR-100 datasets,
with a total of 10 and 100 classes, respectively, in a two-
party setting. The results are presented in Table 7. We
observe that an overlapping rate of less than 100% does not
impact the attack performance. The main reason is that, in
BadVFL, the adversary only needs to identify samples from
the source and target classes, respectively. If the samples
from the source and target classes appear in the overlapped
classes, the adversary can perform the attack. This indicates
that even if the adversary collects a significant amount of
auxiliary data, the effectiveness of the backdoor attack can
persist if she only assigns labels to certain classes.

5.4. Multi-Party Experiments

Finally, we consider more than two participants, ranging
from 4 to 10, to evaluate the performance of BadVFL in a
multi-party setting. We first consider the Single Attacker
Mode, where only one of the participants is controlled by
the adversary and executes the backdoor attack. Then, we
do so with the Multi-Attacker Mode: multiple participants
are compromised by the adversary and collude to launch the
attack. In both cases, the adversary executes the attack in
two steps: label inference and backdoor trigger injection.



Dataset 4-Party 6-Party 8-Party 10-Party

CIFAR-10 0.821 0.829 0.832 0.841
CIFAR-100 0.749 0.755 0.774 0.780
CINIC-10 0.743 0.751 0.762 0.772

TABLE 8: Main task accuracy (MTA) in multi-party set-
tings, under no attack.

5.4.1. Single Attacker mode. We expect that with more
participants in VFL, the impact of the poisoning attacks
becomes weaker. This implies that the label inference and
the backdoor trigger injection steps become less significant
with only one of the K participants. To guarantee that the
backdoor poisoning effort is strong enough to deliver a
successful attack, we assume the adversary uses a sliding
window of size 5 × 5 to inject the trigger in the image
datasets. We set the poisoning budget (p%) to 20% and use
Optimal Selection to choose the source and target classes
for the BadVFL attack.

As having more participants requires more rounds to
make the VFL model converge, we increase the total number
of rounds. In Fig. 6, we report the main task accuracy
for an increasing number of training rounds. Based on the
observations, we set the total number of rounds for the
attack experiments to 150 for 4 and 6 participants and to
200 for 8 and 10 participants. Table 8 reports the accuracy
of the converged models for multiparty experiments under
no attack. Perhaps unsurprisingly, more parties increase the
accuracy of the main task as the dimensionality of the input
feature embeddings to the top model is likely increased
too. In other words, higher dimensional feature embeddings
help enlarge the classification margin between different
classes [10], which improves classification accuracy.

As discussed in Section 5.3, it is challenging to set the
value of Rn. Thus, we measure the performance of the
attack with different Rn values for an increasing number
of participants; see Fig. 7. Overall, our backdoor attack is
effective in a multi-party setting with a slight reduction in
the accuracy of the main task. For instance, on CIFAR-
100, in a setting of 8 participants where one of them is
the adversary, BadVFL’s ASR reaches 0.74, while the main
task accuracy decreases from 0.77 to 0.73. Additionally,
increasing the value of Rn leads to higher ASR when the
number of participants also increases. This is because the
label inference attack achieves the desired accuracy for the
backdoor attack in the later rounds when the number of
participants increases. Compared to the two-party attack (see
Figure 5 and Table 2), the poisoning effects of the backdoor
attack remain persistently even when the adversary controls
only one of the 10 participants. This shows that having more
participants does not reduce ASR, which poses a severe
threat to model integrity in VFL.

Our experiments assume a non-overlapping feature dis-
tribution among the participants. However, as pointed out by
Fu et al. [12], if an overlapping of features exists, the adver-
sary can improve the label inference attack, which decreases
Rn, and as a result, increases the attack performances of
BadVFL. We leave this as part of future work.

Global Sub Multi-Attacker Single-Attacker
Trigger Triggers ASR MTA ASR MTA

5×5 5×3, 5×2 0.782 0.803 0.771 0.775

TABLE 9: Main task accuracy (MTA) and ASR in Multi-
Attacker vs. Single-Attacker modes in a 10-party VFL set-
ting on CIFAR-10.

5.4.2. Multi-Attacker mode. Next, we experiment with a
collective backdoor attack executed by multiple attackers.
We first break down a trigger pattern into sub-trigger pat-
terns and inject them separately into the data samples of each
participant controlled by the adversary following the label
inference and trigger injection stage. In the testing phase, we
inject all the sub-triggers into the malicious participants in
parallel to conduct the backdoor attack. We experiment with
the CIFAR-10 dataset in a setting involving 10 participants,
and 2 of them are malicious.

As shown in Fig. 8, we split the window of size 5× 5,
marked with a cross sign pattern, vertically, into two triggers
of sizes 5 × 3 and 5 × 2. Each malicious participant uses
them independently. The attack follows the same structure
as discussed in Section 4. Both attackers share the same
auxiliary dataset of size 40 for the label inference phase and
use a poisoning budget of 20%. We run the experiment for
200 rounds, with the backdoor attack initiated at Rn = 140,
which we set empirically by taking into account the single
attacker mode experiments, as presented in Fig. 7.

Table 9 compares the attack performance with multiple
malicious participants to that with only one participant. We
include 10 participants in both cases and choose to inject
the global trigger using the optimal selection strategy. The
poisoning budget is 20% in both cases. The only difference
is the two attackers split the trigger, and each of them uses
one of the sub-triggers. Whereas the single attacker mode
uses the trigger directly in the attack.

With a window size of 5×5 in the multi-attacker setting,
BadVFL’s ASR is slightly higher than that of the single-
attacker setting (0.78 vs. 0.77). The main task accuracy
also improves (0.80 vs. 0.78). We believe this is due to
two reasons. First, involving more malicious participants
improves the flexibility of the attack. VFL resembles multi-
view learning [49] by design; the feature subset hosted by
each participant can be considered to be one separate view
of the training data set. Decomposing the global trigger to
the malicious participants introduces the desired backdoor
poisoning effects into multiple views of the training data.
Thus, it enhances the association between the triggered input
and the target class label, which yields higher ASR. Second,
injecting the sub-triggers instead of the global trigger into
each malicious participant reduces the negative impact on
the main learning task over each participant. Intuitively,
smaller sub-triggers introduce less perturbation to the train-
ing data owned by each malicious participant, which helps
preserve better accuracy.



(a) CIFAR-10, 4/6 participants (b) CIFAR-100, 4/6 participants (c) CINIC-10, 4/6 participants (d) Criteo, 4/6 participants

(e) CIFAR-10, 8/10 participants (f) CIFAR-100, 8/10 participants (g) CINIC-10, 8/10 participants (h) Criteo, 8/10 participants

Figure 6: Main task accuracy (MTA) under no attack, in 150 rounds for 4-party and 6-party and in 200 rounds for 8-party
and 10-party.

5.5. Take-Aways

Overall, we find that BadVFL provides an effective
backdoor attack with minimal impact on the performance of
the primary task. There are different factors that need to be
taken into account when performing the attack. First, Bad-
VFL consists of two phases: label inference and backdoor
attack. The main settings that affect the former include the
size of the auxiliary dataset and Rn. Our experiments show
that finding an optimal Rn greatly impacts the performance
of both phases. The backdoor phase of BadVFL, on the
one hand, requires labels to be inferred to a certain extent
and, on the other hand, necessitates some rounds to inject
the trigger. We find that an accuracy of approximately 60%
for the label inference phase is necessary for a successful
backdoor attack; however, we still need the second phase of
the attack to have sufficient rounds to inject the trigger.

Second, the number of participants in the VFL system
also has a non-negligible impact on the attack performance.
With the same number of attackers, the effectiveness of the
attack decreases with an increasing number of participants.
In addition, with more participants, the value of Rn needs to
be increased to leave enough rounds for the label inference
phase. Moreover, we can execute the BadVFL attack with
multiple adversaries where the trigger is divided into sub-
triggers, and the performance of the attack is slightly better
than with a single adversary, but the main task accuracy is
much higher.

Finally, the way of selecting the source/target classes
significantly affects the attack performance. Their optimal
selection, in comparison to selecting at random, always
results in a better attack, with only a minor decrease in the
main task accuracy. Additional factors like trigger window
size and poisoning budgets also impact the performance

of BadVFL: bigger triggers and larger poisoning budgets
introduce greater poisoning efforts into the trained classifier,
which ultimately increases the attack performance.

6. Countermeasures

In this section, we discuss three possible countermea-
sures to mitigate the BadVFL attack, using: 1) Neural
Cleanse [37], 2) Differential Privacy noise, and 3) Anomaly
Detection based defenses.

Neural Cleanse (NC) on the VFL Server. NC [37] is a
technique geared to identify and mitigate backdoor attacks in
neural networks. More precisely, it first identifies candidate
neurons that may be involved in a backdoor attack by
analyzing the network’s behavior on different inputs. Then,
it uses a pruning algorithm to remove these neurons from
the network. Finally, it retrains the network to ensure that
the performance is not impacted.

NC should not be used during training but at inference
time. In order to use NC in VFL, one possible strategy
could be to have the server periodically evaluate the global
model for the presence of a backdoor attack by testing the
model on a validation dataset that includes the trigger pattern
used in the backdoor attack. If the model’s predictions
on the validation dataset are significantly different from
the expected output, this could indicate the presence of a
backdoor attack. However, since in our proposed attack,
the server takes feature embeddings as input and not the
triggered images, then NC cannot defend against the attack.

Differential Privacy. Another defense mechanism against
backdoor attacks is to apply differential privacy [1] (DP)
noise to the input embeddings transmitted from participants
to the top model. In fact, DP has been used in HFL systems
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(a) CIFAR-10, 4 participants
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(b) CIFAR-10, 6 participants
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(c) CIFAR-10, 8 participants
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(d) CIFAR-10, 10 participants
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(e) CIFAR-100, 4 participants
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(f) CIFAR-100, 6 participants
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(g) CIFAR-100, 8 participants
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(h) CIFAR-100 with 10 participants
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(i) CINIC-10, 4 participants

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

Round Number (Rn)

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Label Inference Attack ACC
Main Task ACC
ASR

(j) CINIC-10, 6 participants
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(k) CINIC-10, 8 participants
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(l) CINIC-10, 10 participants
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(m) Criteo, 4 participants
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(n) Criteo, 6 participants
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(o) Criteo, 8 participants
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Figure 7: Main task accuracy (MTA), accuracy of the label inference attack, and ASR at each round.

Figure 8: Illustration of the distributed backdoor attack with
10 VFL participants in VFL and 2 attackers.

as a defense mechanism against potential backdoor and
distributed data poisoning attacks [26, 28, 41]. Note that
this approach is different from the typical use of DP to

establish privacy protections for training data or models.
Rather, one uses the random noise perturbation produced
by a DP mechanism as a backdoor defense method. The
key idea in [26, 28, 41] is to introduce additional ran-
domized and learning-objective independent perturbation to
the global/local model to prevent the model from learning
the association between the trigger-embedded input and the
attacker-desired class labels. As discussed in [28, 41], a
(ε, δ)-differentially private global model is also backdoor-
free by adding Gaussian random noise of a certain level of
variance (see Theorem 2 in [41] and Theorem 1 in [28]).

We experiment with a two-party setting on the CIFAR-
10 dataset, where one participant performs the backdoor
attack. We use the trigger signal of the size 5 × 5 and
apply the poisoning budget of 10%, following the setting



10−1 100 101 102

Guassian Noise Variance

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

Main Task ACC
ASR
Main Task ACC Baseline
ASR Baseline

Figure 9: Adding differential privacy noise as a defense in
the two-party VFL setting on CIFAR-10.

in Table 2. To defend against the attack, the server adds
Gaussian noise with an increasingly larger variance from
1e − 1 to 1e2 to the feature embeddings submitted by
each participant to the server in each round. We report the
average attack performance, over five independent runs of
the BadVFL attack, in Fig. 9. ASR drops from 85% to,
respectively, 58% and 42% with the variance of the DP noise
as 1e− 1 and 1, respectively. There is almost no reduction
in utility. While in HFL, differential privacy-based defenses
usually result in significant losses in the main task accuracy,
here we see that the feature embedding in VFL shows
much stronger resilience to the DP noise. We believe this
is due to the feature embeddings being less sensitive than
the raw input or gradients to the FL system, as discussed
in recent work on federated feature learning [34]. Although
additional work is needed to explore this further, we are
confident that DP-based defense mechanisms can potentially
achieve reasonable utility-integrity trade-offs in the context
of backdoor attacks against VFL.

Anomaly Detection. Finally, we consider performing
anomaly detection over the feature embeddings of each
class. In our backdoor attack, the attacker replaces some of
the training data points belonging to the target class. Thus,
the server could perform anomaly detection on the feature
embeddings of the same class submitted by each participant.

For example, for a given class k and a participant i, fi,k
are the embeddings of training data of the class k submitted
by the participant i. The server can use Isolation Forest [19]
on fi,k to identify the p% training data points of the class k
with the highest anomaly scores. The server then excludes
these training data points from computing the gradients of
the top layer model and updating the model. We can simply
set p% (the excluded data points) to be the same as the
number of the poisoned training data points, known as the
poisoning budget.

We explore this idea experimentally, conducting an
anomaly detection experiment in a two-party setting over
CIFAR-10, similar to the one depicted in Fig 4a, with the
presence of a single adversary. The value of Rn is set to
60. We provide the server with the advantage of knowledge
regarding the poisoning budget value. Note that it is just the
value, not the poisoned data points.

No Defense Anomaly Detection
Dataset ASR MTA ASR MTA

CIFAR-10 0.85 0.77 0.34 0.75

TABLE 10: Main task accuracy (MTA) and ASR when
anomaly detection is applied against BadVFL.

The results of our experiments are presented in Table 10.
We find that anomaly detection is overall effective, with a
minor decrease in the main task accuracy. However, comput-
ing the inter-class distance in the feature embedding space
results in a large overhead for the server, as the computa-
tional cost increases quickly with an increasing number of
training data instances. Therefore, this is not a viable defense
method when the server has limited computation resources.

7. Related Work

Backdoor attack in HFL. Early studies on backdoor attacks
against HFL [2, 13] assume that each malicious partici-
pant independently trains a local model without collusion
between them. The resulting poisoned local models tend
to share similar parameter values and deviate significantly
from the local models submitted by benign participants.
These attacks can thus be mitigated by Byzantine-robust
aggregation methods and defense methods against sybil
attacks like Foolsgold [13].

More advanced distributed backdoor attacks [3, 35]
consider how to avoid being flagged by Byzantine-robust
aggregation rules [4, 24, 47]. They clip the parameters
of poisoned local models according to the bounds on the
parameter values of benign local models. These methods
either assume the parameter values of benign local models
are IID Gaussian variables so that the variance bounds
of poison-free parameter values can be estimated [3], or
assume that the poison-free parameter bounds are known as
prior knowledge [35]. These assumptions very rarely hold
in practice, especially in non-IID FL scenarios. As a result,
manually configured thresholds for parameter clipping may
be overestimated (downgrading the learning capability) or
underestimated (failing the attack task).

DBA [43] manages backdoor attacks by manually de-
composing global triggers into separate local triggers and as-
signing separate local triggers to each malicious participant.
Malicious participants learn to fit different local triggers
and thus have dissimilar poisoned local models to bypass
Foolsgold [13]. However, manually decomposed triggers
may cause unexpectedly large deviations of poisoned local
models from the benign ones. Therefore, this method fails
to attack the Byzantine-robust aggregation methods such as
Krum [4] and Bulyan [24].

HFL vs. VFL. While previous work has more extensively
studied backdoor attacks in Horizontal Federated Learning
(HFL), little work has focused on the feasibility of these
attacks in Vertical Federated Learning (VFL). Compared to
HFL, there are two main challenges in building backdoor
attacks in VFL. First, the malicious participants in VFL



cannot modify the class labels, which prevents the attacker
from generating and introducing directly the backdoor train-
ing samples annotated with the attack’s desired class label.
Second, the attacker can only manipulate the features hosted
by the malicious participants, which includes only a frac-
tion of the training features, thus potentially weakening the
strength of the poisoning efforts.

Threats against VFL. Most previous research on VFL
security [12, 16, 31] focuses on privacy leakage. Fu et
al. [12] investigate a new attack launched by a local par-
ticipant who tries to infer the training data’s labels by fine-
tuning their bottom model with some auxiliary labeled data.
By maliciously increasing the learning rate of the local
optimizer, the adversary can make the VFL model heavily
dependent on the bottom model of the malicious participant,
thus further improving their ability to infer labels. Also,
Pasquini et al. [31] demonstrate that a malicious server could
infer local participants’ training data by actively hijacking
the VFL learning process. They also perform a property
inference attack based on similar hijacking; the drawback
is that it totally replaces the main learning task and thus is
unclear whether is applicable in reality.

By contrast, there is very little work studying back-
door/data poisoning attacks in VFL. Inspired by the clean-
label backdoor attacks adopted in centralized learning sce-
narios, BadVFL demonstrates for the first time the feasibility
of mounting backdoor attacks against VFL; in the process,
we discuss what factors impact their performance and the
viability of mitigation strategies. Overall, we believe our
work will pave the way for further research in this field,
both in terms of attacks and defenses.

8. Discussion & Conclusion

8.1. Summary

This paper presented a novel clean-label backdoor attack
in VFL, named BadVFL. First, BadVFL tunes the feature
embeddings of the poisoned samples belonging to a target
class; the goal is to push the slightly perturbed data of the
target class toward the trigger-embedded data of a source
class in the feature embedding space. The feature-level poi-
soning misleads the classification module in the top model
and makes the classifier misclassify the trigger-embedded
data of the source class from the perturbed data of the
target class. Second, BadVFL computes the saliency map
of training data to locate the trigger in the training data,
which we show yields more effective attacks than randomly
inserting the trigger.

Our results demonstrate the effectiveness of BadVFL
with two or multiple participants in a target VFL system.
Our experimental evaluation illustrates the persistent back-
door threat raised by BadVFL with varying trigger sizes, the
number of attackers among the participants, and different
strategies to select the source and target classes of the
attack. We also explore potential countermeasures against
this attack, reviewing existing defenses against backdoor

attacks in centralized learning/HFL and evaluating their ef-
fectiveness in mitigating BadVFL. Our findings suggest that
while techniques like DP and anomaly detection can pos-
sibly provide meaningful countermeasures against BadVFL
in certain scenarios, there is still a need for further work to
design robust, comprehensive, and scalable defenses.

8.2. Future Work

Dependency to Label Inference. Naturally, our work is not
without limitations. One is that the adversary needs labeled
auxiliary data to select the source/target classes. Part of our
backdoor attack uses it to infer the labels. Although access
to auxiliary data is a common assumption in literature, we
empirically show we only need a handful of auxiliary data
instances – as little as 1% of the training instances for the
three image datasets we experiment with. In future work,
we will investigate how to extend BadVFL to remove the
dependency on the label inference phase and work in an
auxiliary data-free way. For example, we could perform
clustering of feature embeddings submitted by the adversary
to estimate labels. Moreover, we will ground the association
between the accuracy of label estimation and the attack
performance on theoretical analysis.

Impacting Factors. We experimentally evaluated different
factors impacting the attack accuracy (ASR) and that of the
main task. For instance, deciding about Rn has a crucial
effect. A potential item for future work could involve novel
methodologies to incorporate various factors, such as aux-
iliary dataset, poisoning budget, and window size, into the
decision-making process for selecting the value of Rn, as
this decision must be made by the attacker during training.

Defenses. Despite our successful implementation of effec-
tive defenses against the backdoor attack, additional research
could explore additional defenses in the VFL setting, partic-
ularly with more participants and attackers. Moreover, the
anomaly detection defense requires the server to know the
poisoning budget – something we plan to investigate further.

Feature Correlation. It is possible that the feature subsets
hosted by different participants are intrinsically correlated,
which may boost the attack. We will discuss how to organize
effective attack collusion between correlated feature subsets
to inject the trigger together.
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Appendix A.
Meta-Review

A.1. Summary of Paper

The paper proposes a new backdoor attack against split-
model vertical federated learning (VFL). In the proposed
attack, an adversary first employs an auxiliary model to infer
the (target) label space. Then the adversary injects trigger
signals into the training samples of the source class and
noise/perturbation into the training samples of the target
class such that the feature embeddings generated by the
local/bottom model for the perturbed training data in the
target class moves closer to those of the training instances
of the source class (embedded with the trigger signal). The
proposed backdoor attack is comprehensively evaluated on
three benchmark image datasets (CIFAR-100, CIFAR-10
and CINIC-10) and a tabular text dataset (Criteo).

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

• Establishes a New Research Direction

A.3. Reasons for Acceptance

1) The paper is one of the first principled research
effort to address the problem of backdoor attacks
in a VFL setting. It proposes a clean-label approach
for inserting backdoors in a VFL setting. Inserting
backdoor triggers in VFL is non-trivial, especially
because the adversary does not know the (target)
label space. Moreover, inserting and detecting back-
doors in classical federated learning (sometimes re-
ferred as horizontal federated learning) has received
a lot more attention in the literature, however this
appears to be the first approach for backdoor attacks
in a VFL setting.

2) The paper conducts well-designed experiments and
analysis to validate the efficacy of the proposed
attacks by employing standard benchmarking im-
age and tabular datasets. The paper also proposes
several countermeasures (and evaluates them) to
protect against such threats.

3) Paper is well-organized and the overall presentation
(of the various technical concepts) is good.

A.4. Noteworthy Concerns

The proposed backdoor attack does adversely impact the
main task utility of the model, which in turn could effect
the stealth of the attack. This needs to be further studied in
a principled (empirical/analytical) manner.

Appendix B.
Response to the Meta-Review

We appreciate the reviewer’s feedback; the paper men-
tions that observing the utility drop does not necessarily
raise further alerts of potential backdoor/poisoning attacks
to the user/administrator of VFL systems. Training with
difficult data can also lead to the deterioration of clas-
sification accuracy. In this sense, the adverse effect does
not necessarily negatively impact the stealthiness of the
proposed backdoor attack. However, we leave studying this
problem in a more principled way as part of future work.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


