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Abstract—Graphs are ubiquitous in real-world data, ranging
from the study of social interactions to bioinformatics or the
modelling of physical systems. These real-world graphs are
typically sparse, possibly large and frequently contain additional
information in the form of attributes, making them a complex
object to understand. Graph summarization techniques can
help facilitate the discovery of hidden patterns in underlying
data by providing an interesting subset of the interactions and
available attributes, which we broadly call a pattern. However,
determining what is considered interesting in this context is
not straightforward. We address this challenge by designing
an interestingness measure based on the information-theoretic
measure of Unexpectedness, linking the concepts of relevance and
Kolmogorov complexity. We design a pattern mining algorithm
to provide a summary of the initial data in the form of a
set of unexpected patterns, that is, patterns for which there is
a drop between their expected complexity and the observed
complexity. Experimental results on five real-world datasets with
state-of-the-art methods demonstrate that our method exhibits
a small number of diversified patterns, providing a human-
readable summary of the initial attributed graph; we show
that our summaries quantitatively outperforms attribute-only
and interaction-only baselines as well as other pattern mining
methods, reinforcing the need for methods dealing with attributed
graphs. We visualize summaries extracted with our method, in
order to qualitatively validate their readability.

Index Terms—Complex networks, Pattern Mining, Information
Theory

I. INTRODUCTION

Graphs, i.e. sets of nodes linked with edges between them,
provide a powerful framework for modelling interactions
among entities. It is common to encounter such graphs in
the real-world: Web or Wikipedia pages u and v are linked
together if u contains a hyperlink to v, individuals u and
v are linked if they interacted together (for example, on a
social network), etc. In this setting, it is natural to model
the data as an attributed graph, i.e. a graph where the nodes
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Fig. 1: Within a graph of Wikipedia pages, the pattern
highlighted in red (nodes) and black (links) is unexpected:
article Lysosome is not directly linked to the other nodes
in the pattern, yet it shares numerous common characteristics
(neighbours and attributes) with them. In addition to the
pattern, only the neighbours of nodes in the pattern (small
and blue) and the links to them (grey) are displayed

are enriched with additional information: web pages have
contents, individuals have personal chracteristics such as their
gender, their tastes, etc. However, studying such large at-
tributed graphs becomes complex without the aid of methods
that enable the summarization of the information they contain.
Finding summaries that facilitate information discovery while
remaining computationally tractable is a difficult problem. In
his work, Miller argues that “good” explanations tend to be
contrastive, selected (including in a biased manner), causal
rather than probabilistic, and dialogic, in that they represent
a transfer of knowledge [1]. Graphs, as high-dimensional
objects representing relations at different scales, aptly model
causal information and can be explored interactively through
the selection of relevant subgraphs, making them an object
of choice for data exploration [2]. We are interested in the
problem of mining such summaries, in the form of subgraphs.

We are interested in the problem of mining such summaries,
in the form of subgraphs. Our objective is to offer a practical
tool to facilitate the discovery of meaningful graph represen-
tations. The applications of such tools span a wide range,
including anomaly detection (e.g. for the fight against money
laundering), enhancing machine learning explainability, and
conducting social network analysis.
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Relying on the homophily assumption [3], i.e.entities that
share attributes are more likely to be connected in the
graph, numerous studies have focused on the development
of community detection algorithms in attributed graphs [4]–
[6] to provide subgraphs that form a partition of the original
data. However, the communities obtained are often dense and
there is nothing to prevent redundancy among attributes. In
contrast, pattern mining techniques [7], [8] search for small
relevant subgraphs for a given task: compression, exploration,
summarization, etc. Since there can be at most an exponential
number of patterns, multiple strategies have been developed to
make the problem tractable, e.g. pruning the search space using
support constraints [9] or density thresholds [7], but also using
interestingness measures for ranking and selecting relevant
patterns from a user standpoint. Defining a measure of interest
that reduces the redundancy of results while maintaining an
informative summary of the original data is challenging in
itself. Moreover, following previous works [10], [11], we argue
that there is more to interestingness than subgroup density,
such as deriving from a surprising event.

In this work, we propose to summarize attributed graphs
considering both the homophily assumption and an interest-
ingness measure relying on the information-theoretic metric
of Unexpectedness [12] defined within the Simplicity Theory
(ST) [13], [14]. ST claims that at the human level, unexpect-
edness arises when an event seems overly simple compared
to normal behaviour. In this context, the unexpectedness of
an event is defined as the difference between its expected
complexity, or the length of the minimal description in number
of bits, under normal circumstances and the complexity to
properly describe this event.

We extend Unexpectedness to attributed subgraphs and use
this definition to identify the patterns most likely to interest
the user. Informally, if a pattern can be described in a shorter
manner than what was expected, it means that a compression
of the information it contains, either on its structure or
attributes, was possible and thus reveals an objective interest
(see Fig. 1 for an example). Implemented in a subgraph
discovery algorithm, this measure also allows us to efficiently
prune the search space as soon as adding new elements to a
pattern does not come with a gain in unexpectedness. This
approach enables us to detect patterns that are both smaller
in size and connectivity compared to state-of-the-art pattern
mining approaches. Finally, leveraging the work from [15],
[16], we build a metric that reflects expressiveness of patterns
through commonly used criteria: diversity, coverage, and size
of subgraphs. We show that our approach performs well
in summarizing large attributed graphs in a non-redundant,
concise and human-friendly way.

II. RELATED WORK

Many works in graph mining initially focused on com-
munity discovery [17]. Several methods have since been
developed to take advantage of the availability of attributes in
graphs. This is the case of the mining of cohesive patterns [7],

i.e. subgraphs that are neither a partition nor a cover of the
entire graph but that are sufficiently dense and share com-
mon attributes. However, this method provides no guarantee
regarding the redundancy of found patterns. To tackle this
challenge, authors in [18] combine subspace clustering and
dense subgraph mining and handle redundancy by excluding
subgraphs if they are less qualitative in terms of density and
size. In our work, we do not limit ourselves to the notion
of density for identifying subgraphs; instead, we select them
based on their relevance to users’ interest.

Various works have followed this direction and focused on
mining exceptional subgraphs rather than homogeneous [19]–
[22]. To better include user prior knowledge about data, re-
searchers in [23], [24] suggested that interestingness measures
should be subjective, as interesting patterns are often driven
by predefined assumptions from the user. More recent work
has built on this idea, including the design of background
distributions using information content and the Minimal De-
scription Length (MDL) of patterns to model analysts’ prior
beliefs [25]–[29]. The main difference in our approach is
that we opt for an objective definition of a user’s interest,
i.e. we consider a pattern to be interesting in absolute terms.
Despite the link between our method and the MDL approach,
we do not seek here to evaluate combinations of patterns to
find a compression model, but rather score individual patterns
according to a complexity drop. Recently, authors in [30] pro-
posed an objective interestingness measure to detect patterns
in heterogeneous networks based on structure and attribute
pre-defined conditions, e.g. diversity applied to handcrafted
subgraphs. However, we argue that for maximum objectivity,
a metric of interest should not rely on user-defined rules.
Therefore, in this work we solely employ diversity to evaluate
our results.

At the intersection of community detection and pattern
mining, Focal Structure Analysis methods [31] aim to extract
key sets of entities that have the most influence in social
networks. However, these approaches only consider custom
subjective centrality metrics and do not include node attributes
in their analysis.

Alongside these research efforts, work has been carried out
to generate attributed graph summaries, i.e. concise and under-
standable representations of large and complex datasets [32].
These methods have much in common with pattern mining
research, notably the use of measures of interest for the
construction of summaries. However, they emphasise the ex-
plainability and comprehensibility of the results. Naturally,
some work has been done to bridge the gap between the
two fields and numerous methods have been developed in
order to mine interesting patterns while providing concise
descriptions of the results [16], [33], [34]. In all cases, the
authors mainly focus on metrics such as diversity or coverage
of the attributed graph for interestingness and only consider
dense summaries as relevant to the user. In this paper, we
consider a similar problem but we define a broader metric of
interest than subgraph density, and use diversity and coverage
(among others) only as a means of evaluating our results.
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Fig. 2: On the left, an attributed graph G = (V,E,A), with
V = {1, 2, 3, 4}, E = {(1, 3), (4, 3), (1, 4), (3, 2), (2, 4)}
and A = {a, b, c}. On the right, the pattern
({1, 3, 4}, {(1, 3), (3, 4), (1, 4)}, {a,b}).

III. MINING UNEXPECTED PATTERNS

A. Problem Definition

We consider attributed graphs as sets of nodes with existing
relations and associated features, such as vectors of attributes
holding auxiliary information. For instance, a graph of cita-
tions could have nodes as articles and attributes as the words in
the articles’ abstracts. More formally, an attributed graph is a
tuple G = (V,E,A) where V is a set of vertices, E ⊆ V ×V a
set of directed edges, and A a set of attributes (see Fig. 2 for an
example). For any node v ∈ V , we denote by a(v) ⊆ P(A)
the set of attributes carried by the node v, and by DA the
density of relations between nodes and attributes, i.e. DA =∑

v∈V |a(v)|
|V |·|A| . Furthermore, for a set of attributes B ⊆ A, we

define its extension as the set of nodes sharing all attributes in
B: ext(B) = {v ∈ V : ∀i ∈ B, i ∈ a(v)}. Similarly, for a set
of nodes X ⊆ V , we define its intension as the set of attributes
shared by all nodes in X , int(X) = {i : ∀v ∈ X, i ∈ a(v)}.
To simplify notation, we use ext(b) instead of ext({b}) for a
single attribute b ∈ A, and int(v) instead of int({v}) for a
node v ∈ V . In this context, we give the formal definition of
a pattern in definition 1 and provide an example in Fig 2.

Definition 1 (Pattern). Given an attributed graph G =
(V,E,A), a pattern p = (X,E∩ (X×X), Q) is an attributed
subgraph, with X ⊆ V a set of nodes and Q ⊆ A a set of
attributes such that ext(Q) = X , i.e. all nodes of X share all
attributes in Q.

Notice that we do not require that int(X) = Q to define
a pattern, and so this object differs from subgraphs induced
by closed itemsets as studied in the field of Formal Concept
Analysis. Given an attributed graph G and definition 1, our
goal is to find a set of patterns that summarize G in an
explainable and concise manner. We do not restrict ourselves
to non-overlapping subgraphs, nor do we require that the
patterns cover the entire graph.

B. Unexpectedness As Interestingness Measure

In order to mine interesting patterns, we introduce a measure
of interest that allows comparison among patterns, using
the notion of Unexpectedness [12] defined within Simplicity
Theory (ST) [13], [14] (see definition 2). It claims that an

event seems unexpected to a human if it appears “too simple”,
i.e. there is a drop between its expected complexity and its
observed complexity (both in number of bits). To illustrate this
theory, [14] offers the following example: one can think about
how unexpected a sequence from 1 to 6 would be as an output
of a lottery draw (although the probabilities of each draw are
the same). ST explains this surprise by comparing the expected
complexity of a random draw (high) to the complexity to
describe the sequence (low, thanks to the obvious pattern it
contains).

Definition 2 (Unexpectedness). The Unexpectedness U of an
event is the difference between its expected complexity Cexp

and its observed complexity Cobs. Formally, U = Cexp −Cobs.

In definition 2, Cexp is the complexity, or the length of
the minimal description, that can be expected from an event,
having some prior knowledge of the context in which this event
takes place. Observed complexity Cobs on the other hand, is
the amount of information required by an observer to describe
the event uniquely among others.

In our approach, we consider patterns as events and use
Unexpectedness to select the most interesting ones. We intro-
duce two compressors to express both pattern graph structure
and attributes using the length of their minimal descriptions.
In the following, we use the superscripts (g), (a) and (p) to
denote the notions from definition 2 used on graph structure
(i.e. nodes and edges), attributes or whole pattern respectively.

1) Graph Compressor: As per [35], we define the observed
complexity of an arbitrary graph G = (V,E) as the number
of bits required to describe its nodes and edges, C(g)

obs(G) =

log2 |V |+log2(b+ 1)+
∑

v∈V log2 (
(|V |
dv

)
) with dv the degree

of node v ∈ V and b = maxv∈V dv . The first term is the
amount of bits required to describe all nodes. The second term
describes the encoding of dv values and the last term is used
to encode the rows of G’s adjacency matrix, where each row is
encoded by a string of length |V | containing dv 1s and (|V |−
dv) 0s. This is relevant for graphs where dv ≪ (|V | − dv),
which is typically the case for real-world graphs [36].

The expected complexity refers to what a user can expect
in terms of size and connectivity for a subgraph sampled from
G. For a given number of nodes, the expected complexity
follows a concave function: it is minimal if there are no
edges, grows until its apex, when the nodes are connected
at random, and decreases as all nodes form a clique. Given
a number of nodes n and a set of sampled graphs Gn of
size n, we define this complexity as the average length of
the minimal description of subgraphs of size n sampled in
G, C(g)

exp (n) =
∑

G∈Gn
C

(g)
obs (G)/|Gn|, where Gn = {(X,E ∩

(X ×X)) : ∃Q ⊆ A,X = ext(Q), |X| = n}. In the context
of itemset mining, constructing Gn involves identifying all
sets of attributes with a support size of exactly n. Finally, we
define the unexpectedness of a graph G of size n as:

U (g)(G) = C(g)
exp(n)− C

(g)
obs(G) (1)



2) Attribute Compressor: Considering a set of presumed
independent attributes, denoted as A, our approach involves
an iterative process of selecting elements from A to form a
subset Q ⊆ A. This subset is then used to derive patterns
(further detailed in III-C). At each step, the user can expect
some complexity from the selection of q ∈ A, which is related
to the frequency of q among all nodes in V . We define this
complexity as C(a)

exp(Q∪{q}) = C
(a)
exp({q}) = − log2 (fq) with

fq the frequency of attribute q among all v ∈ V .
On the other hand, the complexity of observing the set of

attributes Q∪{q} can be seen as the complexity of observing
changes in its corresponding extension, i.e. adding q to Q
eventually makes the induced subgraph of the new set more
specific. Thus, the observed complexity of Q ∪ {q} is the
ratio between the number of nodes in its extension, before and
after adding q, C(a)

obs (Q∪{q}) = − log2(
|ext(Q∪{q})|

|ext(Q)| ). In other
words, describing a set of attributes that induced a significant
decrease in the size of its extension is more complex than
if this extension remained unchanged. The unexpectedness of
adding q to Q is then:

U (a)(Q∪ {q}) = U (a)(Q) +C(a)
exp (Q∪ {q})−C

(a)
obs (Q∪ {q})

(2)
In the following, adding an uncommon attribute (i.e. high ex-
pected complexity) to a pattern, without significantly decreas-
ing the size of its extension (i.e. low observation complexity),
will be considered unexpected as it contradicts the hypothesis
of independence of attributes. Conversely, adding a frequent
attribute to a pattern, with minimal change in the induced
graph is not deemed interesting.

Finally, we define the unexpectedness of a pattern built by
adding q to Q, p = (X,E ∩ (X ×X), Q∪{q}) as the sum of
the unexpectedness of its graph structure and its attribute set:

U (p)(p) = U (g)(G) + U (a)(Q ∪ {q}) (3)

where G = (X,E ∪ (X ×X)). To summarize, we anticipate
a high unexpectedness in the graph structure for patterns with
low or conversely, high connectivity compared to a sampled
subgraph. Similarly, patterns that possess a substantial number
of unusual attributes compared to what users would typically
anticipate based on the original data will be considered unex-
pected.

C. Mining Algorithm

In order to enumerate unexpected patterns from attributed
graphs, we design UNEXPATTERNS algorithm (see Algo-
rithm 1). It is an adaptation of the Formal Concept Analysis
(FCA) algorithm INCLOSE [37] – which enumerates concep-
tual structures, or formal concepts, from a binary table between
sets of attributes and objects. For our purpose, we consider
the set of attributes to be the set of graph attributes A and
the set of objects to be the graph node set V . In general,
FCA algorithms are enumeration algorithms, i.e. they seek
all concepts. Typically, they are initialised with the concept
that has no attributes (and its corresponding extension), then
recursively build a lattice by adding one, two, ..., k attributes.

The number of concepts in the lattice varies according to
the different parameters, but in general it is bounded by the
powerset of the set of objects, i.e. there are at most 2|V |

concepts. In Algorithm 1, we do not seek full enumeration
anymore, but rather focus on exploring the search space to
exhibit a few chosen elements – the unexpected patterns.

Algorithm 1: UNEXPATTERNS

Data: Attributed graph G, Current pattern index r, Attribute
index y, Unexpectedness constraint δ, Support
constraints s and β

Result: Set of unexpected nodes and attributes
1 for j = y, j < |A|, j++ do ▷ A initially ordered

on attribute frequency
2 X ′ ← Xr ∩ ext(aj)
3 if |X ′| ≥ s then
4 if |int(X ′)| ≥ β then
5 Q′ ← Qr ∪ {aj}
6 u ← U(X ′, E ∩ (X ′ ×X ′), Q′)
7 if |X ′| − |Xr| == 0 then ▷ Update

current pattern
8 if u−Ui ≥ δ then
9 Qr ← Q′

10 Ui ← u
11 else break ;
12 else
13 if ISCANONICAL(G, Q′,Xr, j−1) then

▷ Create new pattern
14 if u−Ui ≥ δ then
15 add X ′ to X, Q′ to Q, u to U
16 i← i+ 1
17 if B(σ(|U|)) then ▷ Reduce

pattern redundancy
18 SHUFFLE(A, j+1)
19 UNEXPATTERNS(G, |X|−1, j+1)
20 else break ;

21 remove last element from U
22 i← i− 1
23 return (X,Q)

Using definition 1, we recursively build patterns by iterating
over graph attributes in a depth-first search manner until
condition on pattern unexpectedness is no longer met, i.e.
when making a pattern more specific does not come with a
gain of unexpectedness greater than a threshold δ. We also
control the depth of the search with the parameters β and s
to further prune our search space: we only keep patterns that
have at least β attributes, involving at least s nodes. Since we
actively prune the search space, a risk inherent to our method
is that we miss interesting patterns by finding large patterns
first (in terms of number of nodes), making the threshold
unreachable. To avoid this problem, we order the set of
attributes by increasing frequency, i.e. frequent attributes will
be examined last. However, this does not solve the problem of
redundancy between patterns found. To maximise the chance
of exploring different areas of the search space, we shuffle the
list of attributes with a probability proportional to the depth
of the recursion. In other words, if the number of variations
around the same pattern becomes too large, we increase the
probability that our algorithm will explore another part of the
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Fig. 3: An attributed graph (left) with details of the UN-
EXPATTERNS algorithm applied (right). Adding attribute {c}
modifies an existing pattern’s extension, resulting in a new
candidate pattern. However, it is discarded due to the unexpect-
edness loss, as the graph structure transitions from a 3-clique
to a more common 2-nodes structure. The addition of attribute
{b} to another pattern does not change the graph structure, but
since this attribute is shared by all nodes, it lacks sufficient
interesting information and is not retained in the pattern.

search space. For an illustration, see Fig 3.
In Algorithm 1, global variables X and Q denote sets of

pattern nodes and attributes (i.e. they are lists of patterns
extensions and intensions, respectively), and we denote with
Xr (resp. Qr) the set of nodes (attributes) of the rth pattern.
The index of the pattern being investigated is denoted by r.
U stores all pattern unexpectedness values, and the index Ui

refers to the unexpectedness of the ith pattern. σ is a smooth-
ing function, B a Bernoulli variable and SHUFFLE method
shuffles all elements from a list starting at a specific index.
Initially, X0 = V , Q0 = ∅, U0 = 0 and UNEXPATTERNS is
called with r = y = i = 0. We verify that the pattern is new
using ISCANONICAL, unchanged from [37].

Algorithm 1 operates as follow. Given a graph G =
(V,E,A), we consider a pattern as a candidate if adding
attribute aj ∈ A to its current attribute set and ext(aj) to its
current node set enables it to satisfy the support constraints s
and β (lines 2 to 4). In that case, if adding attribute aj does
not change the candidate pattern’s number of nodes but still
improves its unexpectedness, we expand the attribute set of
the candidate pattern to include aj (lines 7 to 11). Otherwise,
we may start a new recursion branch to build the next pattern.
To avoid enumerating the same patterns multiple times, we
use ISCANONICAL [37] function (line 13). To prevent the
algorithm from getting stuck with variations of the same
pattern, we randomise the order of the remaining attributes
using a Bernoulli variable with probability p = σ(|U|), where
σ is a sigmoid function centered at a fixed value, e.g. |U| = 10
(lines 14 to 19). Finally, at the end of each recursive call, we
narrow down the unexpectedness storage and return pattern
details (lines 21 to 23).

Complexity. Notice that at most 2|V | patterns can be enumer-
ated. At worst, the time complexity of one call of UNEXPAT-
TERNS is O(nm3), with n = |V | and m = |A| the number
of nodes and attributes. This cost essentially stems from the
computation of ISCANONICAL procedure, which incurs a cost

TABLE I: Datasets statistics

Dataset |V | |E| |A| DA

Wikivitals 10011 824999 37845 3.6× 10−3

Wikivitals-fr 9945 558427 28198 3.1× 10−3

Wikischools 4403 112834 20527 5.2× 10−3

SFCrimes 898 2172 39 0.57
Ingredients 2400 7932 20 0.45

of O(nm2) and is repeated m times. In comparison, the com-
putation cost of unexpectedness is primarily determined by the
calculation of pattern node degrees. For graphs characterised
by sparsity, typically real-world networks, this computation
only costs O(k), with k ≪ n2 the number of edges in the
graph. In practice, the efficiency of UNEXPATTERNS is main-
tained because graph sparsity limits patterns from containing
both a large number of nodes and attributes.

D. Pattern Summaries

Even considering the different parameters and the attribute
reordering mentioned above, the number of patterns found
using UNEXPATTERNS can remain high enough in prac-
tice to be difficult to navigate through from a human level
(e.g. thousands of patterns). To overcome this issue, we
propose to merge the patterns found if they share com-
mon nodes in order to form pattern summaries. There-
fore, a pattern summary is an attributed subgraph whose
nodes (respectively attributes) are the union of the nodes
(attributes) of the patterns that make it up. As an example,
given a pattern p1 = ({1, 2, 3}, {(1, 2), (2, 3), (3, 1)}, {a,b})
and another pattern p2 = ({2, 4}, {(2, 4)}, {c}), the re-
sulting pattern summary will be given by the object s =
({1, 2, 3, 4}, {(1, 2), (2, 3), (2, 4), (3, 1)}, {a,b,c}) since p1
and p2 share the node {2}. This step makes it possible to keep
the results easy to visualise and relatively understandable, by
identifying the components of the pattern summary.

IV. EXPERIMENTS

We evaluate our approach on five real-world networks. In
our experiments, we address the following research questions:
RQ1 What is the impact of UNEXPATTERNS on the number
of outputted patterns?
RQ2 How good is our method at summarizing graphs com-
pared to other approaches?
RQ3 How informative are our patterns from a human point of
view?
We make all of source code available 1.

A. Experimental Settings

Datasets. Wikipedia-based datasets2 contain Wikipedia arti-
cles as nodes, with links between them if they are referencing
each other. Each article comes with a feature vector containing

1https://github.com/unexpatterns/UnexPatterns
2https://netset.telecom-paris.fr/.

https://github.com/unexpatterns/UnexPatterns
https://netset.telecom-paris.fr/


the count of words it contains. Wikivitals focuses on a se-
lection of Wikipedia’s “vital articles”. Wikivitals-fr con-
tains the vital articles written in French, and Wikischools
contains articles related to material taught in schools.
SFCrimes dataset3 records 12 years of criminal activity
in San Francisco. Ingredients dataset4 links ingredients
with high similarity in the recipes they appear in, and uses
the number of recipes by nationality as attributes5. Dataset
statistics are summarized in Table I.

Evaluation. In order to assess the benefits of our method, we
design multiple baselines. We evaluate our approach against
methods that leverage either the graph structure alone, the
attributes alone, or both structure and attributes. Furthermore,
we compare ourselves to two graph summarization methods
from the literature, CENERGETICS and EXCESS [21]. We
excluded SIAS-MINER [28] from our comparisons because
depending on the dataset, the number of patterns returned was
too large (hundreds of thousands) or the computation time
too long (hours). Given k pattern summaries outputted by
our method, our baselines are the following. With louvain,
we apply the LOUVAIN algorithm [38] on the graph with a
resolution tuned to generate k communities. In spectral
we combine spectral embedding of the nodes with a KMEANS
algorithm [39] to detect k communities. In doc2vec we con-
sider each node as a document containing a bag-of-attributes
and use DOC2VEC model [40] to learn representations of these
documents. KMEANS is applied on top of these embeddings
to generate k communities. With GNN, we use a Graph Con-
volutional Network [41] that embeds graph nodes while also
considering their attributes. We apply a KMEANS algorithm to
detect k communities among the node representations. Finally,
we use CENERGETICS and EXCESS [21], which derive from
the same algorithm and whose aim is to discover exceptional
attributed subgraphs based on the frequency of some character-
istics in patterns compared to the rest of the graph. The latter
approach scales with the number of attributes by introducing
a time budget.

Leveraging the work from [15], [16], we quantitatively
evaluate our approach using three complementary criteria
common to data mining, which we adapt to fit our definitions.
We combine them in the same way as [16] did, in order to
reflect the expressiveness of patterns.

We evaluate patterns on their diversity ∆: patterns should
provide information on various themes from the original
data, i.e. the outputs should not be redundant. To measure
this, we learn representations of patterns using a pre-trained
DOC2VEC model on their attribute set and then compute
pairwise distances in the embedding space to evaluate their
semantic proximity. More formally, given a set of patterns L
we have ∆(L) = 2·|{pq:p,q∈L,d(ρ(p),ρ(q))>γ}|

|L×L| , with pq ⊆ L×L
an unordered pair of patterns, ρ an embedding function, d a
distance measure (e.g. Wasserstein distance) and γ a threshold.

3https://www.kaggle.com/c/sf-crime/data
4https://www.kaggle.com/datasets/kaggle/recipe-ingredients-dataset
5https://www.yummly.com

The coverage K(L) is a measure of the cover of the pattern
set on the graph, defined as K(L) =

|
⋃

p∈L X|
|V | , where p =

(X,E ∩ (X × X), Q). It measures the extent to which all
nodes in the graph appear at least in one pattern.

The width Ω(L) measures the conciseness of a set of
patterns, in terms of nodes and attributes. This is key to
be readable and understandable by a user, and is defined as
Ω(L) = |L| ·

√
X̄ · Q̄, with X̄ and Q̄ the average number of

nodes and attributes in patterns L. The square root operator
reduces the penalty for methods without attribute filters, such
as community search methods.

Therefore, we look for patterns with large diversity and cov-
erage, but with small width and we define the expressiveness
E of a set of patterns L as:

E(L) =
∆(L) ·K(L)

Ω(L)
(4)

B. Results

We evaluate the impact of the unexpectedness constraint on
the number of patterns (RQ1) by running the UNEXPATTERNS
algorithm with and without this constraint. In the latter case,
it corresponds to the number of closed itemsets satisfying s
and β. The results are reported in Table II with β = 1 for
Ingredients and β = 4 otherwise. We observe that the
greatest reductions occur for datasets with the largest density
of attributes, namely SFCrimes and Ingredients. Un-
der these circumstances, UNEXPATTERNS operates with high
efficiency by effectively avoiding the creation of numerous
variants of the same theme, which may have limited relevance
to the user. Another advantage of using the unexpectedness
constraint to reduce the search space is the significant reduc-
tion in computation time it allows. It takes UNEXPATTERNS
a few hundreds seconds to mine the patterns from the largest
dataset, namely Wikivitals with s = 5. In contrast neither
SIAS-MINER nor CENERGETICS were able to produce results
within a reasonable time frame of one hour.

TABLE II: Number of patterns found using UNEXPATTERNS
(variation compared to algorithm without unexpectedness con-
straint). Reading key: on Wikivitals dataset, for support
s = 8, 199 patterns are outputted, which is a reduction of
50.2% compared to not using the unexpectedness constraint.

s

Dataset 8 7 6 5

Wikivitals 199 (-50.2%) 431 (-47.8%) 768 (-49.7%) 1169 (-53.9%)
Wikivitals-fr 50 (-25.4%) 87 (-33.1%) 138 (-43.2%) 361 (-32.5%)
Wikischools 247 (-69.7%) 697 (-73.0%) 1273 (-48.6%) 1357 (-77.8%)
SFCrimes 117 (-99.9%) 69 (-99.9%) 146 (-99.9%) 102 (-99.9%)
Ingredients 42 (-95.6%) 42 (-95.7%) 31 (-96.6%) 47 (-95.2%)

We then compare the expressiveness (4) of patterns (RQ2)
(see Fig. 4). In the majority of datasets and parameters, pat-
tern summaries built from UNEXPATTERNS demonstrate the
highest level of expressiveness. This outcome can be attributed
to two main factors. Firstly, our summaries exhibit a smaller
width compared to the outputs from literature algorithms
and baselines. The former is penalised by returning a large

https://www.kaggle.com/c/sf-crime/data
https://www.kaggle.com/datasets/kaggle/recipe-ingredients-dataset
https://www.yummly.com/
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(a) Pattern summary (43 nodes, 31 attributes)

(b) GNN (418 nodes, 8205 attributes)

(c) EXCESS (344 nodes, 710 attributes)

Fig. 5: A pattern summary (a) compared to its closest community or subgraph obtained with GNN (b) and EXCESS (c) methods.
The colours of nodes and edges correspond to their respective categories in the Wikischools dataset.

number of patterns, while the latter lacks an attribute filter
mechanism. Secondly, the diversity of our results compensates
for their relatively low coverage. In contrast, community-based
approaches maximise coverage, but their communities tend
to be redundant as they encompass several different nodes
and attributes. This redundancy makes it more challenging for
users to comprehend the theme of each group.

Finally, we conduct a qualitative analysis of the re-
sults (RQ3) qnd compare a pattern summary from the
Wikischools dataset with subgraphs obtained using the
GNN and EXCESS methods ( Fig. 5). We selected the methods
that share the greatest number of nodes with our result. Our

approach yields a subgraph containing 43 nodes (31 attributes),
which is an aggregation of 60 patterns. In contrast, the
respective comparison methods produce subgraphs with 418
and 344 nodes (8205 and 710 attributes respectively). Since
our summary solely encodes connections between unexpected
patterns without adding supplementary edges, it facilitates
understanding of dependencies between node groups. Addi-
tionally, it allows for a scattered view of the results while
preserving global understanding of interactions.

V. CONCLUSION

We introduced a novel approach for mining interesting
patterns from attributed graphs by extending the concept of



Unexpectedness to attributed subgraphs. Experimental results
on five real-world networks demonstrate that our method
outperforms baseline and state-of-the-art approaches. It effec-
tively reduces information redundancy while focusing only
on interesting nodes and attributes. Furthermore, we illus-
trated how a simple aggregation of these patterns enables the
generation of human-readable summaries that highlight some
significant aspects of the original data.

Future perspectives for this work include an in-depth explo-
ration of attributed graph Unexpectedness, possibly involving
a user-study, to further validate its correlation with human
interestingness. In terms of applications, UNEXPATTERNS
could be used as an unsupervised approach for learning
information from a transaction graph and detecting fraudulent
activities. Furthermore, our approach holds promise in the field
of explainability, where mining unexpected patterns in the
proximity of predicted edges could provide insights into the
relationship between algorithm choices and human-perceived
points of interest.
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[18] S. Günnemann, I. Färber, B. Boden, and T. Seidl, “Subspace clustering
meets dense subgraph mining: A synthesis of two paradigms,” in 2010
IEEE International Conference on Data Mining, pp. 845–850, 2010.

[19] F. Lemmerich, M. Becker, P. Singer, D. Helic, A. Hotho, and
M. Strohmaier, “Mining subgroups with exceptional transition behavior,”
in Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 965–974, 2016.

[20] M. Kaytoue, M. Plantevit, A. Zimmermann, A. Bendimerad, and C. Ro-
bardet, “Exceptional contextual subgraph mining,” Machine Learning,
vol. 106, no. 8, pp. 1171–1211, 2017.

[21] A. Bendimerad, M. Plantevit, and C. Robardet, “Mining exceptional
closed patterns in attributed graphs,” Knowledge and Information Sys-
tems, vol. 56, no. 1, pp. 1–25, 2018.

[22] A. A. Bendimerad, M. Plantevit, and C. Robardet, “Unsupervised
exceptional attributed sub-graph mining in urban data,” in 2016 IEEE
16th International Conference on Data Mining (ICDM), IEEE, 2016.

[23] T. De Bie, K.-N. Kontonasios, and E. Spyropoulou, “A framework for
mining interesting pattern sets,” ACM SIGKDD Explorations Newsletter,
vol. 12, no. 2, pp. 92–100, 2011.

[24] A. Silberschatz and A. Tuzhilin, “On subjective measures of interest-
ingness in knowledge discovery.,” in KDD, vol. 95, pp. 275–281, 1995.

[25] T. De Bie, “An information theoretic framework for data mining,” in
Proceedings of the 17th ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 564–572, 2011.

[26] T. De Bie, “Subjective interestingness in exploratory data mining,”
in International Symposium on Intelligent Data Analysis, pp. 19–31,
Springer, 2013.

[27] M. van Leeuwen, T. De Bie, E. Spyropoulou, and C. Mesnage, “Subjec-
tive interestingness of subgraph patterns,” Machine Learning, vol. 105,
no. 1, pp. 41–75, 2016.

[28] A. Bendimerad, A. Mel, J. Lijffijt, M. Plantevit, C. Robardet, and
T. De Bie, “Sias-miner: mining subjectively interesting attributed sub-
graphs,” Data Mining and Knowledge Discovery, vol. 34, no. 2, 2020.

[29] J. Deng, B. Kang, J. Lijffijt, and T. De Bie, “Mining explainable local
and global subgraph patterns with surprising densities,” Data Mining
and Knowledge Discovery, vol. 35, no. 1, pp. 321–371, 2021.

[30] S. Dasgupta and A. Gupta, “Discovering interesting subgraphs in social
media networks,” in 2020 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), pp. 105–
109, IEEE, 2020.

[31] M. Alassad, B. Spann, and N. Agarwal, “Combining advanced compu-
tational social science and graph theoretic techniques to reveal adver-
sarial information operations,” Information Processing & Management,
vol. 58, no. 1, p. 102385, 2021.

[32] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization
methods and applications: A survey,” ACM computing surveys (CSUR),
vol. 51, no. 3, 2018.

[33] Y. Wu, Z. Zhong, W. Xiong, and N. Jing, “Graph summarization for
attributed graphs,” in 2014 International conference on information
science, electronics and electrical engineering, vol. 1, pp. 503–507,
IEEE, 2014.

[34] M. Atzmueller, S. Doerfel, and F. Mitzlaff, “Description-oriented com-
munity detection using exhaustive subgroup discovery,” Information
Sciences, vol. 329, pp. 965–984, 2016.

[35] D. J. Cook and L. B. Holder, “Substructure discovery using minimum
description length and background knowledge,” Journal of Artificial
Intelligence Research, vol. 1, pp. 231–255, 1993.

[36] D. J. Watts, “Networks, dynamics, and the small-world phenomenon,”
American Journal of sociology, vol. 105, no. 2, pp. 493–527, 1999.

[37] S. Andrews, “In-Close, a Fast Algorithm for Computing Formal Con-
cepts,” in International Conference on Conceptual Structures (ICCS),
p. 15, 2009.

[38] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[39] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[40] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, pp. 1188–
1196, PMLR, 2014.

[41] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.


	Introduction
	Related Work
	Mining Unexpected Patterns
	Problem Definition
	Unexpectedness As Interestingness Measure
	Graph Compressor
	Attribute Compressor

	Mining Algorithm
	Pattern Summaries

	Experiments
	Experimental Settings
	Results

	Conclusion
	References

