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Abstract

The development of a new generation of more efficient electric motors leads to designs with higher stresses,

currents and electromagnetic fields. To improve on the prevailing existing methodology for the concurrent

calculation of electromagnetic and mechanical fields in electric motors, the authors recently presented in

Hanappier et al. (2021a) a multiphysics formulation of the problem using the direct (current configuration)

approach of continuum mechanics together with analytical solutions of idealized motor problems.

However, due to the complex geometry of a typical electric motor and the nonlinearity of the coupled

(magneto-mechanical) constitutive laws, numerical solutions of the governing equations are required. To this

end, a Lagrangian (reference configuration) variational principle is proposed for the eddy current approxi-

mation that properly retrieves the Maxwell stresses and is consistent with its direct approach counterpart.

Based on this variational principle, a numerical (FEM) approach is proposed. It is next applied to an

idealized (cylindrical) stator, where an analytical solution can be found for the linear magnetization regime,

thus providing firstly an independent code verification and then an assessment of the influence of the stator’s

nonlinear magnetic response. The approach is subsequently used to tackle a realistic geometry stator with

two pole pairs under a three-phase current for two different cases: loosely or tightly packed conducting wires

to calculate the corresponding magnetic, stress and strain fields.
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1. Introduction

The increasing importance of environmental constraints in the transportation industry and the quest to

reduce its carbon footprint, leads the electric motor industry to develop higher performance products with

reduced manufacturing costs. New goals are set by various entities (López et al., 2019) in terms of efficiency,

reliability, power losses, power density, higher rotation velocity and reduced weight and novel electric motor

designs are needed to overcome these technological challenges and meet these goals.

Modeling of electric motors has in the past been studied predominantly by the electrical engineering

community. The focus has been on the calculation of the magnetic field and resulting torque and iron

losses for different motor designs using both analytical, (e.g. see: Boules (1984); Zhu et al. (1993); Lubin

et al. (2011); Devillers et al. (2016)) and numerical (e.g. see: Chari and Silvester (1971); Silvester et al.

(1973); Abdel-Razek et al. (1982); Arkkio (1987); Huppunen et al. (2004)) methods. By the late 90s, stress

calculations in electric motors started appearing as a result of noise and vibrations concerns. The first

FEM computations for stresses in electric motors used a stepwise, uncoupled, approach: electric currents

and magnetic fields where calculated using a purely electromagnetic model; the electromagnetic body force

vector – a source of confusion, due to the many different expressions adopted in the corresponding literature

– was then introduced as the external body force in a purely mechanical model to calculate the resulting

stress state (e.g. see: Reyne et al. (1988); Javadi et al. (1995); Vandevelde et al. (2004)).

The above-described approximate methods are inadequate to deal with the true multiphysics nature

of the electric motor problem. In particular these materials exhibit a strongly coupled magnetic and me-

chanical behavior, with the material magnetization influencing the stress state via the “magnetostriction”

phenomenon and the stress state of the material also impacting its magnetization via “inverse magne-

tostriction (Daniel et al., 2020). Recognizing these issues, recent work by Fonteyn et al. (2010a,b) takes

into account magnetoelastic coupling effects for the numerical stress calculation in electric motors. However

several approximations are used: i.e. a small strain approximation involving non frame-indifferent invariants

and the angular momentum balance principle is not imposed.

To overcome the above-mentioned difficulties in the correct modeling of stresses in electrical motors, the

authors recently proposed in Hanappier et al. (2021a) a multiphysics setting for the equations governing

electric motors. Using the direct approach of continuum mechanics, a general framework that couples the

electromagnetic, thermal and mechanical fields is derived using the basic principles of thermodynamics. Par-

ticular attention is paid to the derivation of the coupled constitutive equations for isotropic materials under

small strain but arbitrary magnetization, which is relevant for typical electric motors. As an application,

analytical solutions of idealized rotor and stator problems are presented, respectively in Hanappier et al.

(2021a) and Hanappier et al. (2021b).

For more realistic motor problems, numerical solutions of the governing equations are in order to account
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for the complex geometry of a typical electric motor and the coupled magneto-mechanical non-linear material

behavior. To this end, a Lagrangian1 (reference configuration) variational approach is proposed for the eddy

current approximation that properly retrieves the Maxwell stresses and is consistent with its direct approach

counterpart. Based on this variational principle, a numerical (FEM) discretization algorithm is proposed in

the present work and subsequently applied to the solution of different stator boundary value problems.

The outline of the presentation is a follows: after the motivation in Section 1, the presentation continues

with a brief description of a typical electric motor boundary value problem in Section 2 followed by the

general variational theory of the eddy current approximation in Section 3. The numerical implementation is

given in Section 4 followed by the applications in Section 5. Specifically, the proposed method is first applied

to a cylindrical stator, where an analytical solution can be found for the linear magnetization regime, thus

providing firstly an independent code verification and subsequently an assessment of the influence of the

stator’s nonlinear magnetic response. The approach is subsequently used to tackle a realistic stator geometry

with two pole pairs under a three-phase current for two different cases: loosely or tightly packed conducting

wires, to calculate the corresponding magnetic and stress fields. Conclusion is presented in Section 6. The

analytical solution of the cylindrical stator problem with a linear elastic and magnetic responses is given in

Appendix A with the derivation of the force vector and stiffness matrix for the FEM discretization of the

variational principle following in Appendix B.

2. Brief description of the electric motor problem

To set the stage we start by showing the cross-section of a typical motor, consisting of a turning part,

termed “rotor” and a fixed part, termed “stator” separated by an “airgap”, as seen in Figure 1 that shows

a typical electric motor’s complex geometry.

1For a details on the equivalence between the Lagrangian variational approach and the Eulerian direct approach in the most

general setting, the reader is directed to Hanappier (2021).
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Figure 1: Cross-section of a typical asynchronous motor, showing rotor, airgap and stator, with current supply coil domains.

Stator windings or coils are supplied by phase-shifted, alternating currents to create a rotating magnetic

field. The rotor can have permanent magnets or conducting bars (cage rotor). It can also be made of a

plain ferromagnetic material in the case of high speed machines. When the rotor has magnets, the motor is

called “synchronous” since the rotor spins at the same frequency as the stator magnetic field. Motors having

rotors with conducting bars or plain ferromagnetic (but without magnets) rely on induction: the rotating

stator field induces currents at the rotor, which in turn trigger Lorentz forces creating the rotor motion. An

angular velocity differential, called “slip”, between the rotor and the stator results and the motor is called

“asynchronous”. The dark region at the center of the rotor indicates the motor shaft, which transmits the

mechanical load (torque). The bulk of the rotor and stator are usually made of ferromagnetic materials with

high magnetic susceptibility to enhance and channel the magnetic flux. The ferromagnetic materials used

to strongly enhance the magnetic field, exhibit a non-linear (in particular magnetic) material behavior as

well as magneto-mechanical coupling.

3. Theory: variational formulation for the eddy current approximation

We start with the general variational formulation of the coupled electro-magneto-mechanical problem

using the eddy current approximation, after Thomas and Triantafyllidis (2009). Following the introduction of

the appropriate Lagrangian and Hamilton’s functionals in subsection 3.1, we show how the stationarity of the

latter imposes the vanishing of its variations with respect to the magnetic potential A and the displacement

u, in subsections 3.2 and 3.3. We thus obtain respectively the field equations and boundary/interface

conditions for the magnetic and mechanical response of the solid as well as the magnetic field in the airgap.

5



A comment on notation is in order at this point: coordinate-free (dyadic) continuum mechanics notation is

used with bold symbols referring to tensors and script ones to scalars. The FEM calculations are performed

in a Lagrangian setting using the unloaded configuration as reference. Unless stated otherwise, all field

quantities are functions of the reference position X and time t. Lagrangian field quantities are denoted

by capital letters, e.g. magnetic potential A, magnetic flux B, h-field H, current density J , first Piola-

Kirchhoff stress Π, while their corresponding Eulerian counterparts are denoted by script letters, e.g. a,

magnetic flux b, h-field h, current density j, Cauchy stress σ. For the case of small strains, i.e. F ≈ I2,

these fields tend to coincide allowing for the comparison between the analytical results in Hanappier et al.

(2021b) and the numerical ones presented here.

3.1. Lagrangian and Hamilton functionals

Figure 2: Schematics of the boundary value problem for an electric motor component (reference configuration).

The schematics of the general boundary value problem are given in Figure 2. The solid occupies a volume

Ω in the reference configuration with boundary ∂Ω. The solid is subjected to an externally applied reference

current density J and an externally applied mechanical body force (per unit mass) f . On the boundary we

apply a mechanical traction T (per unit reference surface area) and an electric current sheet K (per unit

reference surface area). In general surface tractions and current sheet are applied on different parts of the

boundary ∂ΩT and ∂ΩK ; displacement u and magnetic potential A3 can also be applied on different parts

of the boundary ∂Ωu and ∂ΩA respectively.

Neglecting the electric charge and the electric field energy contributions, the reference configuration

“Lagrangian density” l (per unit reference volume) for the eddy current approximation (see Thomas and

2The capital-script letter rule is not applicable to field quantities relating the two configurations, where no ambiguity is

possible and hence the usual standard notation is adopted, i.e. F for the deformation gradient or u for the displacement field.
3The Dirichlet condition in magnetics consists of prescribing N×A.
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Triantafyllidis (2009)) is given by

l ≡ − 1

2µ0J
B ·C ·B + J ·A− ρ0ψ +

1

2
ρ0(

.
u· .u) + ρ0f ·u ; B ≡∇×A , C ≡ F T ·F , (3.1)

where B the reference magnetic field, A the reference magnetic potential4, ψ(C,B)5 the specific (per unit

mass) Helmholtz free energy and C the right Cauchy-Green tensor, expressed in terms of the deformation

gradient F . Following standard notation, ρ0 is the reference mass density of the solid and
.
u denotes the

time-derivative (velocity) of the displacement u. Moreover, µ0 is the magnetic permeability of vacuum and

J = det(F ) denotes the deformation-induced volume change.

Based on (3.1), the reference configuration “total Lagrangian” L of the system becomes6

L ≡
∫
R3

l dV +

∫
∂Ω

(T ·u+K ·A) dS . (3.2)

We also generalize the reference mass density ρ0 in the definition of the Lagrangian density l in (3.1) over

the entire space R3 as follows: ρ0(X) 6= 0 for X ∈ Ω and ρ0(X) = 0 for X ∈ R3\Ω. Integration over R3 is

necessary to account for the electromagnetic field in both the body Ω and its surrounding space R3\Ω.

We proceed with the definition of the “action integral” F(A,u), obtained by integration of the La-

grangian L in (3.2) between arbitrary times t1 and t2. By Hamilton’s principle it is stationary

F(A,u) ≡
∫ t2

t1

L dt , δF = 0 ; δA(ti) = δu(ti) = 0 , i = 1, 2 =⇒ F,A[δA] = F,u[δu] = 0 . (3.3)

Consequently the corresponding variations with respect to the independent variables A and u yield respec-

tively the magnetic and mechanical governing equations and interface/boundary conditions.

3.2. Magnetics: variations with respect to A

Following (3.3), setting to zero the variation of F with respect to A one obtains

F,A[δA] =

∫ t2

t1

{∫
R3

[
J ·δA− 1

µ0
(B ·C)·(∇×δA)− ρ0

∂ψ

∂B
·(∇×δA)

]
dV

}
dt+

∫
∂Ω

(K ·δA) dS = 0 . (3.4)

4An additional condition is needed for a unique A, termed “gauge condition”; Coulomb gauge ∇·A = 0 is a typical choice.
5Dissipative phenomena (e.g. magnetic hysteresis or plasticity) are ignored and thus no internal variables are needed in ψ.

Temperature dependance is ignored as well. The specific free energy used here depends on (C,B = JF−1 ·b), as opposed to

(C, b·F ) in Kovetz (2000); Hanappier et al. (2021a,b). Our choice, motivated by the fact that B is the Lagrangian counterpart

of Eulerian b, still complies with the angular momentum balance argument made in Kovetz (2000). For a detailed explanation

of this point, see Hanappier (2021).
6Without loss of generality, we can define the applied mechanical traction T and current sheet K fields on the entire

boundary and impose a zero value when applicable
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The domain R3 is separated into the volume Ω occupied by the body and the surrounding space R3\Ω.

Taking into account the discontinuity of ρ0 across ∂Ω, integration by parts of (3.4) yields

F,A[δA] =

∫ t2

t1

{∫
R3

[
(J −∇×H)·δA

]
dV +

∫
∂Ω

[
(K −N×JHK)·δA

]
dS

}
dt = 0 ,

H ≡ − ∂l
∂B

=


ρ0
∂ψ

∂B
+

1

µ0J
C ·B ; ∀X ∈ Ω ,

1

µ0J
C ·B ; ∀X ∈ R3\Ω ,

(3.5)

where H is the reference configuration h-field”7. The arbitrariness of δA, (3.5) implies the following differ-

ential equation and boundary/interface condition

∇×H = J ; ∀X ∈ R3 , N×JHK = K ; ∀X ∈ ∂Ω , (3.6)

where one recognizes the reference configuration Maxwell-Ampère law in the eddy current approximation

(see Hanappier (2021)).

3.3. Mechanics: variations with respect to u

Once again, from Hamilton’s principle (3.3), setting to zero the variation of F with respect to u gives

F,u[δu] =

∫ t2

t1

{∫
R3

[(
1

µ0J

(1

2
(B ·C ·B)I −B(C ·B)

)
·F−1 − ρ0

(
∂ψ

∂C

)
·F T

)
: (∇δu)

+ ρ0
.
u· d

dt
(δu) + ρ0f ·δu

]
dV +

∫
∂Ω

(T ·δu) dS

}
dt = 0 .

(3.7)

As before, the domain R3 is separated into the volume Ω occupied by the body and the surrounding

space R3\Ω. Taking into account the discontinuity of ρ0 across ∂Ω, integration by parts of (3.7) in the space

and the time domains (recalling also the end conditions at t1, t2 in (3.3)) yields

F,u[δu] =

∫ t2

t1

{∫
R3

[ (
∇·Π− ρ0

..
u+ ρ0f

)
·δu
]

dV +

∫
∂Ω

[
(T −N ·JΠK)·δu

]
dS

}
dt = 0 ,

Π ≡ −
(
∂l

∂F

)T
=


ρ0

(
∂ψ

∂C

)
·F T +

1

µ0J
B(F ·B)− 1

2µ0J
(B ·C ·B)F−1 ; ∀X ∈ Ω ,

1

µ0J
B(F ·B)− 1

2µ0J
(B ·C ·B)F−1 ; ∀X ∈ R3\Ω ,

(3.8)

7The reference and current configuration h-fields are related by H = h·F (see Hanappier (2021)).
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where Π is the “total first Piola-Kirchhoff ” stress tensor8. The arbitrariness of δu, (3.8) yields the following

differential equation and boundary/interface condition

∇·Π + ρ0f = ρ0
..
u ; ∀X ∈ R3 , N×JΠK = T ; ∀X ∈ ∂Ω , (3.9)

where one recognizes the reference configuration linear momentum balance of continuum mechanics.

It should be noted here that the present Lagrangian approach enables one to automatically calculate the

Maxwell stress in the airgap regions9 R3\Ω, as seen from (3.8)3.

4. Numerical (FEM) implementation

We apply here the general theory developed in Section 3 to the boundary value problem of a stator.

The numerical solution is based on an FEM discretization of a 2D, quasistatic problem and solved by

extremization of a simplified version of the Lagrangian (3.2). In subsection 4.1 we present the potential

energy of the problem and the corresponding field variables. In subsection 4.2 we give the specific free

energies used in the calculations and in subsection 4.3 we present some important implementation details.

4.1. Potential energy and field variables

This stator analysis is based on a 2D model (plane strain assumed, see cross-section in Figure 1), where all

field quantities are assumed independent of X3. It involves no external body forces and mechanical tractions

and has negligible induced currents and acceleration terms, thus requiring only a spatial discretization of

the corresponding quasistatic problem. The Lagrangian of the system (kinetic minus potential energy:

L = K −P), in the absence of the kinetic energy (K = 0) equals minus the potential energy (L = −P),

which for the case of no external body forces and mechanical surface tractions becomes

P =

∫
R2

(p) dS −
∫

Ω

(J ·A) dS −
∫
∂Ω

(K ·A) dl ; p ≡ ρ0ψ +
1

2µ0J
B ·C ·B , (4.1)

where p is the system’s energy density.

Since a plane strain boundary value problem is considered, integration over the entire domain involves

R2 and the cross-section of the stator domain has boundary ∂Ω. Moreover, the in-plane magnetic field

(B = ∇×A, see (3.1)) is derived from the magnetic vector potential A = A(X1, X2)e3, requiring only

one scalar field variable for its determination i.e. B = A,2e1 − A,1e2
10. Consequently the Coulomb gauge

condition ∇·A (see footnote 4) is automatically satisfied. As a result of Ampère’s law (3.6) and the in-

plane h-field, the externally applied currents can only be of the form J = J3(X1, X2)e3, thus automatically

satisfying the charge conservation principle ∇·J = 0.

8The total first Piola-Kirchhoff and Cauchy stress tensors are related by Π = JF−1 ·σ (see Hanappier (2021)).
9This is a more straightforward approach, compared to other methodologies that require adding the Maxwell stress contri-

bution at the interfaces with airgap regions; e.g. Fonteyn et al. (2010b).
10The standard partial derivative notation is used A,i ≡ ∂A/∂Xi ; i = 1, 2
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Thus the solution of the stator boundary value problem requires the following three field variables

u1(X1, X2), u2(X1, X2), A(X1, X2)

u = u1(X1, X2) e1 + u2(X1, X2) e2 , A = A(X1, X2) e3 . (4.2)

The numerical solution of the problem is based on the FEM spatial discretization of the above three scalar

fields, and the derivation of the element force vector and stiffness matrix are presented in Appendix B.

4.2. Constitutive choices

For isotropic materials in 2D, the most general form of their specific free energy11 can be expressed as a

function of only 4 invariants I1, I2, J1 and J2 (out of the 6 invariants for a 3D isotropic case),

ψ(C,B) = ψ(I1, I2, J1, J2) ; I1 ≡ tr(C) , I2 ≡ det(C) = J2 , J1 ≡ B ·B , J2 ≡ B ·C ·B . (4.3)

For the e-motor applications of interest here, the specific free energy is decomposed into a purely me-

chanical part and a magneto-mechanical part (see Hanappier et al. (2021a)),

ψ(C,B) = ψmech(C) + ψmag(C,B) . (4.4)

4.2.1. For ferromagnetic materials

Mechanical energy density For the mechanical specific free energy ψmech(C), or equivalently its reference

energy density counterpart Wmech(C), a neo-Hookean behavior is chosen,

Wmech(I1, I2) ≡ ρ0ψmech(I1, I2) = G

[
1

2
(I1 − 2− ln I2) +

ν

1− 2ν
(
√
I2 − 1)2

]
, (4.5)

where ν denotes the Poisson ratio (−1 < ν < 0.5) and G the shear modulus. More appropriate and

refined choices may be relevant for modeling metals (e.g. see Thomas and Triantafyllidis (2009)) but the

neo-Hookean model is perfectly adequate here, given the small strains expected Hanappier et al. (2021a).

Magnetic energy density The magnetic specific free energy ψmag, or equivalently its reference energy

density counterpart Wmag(C,B), pertains to the magnetic response of the steel stator, assuming an an-

hysteretic magnetic behavior (no dissipative phenomena considered here). For small magnetic fields (and

small strains), the model must capture the linear magnetization behavior of the material, i.e. predict its

magnetic susceptibility χ12. The model should also account for saturation, i.e. asymptotically approach a

magnetization ms at large magnetic fields. To this effect, a model that combines a quadratic energy – linear

11A user element is defined for the FEM modeling of the various motor domains, i.e. air, copper conductors and ferromagnetic

electrical steel. The specific free energy for each material is assumed isotropic.
12It has been shown in Hanappier et al. (2021a) that for small strains and magnetic fields the magnetic response is consistently

characterized by two constants: magnetic susceptibility χ - considered here - and magnetostriction Λ - set to zero by selection

of the energy density in (4.6).
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magnetization – at small ‖b‖ with a Langevin-type one (e.g. see Danas (2017)) to account for magnetization

saturation at high ‖b‖ is used,

‖b‖ ≤ blim : Wmag(I2, J2) = ρ0ψmag(I2, J2) = − χ

2µ

J2

I2
; µ = µ0(1 + χ) ,

‖b‖ > blim : Wmag(I2, J2) = − χ

2µ
b2lim −

χ

µ

(
J2

I2
− blim

)

+
αsms

β

[
ln

(
β

(√
J2

I2
− blim

))
− ln

(
sinh

(
β

(√
J2

I2
− blim

)))]
; β ≡ 3

αsms

χ

µ
,

(4.6)

where ms is the magnetization at saturation, and αs is a correction coefficient introduced to obtain a better

fit to experimental data (see Section 5). It should be noted here that the isotropic magnetic energy density

in (4.6) depends solely on the magnitude of the current magnetic field, i.e. Wmag(I2, J2) = Wmag(‖b‖),

since B = JF−1 ·b =⇒ b·b = J2/I2.

For small strains – typical in electric motors – i.e. when ‖ε‖ � 1, where ε ≡ (1/2)(∇u + u∇), but

arbitrary magnetic field amplitudes ‖b‖, the present choice of specific free energy matches the small strain

magnetization and stress expressions presented in Hanappier et al. (2021a). In particular, the total stress

σ (≈ Π) is the sum of a purely elastic part
e
σ(ε) and a purely magnetic part

m
σ(b)

σ =
e
σ +

m
σ ;

e
σ ≡ λtr(ε)I + 2Gε ,

m
σ ≡ 1

µ0

[
bb− 1

2
(b·b)I

]
− χ(‖b‖)
µ(‖b‖)

[bb− (b·b)I] +
Λ(‖b‖)
µ(‖b‖)

bb ,

m = [χ(‖b‖)/µ(‖b‖)] b , µ(‖b‖) = µ0[1 + χ(‖b‖)] ,

(4.7)

where χ(‖b‖) is the material’s magnetic susceptibility, µ(‖b‖) its magnetic permeability and Λ(‖b‖) a magneto

mechanical coupling coefficient which gives the curvature of the strain vs magnetic field in a stress-free

uniaxial magnetostriction experiment. For the magnetic energy adopted in (4.6), Λ(‖b‖) = 0.

4.2.2. For airgap and conductor domains

For airgap domain, Wmag = 0 but a penalty-type method, with a mechanical energy density Wmech 6= 0

is adopted (see Thomas and Triantafyllidis (2009)) to obtain continuous displacement fields. We assume

Gair = 10−5Gsteel while keeping the Poisson ratio ν the same as in the steel stator.

For the coil conductor’s domain (typically made of copper, a non-magnetic material), we also take

Wmag = 0. The selection of its mechanical energy density is more complicated, as this domain is not

monolithic but consists of wires in contact with each other and the stator. Two limiting cases are thus

considered for this domain’s Wmech: i) for the case of “loosely packed conductors” and not in contact with

the stator, we neglect the stiffness of the copper wire domain by taking Gcopper = Gair = 10−5Gsteel and ii)
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for the case of “tightly packed conductors” in contact with the stator, we assume a monolithic copper domain

bonded to the stator, in which case we use the corresponding values of the shear modulus and Poisson ratio.

4.3. FEM discretization

For the sake of simplicity and meshing flexibility, the elements chosen for the FEM spatial discretization

are constant strain triangular 2D elements; the sole numerical integration point being at the element centroid.

The three degrees of freedom of node i are q(i) = (u
(i)
1 , u

(i)
2 , A(i)) and the corresponding element force vector

fe and element stiffness matrix ke are derived in Appendix B. The corresponding UEL (user element) is

provided to “Abaqus” in the final assembly of the global force vector and stiffness matrix of the problem.

5. Simulation of electric stators

Results obtained for the multiphysics modeling of stators, using the numerical implementation described

in Section 4, are presented here in two parts. In subsection 5.1 an idealized (cylindrical) rotor is solved

using the FEM code13. We present the results for the nonlinear magnetic response in (4.6) and we assess

its influence by comparing the FEM results to the corresponding analytical solution of Hanappier et al.

(2021b). In subsection 5.2, numerical results are presented using the same constitutive laws but a more

realistic stator geometry inspired from Devillers et al. (2018b) that includes teeth and slots.

An important point needs to be made here: although the numerical calculations are done in a full

Lagrangian setting, due to the small strains, results are expressed in the current configuration, i.e. A ≈

a, B ≈ b, H ≈ h, Π ≈ σ.

13For code validation and accuracy checking, the FEM results are compared to the analytical results in Hanappier et al.

(2021b) obtained for small values of the magnetic field (linear range of magnetic behavior).
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5.1. Results for an idealized (cylindrical) stator problem

(a) schematics of the idealized (cylindrical stator) motor (b) FEM mesh of quarter idealized stator

Figure 3: In (a) cross-section of the idealized (cylindrical stator) electric motor, indicating rotor, airgap and stator domains

and associated boundaries and in (b) FEM mesh used for modeling the quarter domain of the idealized stator.

Geometry The idealized motor geometry is shown in Figure 3a and its dimensions are given in Table 4a.

Because of the symmetries in the geometry – and in the subsequently defined loading – only a quarter

domain is discretized, as shown in Figure 3b which also introduces the labelling of the different domains and

their boundaries. The unstructured mesh consists of 27,783 elements with 14,794 nodes and 44,382 d.o.f.;

the mesh is optimized for accuracy using the analytical solution for the linear magnetic response.
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Geometry

Rotor bore radius R1 42.5 mm

Stator yoke bore radius R2 45 mm

Stator outer radius R3 50 mm

Number of pole pairs p 2

Loading

Magnetic field amplitude B0 0.23 µ0ms

Material

Initial magnetic susceptibility χ 2, 500

Magnetization at saturation ms 1.30×106 A/m

Transition from linear regime blim 55%µ0ms ≈ 0.9T

Correction coefficient αs 3.8

Mass density ρ0 7, 650 kg/m3

Young’s modulus E 215×109 Pa

Poisson ratio ν 0.3

(a) Geometry, loading and material table.

(b) Fitting (4.6) to the experimental m− h curve.

Figure 4: Table of geometry, loading parameter and material properties for the cylindrical rotor in (a) and fitting of the

magnetic constitutive law in (4.6) to the experimental m− h results of Rekik et al. (2014) in (b).

Materials Table 4a records the material parameters of the cylindrical stator. The nonlinear description

of the magnetic response in (4.6) requires, in addition to the magnetic susceptibility χ, two more parameters:

the magnetization at saturation ms and the correction coefficient αs. The saturation value ms = 1.3×106

is taken as the maximum magnetization reported in the experimental data of Rekik et al. (2014)14. The

best fit to the experimental data reported there correspond to a correction factor αs = 3.8 and a transition

magnetic field blim = 55%µ0ms, as seen in Figure 4b.

Loading The rotor comprises p-pairs (p = 2 here) of permanent magnets that produce a rotating radial

magnetic field Br = −B0 sin(pθ− pΩt) at the rotor boundary D1, with B0 the amplitude of the field and Ω

the angular velocity of the rotor. The FEM results obtained here correspond to a snapshot at time t = 0;

the solution at any time t is obtained by a rotation by an angle Ωt.

We proceed next by recording the essential (Dirichlet) magnetic and mechanical boundary conditions

imposed. The maximum amplitude B0 is chosen so that the numerically calculated magnetization nowhere

exceeds its saturation value, thus operating within the range of the fitted magnetic response, as shown in

14We use the data for the unstressed configuration (Figure 11(a) of Rekik et al. (2014) with – following their notations –

σ1 = σ2 = 0).

14



Figure 4b and hence justifying the adopted value B0 = 0.23µ0ms in Table 4a.

Magnetic boundary conditions Magnetic loading is imposed by prescribing the magnetic potential A at

the outer boundary of the rotor

∂D1 : A =
R1B0

p
cos(pθ) . (5.1)

On the outer boundary of the stator the magnetic potential A is prescribed

∂D3 : A = 0 . (5.2)

From the above condition we conclude that the radial component of the magnetic field vanishes ((∂A/∂θ)/R =

Br = N·B = 0), thus explaining the term “negligible magnetic leakage flux condition” recorded in Figure 3a.

No essential boundary conditions are imposed on the lateral boundaries ∂D1
l , ∂D

2
l due to the symmetry of the

geometry and loading. The corresponding natural (Neumann) boundary condition is N×H = −Hrez = 0.

Mechanical boundary conditions Displacements are set to zero on the inner boundary of the airgap ∂D1.

∂D1 : ur = uθ = 0 . (5.3)

Moreover, given the symmetries of the geometry and loading, we need only prescribe the tangent displace-

ments on the lateral surfaces ∂D1
l , ∂D

2
l , and hence

∂D1
l , ∂D

2
l : uθ = 0 . (5.4)

The corresponding natural Neumann boundary conditions provide on ∂D1
l and ∂D2

l : Πrθ = 0. Since no

displacement constraints are imposed on the outer stator boundary, the corresponding natural (Neumann)

boundary conditions are on ∂D3 : σrr ≈ Πrr = 0 , σrθ ≈ Πrθ = 0.

Normalization In order to present results in dimensionless form, the following normalization is adopted

using magnetic saturation,

aref = R2µ0ms , bref = µ0ms , href = mref = ms , uref = Rref = R2 , σref = µ0m
2
s . (5.5)

The results of the FEM calculations for the magnetic constitutive law of (4.6) and their comparison to

the predictions of the analytic model (magnetic susceptibility χ = 2, 500 and magneto-mechanical coupling

coefficient Λ = 0 – see Appendix A), are presented at three different radial directions: θ = 0, π/8, π/4, in

Figures 5 to 8.
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(a) A/R2µ0ms vs R/R2 (b) ur/R2 vs R/R2 (c) uθ/R2 vs R/R2 (d) Labeling

Figure 5: Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization re-

sponse) for the cylindrical stator at large values magnetic field ‖b‖ at three different angles. In (a) dimensionless magnetic

potential A/R2µ0ms vs r, in (b) dimensionless radial displacement ur/R2 vs r and in (c) dimensionless tangential displacement

uθ/R2 vs r (dimensionless radius r = R/R2).

More specifically Figure 5a shows the influence of the nonlinear magnetic response on the dimensionless

magnetic potential A/R2µ0ms and Figures 5b and 5c show the corresponding effect on the dimensionless

radial and tangent displacement components, respectively ur/R2 and uθ/R2, as functions of the radial

coordinate r. According to Figure 5a, there is no (discernible) influence of the nonlinear magnetic response

on the potential A. The maximum difference for the radial displacement ur occurs, according to Figure 5b

along the radial directions θ = 0, π/4 at the inner boundary of the stator (r2 = 1), but the change from the

linear model predictions is negligible. Similar results are found for the hoop displacement uθ in Figure 5c

where a (negligible) maximum difference occurs again at the inner boundary of the stator but along the

direction θ = π/8 (from symmetry uθ = 0 along θ = 0, π/4). It should be noted here that for the values

selected in Table 4a, the displacements are at most of order 10−5m. One can thus conclude from Figures 5b

and 5c that the influence of nonlinear magnetic effects on the mechanical response of the stator is negligible,

even for magnetic fields up to saturation level.
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(a) br/µ0ms vs R/R2 (b) hθ/ms vs R/R2 (c) ‖m‖/ms vs R/R2 (d) Labeling

Figure 6: Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization re-

sponse) for the cylindrical stator at large values magnetic field ‖b‖ at three different angles. In (a) dimensionless radial

component of the magnetic field br/µ0ms vs r, in (b) dimensionless tangential component of the h-field hθ/ms vs r and in (c)

dimensionless norm of the magnetic field ‖m‖/ms vs r (dimensionless radius r = R/R2).

The above assertion – of a negligible influence of the nonlinear magnetic behavior on the stator’s me-

chanical response – is no longer valid for its magnetic counterpart, as seen from Figure 6. The influence

of nonlinear magnetic response on the dimensionless magnetic field br/µ0ms is presented in Figure 6a, on

the tangential component of the h-field hθ/ms in Figure 6b15 and on the norm of magnetization vector

‖m‖/ms in Figure 6c, as functions of the radial coordinate r. The maximum deviations from the linear

response occur, as expected, at the inner boundary of the stator (r2 = 1) where the magnetic field is the

highest. Unlike the radial component of the magnetic field br that is unaffected by the nonlinear magnetic

behavior – as evidenced by Figure 6a – the tangential component hθ and the magnetization norm ‖m‖ are

influenced by it as seen from Figures 6b and 6c. In particular notice from Figure 6c that the linear magnetic

model (constant magnetic susceptibility χ) consistently overestimates/underestimates the magnetization at

the inner/outer boundary of the stator, with the nonlinear magnetic model resulting in a more uniform

distribution due to saturation.

15The reason for plotting the components br and hθ of the magnetic field is to highlight their continuity at the r2 interface,

as expected from the (current configuration) interface conditions n·JbK = 0 and n×JhK = 0 respectively.
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(a) σrr/µ0m
2
s vs R/R2 (b) σrθ/µ0m

2
s vs R/R2 (c) σθθ/µ0m

2
s vs R/R2 (d) Labeling

Figure 7: Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization re-

sponse) for the cylindrical stator at large values magnetic field ‖b‖ at three different angles. In (a) dimensionless radial

stress σrr/µ0m2
s vs r, in (b) dimensionless shear stress σrθ/µ0m

2
s vs r and in (c) dimensionless hoop stress σθθ/µ0m

2
s vs r

(dimensionless radius r = R/R2).

The influence of nonlinear magnetic response on the dimensionless total stress field components is pre-

sented in Figure 7. More specifically, Figure 7a shows the magnetically nonlinear (FEM) and linear (analyt-

ical) results for the dimensionless normal stress σrr/µ0m
2
s, Figure 7b shows the results for the dimensionless

shear stress σrθ/µ0m
2
s and Figure 7c shows the results for the dimensionless hoop stress σθθ/µ0m

2
s , as

functions of the radial coordinate r. If one disregards the numerical noise of the shear stress σrθ in the

boundary θ = 016, the nonlinearity of the magnetic response has negligible influence on the total stress field.

The non-zero total stress (Maxwell stress) in the airgap regions is properly accounted for. Notice in

Figures 7a and 7b the continuity of normal σrr and hoop σrθ total stress components at the airgap-stator

interface, as expected from the current configuration version of the boundary condition (3.9)2 and the

absence of an externally applied mechanical surface traction there (T = 0).

16From symmetry σrθ = 0 at θ = 0 but the shear stress is calculated at the midpoint of the boundary elements.
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(a) εrr vs R/R2 (b) εrθ vs R/R2 (c) εθθ vs R/R2 (d) Labeling

Figure 8: Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization re-

sponse) for the cylindrical stator at large values magnetic field ‖b‖ at three different angles. In (a) radial strain εrr vs r, in

(b) shear strain εrθ vs r and in (c) hoop strain εθθ vs r (dimensionless radius r = R/R2).

Finally of interest is the influence of nonlinear magnetic response on the strain field, which is presented

in Figure 8. More specifically, Figure 8a shows the magnetically nonlinear (FEM) and linear (analytical)

results for the normal strain εrr, Figure 8b shows the results for the shear strain εrθ and Figure 8c shows

the results for the hoop strain εθθ , as functions of the radial coordinate r. Interest in the strain field stems

from its direct relation to the mechanical (elastic) stress field
e
σ according to (4.7). Notice that although

the shear εrθ and hoop εθθ strain fields are not influenced by the nonlinear magnetic response, this is not

the case for the radial strain field εrr, as seen in Figure 8a, where the maximum diffence occurs near the

stator’s inner boundary where the magnetic field is the strongest. Moreover, strains of the order of 10−6

correspond to maximum elastic stresses of the order of a few MPa, well within the linear elastic range of the

steel’s response.

We can conclude that the nonlinear magnetic response of the stator has a rather small influence in the

magnetic fields but practically none to the displacement, total stress and strain fields; the (analytically

available) linear magnetization model is adequate for the calculation of the kinematic and mechanical fields.

5.2. Results for a realistic geometry stator

Attention is turned next to the FEM simulations for a realistic (slotted) stator geometry. A four-pole

(two pairs) induction machine with plain ferromagnetic rotor (as in Hanappier et al. (2021a)) is considered.

The stator geometry is inspired by the benchmark machine of Devillers et al. (2018a).
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(a) Realistic geometry stator.

Rotor bore radius R1 45 mm

Stator bore radius R2 48 mm

Stator tooth height Htooth 20 mm

Stator outer radius R3 73 mm

Stator slot width Ws 18◦

Radius at teeth’s base Rb 4mm

Number of stator teeth Zs 12

Number of pole pairs p 2

(b) Stator geometry table.

Figure 9: Realistic geometry stator, mesh and wiring plan; ⊗ denotes currents flowing in, and � currents flowing out of the

plane at a given time (these currents alternate) in (a) and Table of geometric parameters for the realistic stator boundary value

problem.

Geometry Figure 9a shows the stator geometry, with the stator domain D3 in dark grey and the airgap

domain D2 in green17. The stator slots hold the conductor coil windings – blue, light gray and red domains

in Figure 9a – supplying the alternating electric currents producing the rotating stator magnetic field that

drives the rotor. The slots are numbered 1,2,...,12 circumferentially, starting from θ = 0. The unstructured

mesh is also displayed in Figure 9a and consists of 88,244 elements with 44,863 nodes and 134,589 d.o.f.

Contrary to the idealized stator problem in Section 5.1, no symmetry conditions can be used here, requiring

the discretization and modeling of the entire airgap and stator domains. The values of the geometric

parameters of the stator are given in Table 9b.

Materials We use the material parameters of Table 4a. The corresponding magnetization curve is dis-

played in Figure 4b. As explained in subsection 4.3, for the case of the tightly packed conductors (case ii),

the copper domain’s magnetic energy density Wmag = 0 (χ = 0) while its mechanical energy density Wmech

is given by (4.5) with G = 44×109Pa and ν = 0.33.

Loading The stator is supplied by a three-phase alternating current of amplitude J0 and cyclic frequency

ω. We denote the phases A,B and C and we have the phase current densities JA,JB and JC . The

distributed 4 pole stator wiring adopted here is detailed in Figure 9a where the conductors C1,2,...,12 are

17D1 is reserved to the rotor domain (not shown in Figure 9a).
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given the following current densities

C1 ∪C10 : J = JA ; C4 ∪C7 : J = −JA ; JA = J0 cos(ωt)ez ,

C2 ∪C11 : J = JB ; C5 ∪C8 : J = −JB ; JB = J0 cos(ωt+
2π

3
)ez ,

C3 ∪C12 : J = JC ; C6 ∪C9 : J = −JC ; JC = J0 cos(ωt+
4π

3
)ez .

(5.6)

Simulations are performed with an input current amplitude J0 = 36%ms/R2 ≈ 107A/m2; this value is chosen

so that the numerically calculated magnetization nowhere exceeds its saturation value, thus operating within

the range of the fitted magnetic response, as shown in Figure 4b. The current density is constant within the

corresponding blue, light gray and red domains depicted in Figure 9a.

Magnetic boundary conditions We assume the plain ferromagnetic rotor D1 has infinite permeability, i.e.

D1 : H = 0, which matches the natural (Neumann) boundary condition ∂D1 : N×H = 0. On the outer

stator boundary, we assume negligible leakage flux, as for the idealized stator case (see (5.2))

∂D3 : A = 0 , (5.7)

implying that the radial component of the magnetic field vanishes (∂A/∂θ = Br = N ·B = 0).

Mechanical boundary conditions Similarly to the idealized rotor case (see (5.3)), the displacements are

constrained to zero on the inner airgap boundary ∂D1
18.

∂D1 : ur = uθ = 0 . (5.8)

Similarly to the idealized stator case in subsection 5.1, no constraints are imposed on the outer stator

boundary and hence the corresponding natural (Neumann) boundary conditions are on ∂D3 : σrr ≈ Πrr =

0, σrθ ≈ Πrθ = 0.

Normalization In order to present results in dimensionless form, the same normalization (5.5) as for the

cylindrical rotor is adopted.

The results of the FEM calculations for the magnetic constitutive law of (4.6) and the corresponding

material parameters in Table 4a are presented in Figures 10 to 12 for the loosely packed conductors (case i)

and in Figures 13 to 14 for the tightly packed conductors (case ii).

18Recall that the airgap has a very small stiffness, as discussed in subsection 4.2.
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(a) ‖m‖/ms (b) ‖b‖/µ0ms (c) ‖u‖/R2

Figure 10: FEM results for the realistic stator with loosely packed conductors (case i). Contours in (a) dimensionless

magnetization ‖m‖/ms, in (b) dimensionless magnetic field ‖b‖/µ0ms and in (c) dimensionless displacement ‖u‖/R2. The

displacement norm contours are plotted over an exaggerated deformed configuration (magnification factor: 104).

More specifically, the results of the numerical calculations for the realistic stator with loosely packed

conductors (case i) depict the contours of the dimensionless magnetization ‖m‖/ms in Figure 10a, the

contours of the dimensionless magnetic field ‖b‖/µ0ms in Figure 10b and the contours of the dimensionless

displacement ‖u‖/R2 in Figure 15a. The latter are plotted over an exaggerated deformed configuration

(magnification factor: 104). By comparing Figures 10a and 10b one notices that magnetic saturation is

reached at the top and bottom parts of the stator and that the corresponding contours are practically

identical, due to magnetic saturation. The (exaggerated) deformed configuration is depicted in Figure 15a

and reflects the symmetry of the stator and the applied loading, as seen in Figure 9a. As expected the

maximum deformation remains negligible and is of the order of 10−6m. Notice that the thinner, cylindrical

outer part of the stator deforms more than its thicker teeth.

(a) σrr/µ0m
2
s (b) σrθ/µ0m

2
s (c) σθθ/µ0m

2
s

Figure 11: FEM results for the realistic stator with loosely packed conductors (case i) at large values magnetic field ‖b‖.

Contours in (a) dimensionless total radial stress σrr/µ0m2
s vs r, in (b) dimensionless total tangential stress σrθ/µ0m

2
s vs r

and in (c) dimensionless total hoop stress σθθ/µ0m
2
s vs r.
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Next come the total stress results of the numerical calculations for the realistic stator with loosely

packed conductors (case i). Contours of the dimensionless radial stress σrr/µ0m
2
s are shown in Figure 11a,

for the dimensionless shear stress σrθ/µ0m
2
s in Figure 11b and for the dimensionless hoop stress σθθ/µ0m

2
s

in Figure 11c. Stresses are maximized at the cylindrical part of the stator and at the base of the teeth where

the magnetic field is maximized.

(a) εrr (b) εrθ (c) εθθ

Figure 12: FEM results for the realistic stator with loosely packed conductors (case i) at large values magnetic field ‖b‖.

Contours in (a) radial strain εrr vs r, in (b) shear strain εrθ vs r and in (c) hoop strain εθθ vs r.

Finally come the strain results of the numerical calculations for the realistic stator with loosely packed

conductors (case i). Contours of the dimensionless radial strain εrr are shown in Figure 12a, for the di-

mensionless shear strain εrθ in Figure 12b and for the dimensionless hoop strain εθθ in Figure 12c. Strains

are maximized at the cylindrical part of the stator and at the base of the teeth where the magnetic field is

maximized. Notice however that even at their highest values they never exceed 10−5, thus establishing that

the stator’s mechanical response is well within its linear elastic regime.

(a) σrr/µ0m
2
s (b) σrθ/µ0m

2
s (c) σθθ/µ0m

2
s

Figure 13: FEM results for the realistic stator with tightly packed conductors (case ii) at large values magnetic field ‖b‖.

Contours in (a) dimensionless total radial stress σrr/µ0m2
s vs r, in (b) dimensionless total tangential stress σrθ/µ0m

2
s vs r

and in (c) dimensionless total hoop stress σθθ/µ0m
2
s vs r.

23



Results of the numerical calculations for the realistic stator with tightly packed conductors (case ii) are

presented next, starting with the components of the total stress field in Figure 13. For its mechanical response

the stator appears as a bimetallic cylinder (gaps between teeth filled with copper and bonded to steel) thus

significantly stiffening it compared to case (i). Contours of the dimensionless radial stress σrr/µ0m
2
s are

shown in Figure 13a, for the dimensionless shear stress σrθ/µ0m
2
s in Figure 13b and for the dimensionless

hoop stress σθθ/µ0m
2
s in Figure 13c. Stresses are maximized at the cylindrical part of the stator and at the

base of the teeth where the magnetic field is maximized. As a result, maximum stresses reached for the

tightly packed conductors in Figure 13 are significantly lower with respect to the corresponding stresses in

the loosely packed case in Figure 11.

(a) εrr (b) εrθ (c) εθθ

Figure 14: FEM results for the realistic stator with tightly packed conductors (case ii) at large values magnetic field ‖b‖.

Contours in (a) radial strain εrr vs r, in (b) shear strain εrθ vs r and in (c) hoop strain εθθ vs r.

Lastly come the strain results of the numerical calculations for the realistic stator with tightly packed

conductors (case ii) with the components of the strain field presented in Figure 14. Contours of the dimen-

sionless radial strain εrr are shown in Figure 14a, for the dimensionless shear strain εrθ in Figure 14b and for

the dimensionless hoop strain εθθ in Figure 14c. Strains are maximized at the cylindrical part of the stator

and at the base of the teeth where the magnetic field is maximized. As a result of the stiffening response of

the coils, maximum strains reached for the tightly packed conductors in Figure 14 are lower with respect to

the corresponding strains in the loosely packed case in Figure 12.
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(a) ‖u‖/R2 (b) ‖u‖/R2

Figure 15: Deformed configuration (×10, 000) of the loosely packed coils in (a) and the tightly packed ones (×50, 000) in (b).

Notice the considerably smaller distortion in (b) in spite of the five times larger magnification than (a).

Finally a comparison between the (exaggerated) deformed configurations of the stator in cases (i) and (ii)

are presented in Figure 15, showing not only an almost lower order of magnitude displacements in the stiffer

case (ii) but a different overall deformation pattern than the softer stator of case (i) as well, as observed by

comparing Figure 15a to Figure 15b.

6. Conclusion

The increasing importance of environmental constraints in the transportation industry requires novel

electric motor designs to meet technological challenges of cost, weight and efficiency. Modeling of electric

motors has in the past been predominantly focussed on calculating magnetic fields and torque. Given the

increased rotation speeds, currents and electromagnetic field levels, mechanical field (stress and strain) cal-

culations are gaining importance for producing optimized motor designs. To this end, the authors proposed

in Hanappier et al. (2021a) a thermodynamicaly consistent framework – based on the direct (current configu-

ration) approach of continuum mechanics – for the concurrent calculation of mechanical and electromagnetic

fields in electric motors, accompanied by analytical examples of idealized electric motor problems Hanappier

et al. (2021a,b).

Due to the complex geometry of a typical electric motor, numerical solutions of the coupled magneto-

mechanical governing equations are required. To this end, a Lagrangian (reference configuration) variational

principle is proposed for the eddy current approximation that properly retrieves the Maxwell stresses and

is consistent with its direct approach counterpart. An FEM discretization method based on this variational

principle is subsequently proposed for the simultaneous solution of the magnetic (Maxwell-Ampère’s) and

mechanical (Newton’s) governing equations. The method is first applied to a cylindrical stator, where an

analytical solution can be found for the linear elastic and magnetization regimes, thus providing firstly
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an independent code verification and subsequently an assessment of the influence of the stator’s nonlinear

magnetic response. The approach is subsequently used to tackle a realistic geometry stator with two pole

pairs under a three-phase current for two different cases: loosely or tightly packed conducting wires to

calculate the corresponding magnetic and stress fields. The results of our calculations show the influence of

magnetic saturation effects as well of the current conducting coils on the stress, strain and magnetic fields.

The novelty – and advantage of the proposed variational approach – lies first in the concurrent solution

of the magnetic and mechanical governing equations without the need of stepwise methods and then in the

simplicity of the FEM discretization scheme since no special elements are needed, just considering magnetic

potential and displacement variables as the nodal d.o.f. Although the application presented pertains to a

stator, the proposed methodology can be generalized to the calculation of a complete motor with rotating

parts and a more complicated, coupled magneto-mechanical constitutive response.

ACKNOWLEDGMENTS

The work of N. Hanappier is supported by a Fellowship from the André Citroën Chair of the Ecole
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Appendix A. Analytical solution of cylindrical stator

The analytical solution for the idealized (cylindrical) motor problem – stator, airgap and rotor – is

presented in detail (and in the more general setting of Λ 6= 0) in Hanappier et al. (2021b). A brief summary

of the results for the stator are given here for completeness of the presentation, obtained in the linear small

strain, small magnetization regime and hence expressed in the current configuration, i.e. A ≈ a, B ≈

b, H ≈ h, Π ≈ σ.

The equations to be solved are respectively: Maxwell-Ampère (no distributed currents) in the airgap

and the stator19

x ∈ D2 ∪D3 : ∇2a = 0 ; b = ∇×a =
1

r

∂a

∂θ
er −

∂a

∂r
eθ , (A.1)

and the linear momentum balance in the stator20:

x ∈ D3 : ∇ ·σ = 0 ; σ =
e
σ+

m
σ ;

e
σ ≡ 2G[ε+

ν

1− 2ν
tr(ε)I] ,

m
σ ≡ 1

µ0(1 + χ)

[
bb− 1− χ

2
(b·b)I

]
. (A.2)

It should be added here that for the airgap domain, the equilibrium equation becomes ∇ · mσ = 0 where the

magnetic stress
m
σ is the Maxwell stress of the vacuum σMaxw = bb− 0.5(b · b) (for the air χ = 0).

The following dimensionless variables and parameters are introduced in Hanappier et al. (2021b)

r

R2
→ r , r1 ≡

R1

R2
, r3 ≡

R3

R2
,

a
R1B0

p

→ a ,
u

p2a2
0

2µ0R2G

→ u ,
σ

p2a2
0

2µ0R2G

→ σ , (A.3)

with the dimensionless variables and field quantities of the problem, r, a, u, σ henceforth denoted by the

same symbol as their dimensioned counterparts.

The solution for the dimensionless magnetic potential a is,

x ∈ D2 : a2(r, θ, t) = A2(r) cos Θ ; A2(r) ≡ (Drp + Er−p) , Θ ≡ pθ − ωt ,

x ∈ D3 : a3(r, θ, t) = A3(r) cos Θ ; A3(r) ≡ (Frp +Gr−p) ,

D ≡
[
χrp3−(2 + χ)r−p3

]
χ(rp3−r

−p
3 )(rp1 + r−p1 )+2(rp3r

−p
1 −r

−p
3 rp1)

, E ≡
[
(2 + χ)rp3 − χr

−p
3

]
χ(rp3−r

−p
3 )(rp1 +r−p1 )+2(rp3r

−p
1 −r

−p
3 rp1)

,

F ≡ −2(1 + χ)r−p3

χ(rp3−r
−p
3 )(rp1 +r−p1 )+2(rp3r

−p
1 −r

−p
3 rp1)

, G ≡ 2(1 + χ)rp3
χ(rp3−r

−p
3 )(rp1 +r−p1 )+2(rp3r

−p
1 −r

−p
3 rp1)

,

(A.4)

19Boundary conditions are discussed in subsection 5.1.
20See footnote 19
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and the components of the magnetic field can be calculated with the help of (A.1)2.

At the stator D3, the components of the elastic stress field
e
σ in (A.2)3 are obtained in terms the Airy

stress function φ

e
σrr =

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+ V ,

e
σθθ =

∂2φ

∂r2
+ V ,

e
σrθ = − ∂

∂r

(
1

r

∂φ

∂θ

)
. (A.5)

The Airy stress function φ consists of a homogeneous part φh and a particular part φV

φ= φh + φV ,

φh(r, θ, t) = Φ01r
2 + Φ02r

2 ln(r) + Φ03 ln(r) + Φ04θ

+
(
Φc1r

−2p+2 + Φc2r
2p + Φc3r

−2p + Φc4r
2p+2

)
cos(2Θ)

+
(
Φs1r

−2p+2 + Φs2r
2p + Φs3r

−2p + Φs4r
2p+2

)
sin(2Θ) ,

φ
V

(r, θ, t) = −1− 2ν

1− ν

(∫ r

0

1

r

∫ r

0

V0rdr dr +

[
r2p

4p

∫ r

0

Vcr
−2p+1dr − r−2p

4p

∫ r

0

Vcr
2p+1dr

]
cos(2Θ)

)
.

V0(r) = − sm
2p2

[
p2

r2
A2

3 +

(
dA3

dr

)2
]
, Vc(r) = − sm

2p2

[
−p

2

r2
A2

3 +

(
dA3

dr

)2
]

; sm =
1

2

χ

1 + χ
.

(A.6)

The constants Φ01,Φ02,Φ03,Φ04,Φc1,Φc2,Φc3,Φc4,Φs1,Φs2,Φs3,Φs4 are evaluated numerically by applica-

tion of the boundary condition for stress on ∂D2 and ∂D3.

Strains ε are obtained by inverting the constitutive law in (A.2)3 and the displacement field follows from

the classical kinematic (strain-displacement) relationship of linear elasticity in polar coordinates.

Appendix B. Element force vector and stiffness matrix

For meshing flexibility purposes, the simplest FEM discretization method is used here, based on constant

strain triangular 2D elements (one integration point at the element centroid) as depicted in Figure B.1. The

corresponding degrees of freedom for the element [qe] are21

[qe] = { u(1)
1 , u

(1)
2 , A(1), u

(2)
1 , u

(2)
2 , A(2), u

(3)
1 , u

(3)
2 , A(3) }T , (B.1)

where indices (1), (2), (3) refer to the nodes of the element as depicted in Figure B.1.

21Standard matrix algebra notation is used here where vectors and matrices are denoted by bold symbols in brackets.
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Figure B.1: Constant strain triangular elements used for the FEM discretization.

The vector of unknown fields [q(X)] in an element are found in terms of the nodal variables qe and the

shape functions Ni(X), 1 ≤ i ≤ 3, where X = (X1, X2)

[q(X)] = {u1(X), u2(X), A(X)}T = [N(X)][qe] , (B.2)

where the shape function matrix [N(X)] is given by

[N(X)] =



N1(X) 0 0 N2(X) 0 0 N3(X) 0 0

0 N1(X) 0 0 N2(X) 0 0 N3(X) 0

0 0 N1(X) 0 0 N2(X) 0 0 N3(X)


,

N1(X1, X2) =
1

2Ae

[
X

(2)
1 X

(3)
2 −X(3)

1 X
(2)
2 + (X

(2)
2 −X(3)

2 )X1 − (X
(2)
1 −X(3)

1 )X2

]
,

N2(X1, X2) =
1

2Ae

[
X

(3)
1 X

(1)
2 −X(1)

1 X
(3)
2 + (X

(3)
2 −X(1)

2 )X1 − (X
(3)
1 −X(1)

1 )X2

]
,

N3(X1, X2) =
1

2Ae

[
X

(1)
1 X

(2)
2 −X(2)

1 X
(1)
2 + (X

(1)
2 −X(2)

2 )X1 − (X
(1)
1 −X(2)

1 )X2

]
,

(B.3)

where Ae is the surface of the element.

The load vector for the element [fe] is obtained by the first variation of the potential energy P in (4.1)

[fe]
T [δqe] =

∫
Ae

[
∂p

∂Fαβ
δFαβ +

∂p

∂Bε
δBε − JδA

]
dAe , (B.4)

where p is the system’s energy density. The element stiffness matrix [ke] is similarly obtained from the
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second variation of the potential energy P in (4.1)

[∆qe]
T [ke][δqe] =

∫
Ae

[
∂2p

∂Fαβ∂Fδγ
δFαβ∆Fδγ +

∂2p

∂Bε∂Fδγ
δBε∆Fδγ

+
∂2p

∂Fαβ∂Bζ
δFαβ∆Bζ +

∂2p

∂Bε∂Bζ
δBε∆Bζ

]
dAe .

(B.5)

The calculation of the integrals in (B.4) and (B.5) requires the auxiliary step of evaluating the potential

field A (at the element centroid), its (constant) derivatives (components of the magnetic field B1 = −∂A/∂X2

and B2 = ∂A/∂X1) and the (constant) derivatives of the displacement field u{
∂u1

∂X1
,
∂u1

∂X2
,
∂u2

∂X1
,
∂u2

∂X2
, A, B1, B2

}T
= [G][qe] ,

[G] =



∂N1

∂X1
0 0

∂N2

∂X1
0 0

∂N3

∂X1
0 0

∂N1

∂X2
0 0

∂N2

∂X2
0 0

∂N3

∂X2
0 0

0
∂N1

∂X1
0 0

∂N2

∂X1
0 0

∂N3

∂X1
0

0
∂N1

∂X2
0 0

∂N2

∂X2
0 0

∂N3

∂X2
0

0 0 N c
1 0 0 N c

2 0 0 N c
3

0 0
∂N1

∂X2
0 0

∂N2

∂X2
0 0

∂N3

∂X2

0 0 −∂N1

∂X1
0 0 −∂N2

∂X1
0 0 −∂N3

∂X1



,

(B.6)

where by N c
i we denote evaluation of the shape function at the centroid of the element.

The force vector [fe] for the element is thus found from (B.4) in terms of the first derivatives vector [f?]

[fe] = Ae[G]T [f?] ; [f?] =

{
∂p

∂F11
,
∂p

∂F12
,
∂p

∂F21
,
∂p

∂F22
, −J, ∂p

∂B1
,
∂p

∂B2

}T
. (B.7)
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The element stiffness matrix [ke] is found from (B.4) in terms of the second derivatives matrix [k?]

[ke] = Ae[G]T [k?][G] ;

[k?] =



∂2p

∂F11∂F11

∂2p

∂F11∂F12

∂2p

∂F11∂F21

∂2p

∂F11∂F22
0

∂2p

∂F11∂B1

∂2p

∂F11∂B2

∂2p

∂F12∂F11

∂2p

∂F12∂F12

∂2p

∂F12∂F21

∂2p

∂F12∂F22
0

∂2p

∂F12∂B1

∂2p

∂F12∂B2

∂2p

∂F21∂F11

∂2p

∂F21∂F12

∂2p

∂F21∂F21

∂2p

∂F21∂F22
0

∂2p

∂F21∂B1

∂2p

∂F21∂B2

∂2p

∂F22∂F11

∂2p

∂F22∂F12

∂2p

∂F22∂F21

∂2p

∂F22∂F22
0

∂2p

∂F22∂B1

∂2p

∂F22∂B2

0 0 0 0 0 0 0

∂2p

∂B1∂F11

∂2p

∂B1∂F12

∂2p

∂B1∂F21

∂2p

∂B1∂F22
0

∂2p

∂B1∂B1

∂2p

∂B1∂B2

∂2p

∂B2∂F11

∂2p

∂B2∂F12

∂2p

∂B2∂F21

∂2p

∂B2∂F22
0

∂2p

∂B2∂B1

∂2p

∂B2∂B2



(B.8)

The numerical implementation is based on software Abaqus via a user element, which provides the element

force vector [fe] and the element stiffness matrix [ke], given respectively by (B.7) and (B.8). Following the

assembly of the global force vector and stiffness matrix from its element counterparts, the algorithm solves

the resulting FEM-discretized nonlinear system using a Newton-Raphson algorithm.
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