Hua Jiang

Chu-Min Li
email: chu-min.li@u-picardie.fr

Felip Manyà

An Exact Algorithm for the Maximum Weight Clique Problem in Large Graphs

We describe an exact branch-and-bound algorithm for the maximum weight clique problem (MWC), called WLMC, that is especially suited for large vertex-weighted graphs. WLMC incorporates two original contributions: a preprocessing to derive an initial vertex ordering and to reduce the size of the graph, and incremental vertex-weight splitting to reduce the number of branches in the search space. Experiments on representative large graphs from real-world applications show that WLMC greatly outperforms relevant exact and heuristic MWC algorithms, and refute the prevailing hypothesis that exact MWC algorithms are less adequate for large graphs than heuristic algorithms.

Introduction

A clique C in an undirected graph G = (V, E), where V is the set of vertices and E is the set of edges, is a subset of V such that all its vertices are connected. The size of C is its cardinality. The Maximum Clique Problem (MC) is to find a clique of maximum size in G, denoted by ω(G). An important generalization of MC is the Maximum Weight Clique Problem (MWC), in which the graph has a weight function w that assigns a positive integer called weight to each vertex, and the weight of a clique C, denoted by w(C), is defined to be the total weight of the vertices in C. MWC is to find a clique of maximum weight in G = (V, E, w), denoted by ω v (G).

MWC is NP-Hard and has practical applications in different domains such as protein structure prediction [START_REF] Mascia | Predicting structural and functional sites in proteins by searching for maximum-weight cliques[END_REF], coding theory [START_REF] Zhian | Increasing coding opportunities using maximum-weight clique[END_REF], combinatorial auctions [START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF][START_REF] Fang | An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem[END_REF] and computer vision [START_REF] Ma | Maximum weight cliques with mutex constraints for video object segmentation[END_REF][START_REF] Zhang | Video object cosegmentation by regulated maximum weight cliques[END_REF].

The main objective of this paper is to develop an exact and highly competitive MWC algorithm for large graphs. The focus on large graphs is motivated by the fact that they are ubiquitous: computer networks, social networks, mobile call networks, biological networks, citation networks, and the World Wide Web, to name a few. These networks typically have very low density, a huge number of vertices, and common statistical properties such as small-world property, power-law degree distributions, and clustering [START_REF] Newman | The structure and function of complex networks[END_REF]. Finding cliques is very relevant in this context. For example, a clique might be a functional group in biological networks, and identify a community in social networks.

There exist a few exact MC algorithms for large graphs. The best performing ones are PMC [START_REF] Rossi | Parallel maximum clique algorithms with applications to network analysis and storage[END_REF], BBMCSP (San Segundo, Alvaro, and Pardalos 2016) and LMC [START_REF] Jiang | Combining efficient preprocessing and incremental MaxSAT reasoning for MaxClique in large graphs[END_REF], based on the branchand-bound (BnB) scheme. Nevertheless, their graph preprocessing, upper bound (UB) computation and branching strategy are not suitable for MWC. Very few exact and heuristic MWC algorithms have been proposed, compared with the number of available MC algorithms. This is partially due to the fact that MWC is more complicated than MC and some successful MC techniques are not applicable or ineffective for MWC because of the vertex weights [START_REF] Cai | Fast solving maximum weight clique problem in massive graphs[END_REF].

To our knowledge, the two most efficient heuristic MWC algorithms for large graphs are based on local search: LSCC+BMS [START_REF] Wang | Two efficient local search algorithms for maximum weight clique problem[END_REF], and Fast-WClq [START_REF] Cai | Fast solving maximum weight clique problem in massive graphs[END_REF]. Most exact MWC algorithms implement the BnB scheme and differ in their UB computation and branching strategy. The most relevant ones are Cliquer [START_REF] Ostergard | A new algorithm for the maximum-weight clique problem[END_REF][START_REF] Ostergard | A fast algorithm for the maximum clique problem[END_REF], Kumlander's algorithm (Kumlander 2004;[START_REF] Kumlander | On importance of a special sorting in the maximum-weight clique algorithm based on colour classes[END_REF], VCTable [START_REF] Shimizu | Some improvements on Kumlander's maximum weight clique extraction algorithm[END_REF], OT-Clique [START_REF] Shimizu | Optimal table method for finding the maximum weight clique[END_REF], and MWCLQ [START_REF] Fang | An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem[END_REF]. MWC can also be solved exactly via its reduction to MinSAT [START_REF] Li | Optimizing with minimum satisfiability[END_REF].

Unfortunately, all exact MWC algorithms in our knowledge exhibit poor performance on large graphs, and because of this we have developed an exact BnB MWC algorithm for large graphs, called WLMC (short for Weighted Large Maximum Clique), that incorporates two important contributions of the paper: a preprocessing to derive an initial vertex ordering and to reduce the size of the graph by removing vertices not belonging to any optimal solution, and incremental vertex-weight splitting to reduce the number of branches in the search space.

We have also conducted experiments using real-world graphs that show that WLMC greatly outperforms relevant exact and heuristic algorithms on large graphs. This is another important contribution of the paper: the performance of WLMC refutes the prevailing hypothesis that exact MWC algorithms, despite proving optimality, are less adequate for large graphs than heuristic algorithms.

The paper is organized as follows: Section 2 describes WLMC and the techniques it implements. Section 3 analyzes the empirical results. Section 4 gives the conclusions.

WLMC: A New Exact MWC Algorithm

WLMC contains two main components: an efficient preprocessing procedure Initialize to derive an initial vertex ordering and to reduce the size of the graph, and a BnB algorithm SearchMaxWClique that implements incremental vertex-weight splitting to reduce the number of branches in the search space. We first describe the two components and then algorithm WLMC.

The Efficient Preprocessing Procedure Initialize

Initialize has as input a graph G = (V, E, w) and a lower bound lb of ω v (G). It returns an initial vertex ordering O 0 , an initial clique C 0 , and a reduced graph G of G. The pseudo-code of Initialize is shown in Algorithm 1.

Initialize works on a copy

H = (U, E, w) of G to com- pute an initial vertex ordering O 0 : v 1 < v 2 < • • • < v |V | of G,
in which v 1 is the vertex with the smallest degree in H, v 2 is the vertex with the smallest degree in H after v 1 is removed, and so on. This ordering is used for MC in (Carraghan and Pardalos 1990) and is showed to be also effective for solving MC on large graphs in [START_REF] Jiang | Combining efficient preprocessing and incremental MaxSAT reasoning for MaxClique in large graphs[END_REF]. The intuition behind the ordering is that the greater vertices have more chance to form larger cliques. After removing v 1 , v 2 , . . . , v i-1 from H, if the vertex v i with the smallest degree deg(v i) is adjacent to all the other vertices in H (line 6), H becomes a clique C 0 , because the degree of other vertices of H is necessarily equal to deg(v i) in this case. The vertices in C 0 can be ordered arbitrarily (line 8). After C 0 is obtained, lb is updated to w(C 0) if w(C 0) > lb, and all the vertices v such that the total weight of v and its neighbors in G, say w * (v), is not greater than lb are removed from G to derive the reduced graph G , because they cannot belong to any clique of weight greater than lb. Finally, Initialize returns C 0 , O 0 and G .

The number of neighbors of a vertex is in O(|V |). Computing the degree of all the vertices can be done in

O(|V | 2) or O(|E|) time (|E| is in O(|V | 2)
in the worst case). Searching for the vertex with the smallest degree needs O(|V |) time. So, the time complexity of Initialize is O(|V | 2) in the worst case. Note that Initialize does not use the notion of k-core, which is effective for solving MC on large graphs in [START_REF] Jiang | Combining efficient preprocessing and incremental MaxSAT reasoning for MaxClique in large graphs[END_REF], but is ineffective for MWC.

The Procedure SearchMaxWClique

Given a graph G = (V, E, w), the best clique C max so far and an ordering O over V , the BnB procedure SearchMaxW-Clique searches recursively for a clique of weight greater than w(C max), combined with the growing clique C. In the sequel, Γ(v) denotes the set of vertices that are adjacent to v, G[P] denotes the subgraph of G induced by the subset of vertices P (P ⊆ V), and w max (P) (w(P)) denotes the biggest (total) weight of the vertices in P .

Algorithm 1: Initialize(G, lb) Input: G = (V, E, w), a lower bound lb of ω v (G) Output: an initial clique C 0 , an initial vertex ordering O 0 , and a reduced graph G of G 1 begin 2 U ← V ; 3 compute the degree deg(v) for each vertex v in U ; 4 for i:= 1 to |V | do 5 v i ← the vertex v with the smallest deg(v) in U ; 6 if deg(v i) = |U | -1 then 7 /* v i is adjacent to all other vertices in U */ 8 order U arbitrarily as {v i , v i+1 , . . . , v |V | }; 9 C 0 ← U ; break; 10 U ← U \ {v i }; 11 for each neighbor v of v i in U do 12 deg(v) ← deg(v) -1; 13 if w(C 0) > lb then lb ← w(C 0); 14 let w * (v)
O 0 ← v 1 < v 2 < • • • < v |V | ; 17 return (C 0 , O 0 , G);
Algorithm 2 shows the pseudo-code of SearchMaxW-Clique. If the set of vertices V is non-empty, it calls function GetBranches to partition V into two sets A and B in such a way that the maximum weight of a clique in G [A]

|Π| j=1 w max (D j) ≤ t. Let A = V (Π) = D 1 ∪ • • • ∪ D |Π| be the set of vertices oc- curring in Π. Observe that any clique C A of G[V (Π)] con- tains at most one vertex from each IS D i , 1 ≤ i ≤ |Π|. So, w(C A) ≤ |Π| j=1 w max (D j) ≤ t.
The vertices of G that cannot be inserted into any IS, because then |Π| j=1 w max (D j) > t, form the set of branching vertices B. As a result, we have B and an IS partition

Π = {D 1 , D 2 , . . . , D |Π| } of A = V \ B. Example 1. Let G = (V, E,
if |V | = 0 then return C; 3 B ← GetBranches(G, w(C max) -w(C), O); 4 if B = ∅ then return C max ; 5 A ← V \ B; 6 Let B={b 1 , b 2 , . . . , b |B| }, b 1 <b 2 <• • •<b |B| w.r.t. O; 7 for i := |B| to 1 do 8 P ← Γ(b i) ∩ ({b i+1 , b i+2 , . . . , b |B| } ∪ A); 9 if w(C ∪ {b i }) + w(P) > w(C max) then C ← SearchM axW Clique(G[P], C max , C∪{b i }, O); if w(C) > w(C max) then C max ← C ; return C max ; Algorithm 3: GetBranches(G, t, O)
Input: G = (V, E, w), an integer t and an ordering O Output: a set B of branching vertices

1 begin 2 B ← ∅; Π ← ∅; /* Π will be a set of ISs*/ 3 while V is non-empty do 4 v ← the greatest vertex of V w.r.t. O; 5 V ← V \ {v}; 6 if ∃D ∈ Π s.t. Γ(v) ∩ D = ∅ and 7 |Π| j=1 w max (D j) ≤ t after adding v into D 8 then D ← D ∪ {v}; 9 else if |Π| j=1 w max (D j) + w(v) ≤ t then create a new IS D = {v}, Π ← Π ∪ {D}; else B ← B ∪ {v}; ub 0 ← |Π| j=1 w max (D j); Let B={b 1 , b 2 , . . . , b |B| }, b 1 <b 2 <• • •<b |B| w.r.t. O; for i := |B| to 1 do (ub, Π) ← UP &Split(G, Π ∪ {{b i }}, ub 0 + w(b i), t); if ub ≤ t then ub 0 ← ub, Π ← Π , B ← B \ {b i }; return B;
sume that the best clique weight so far is w(C max) = 6, and we call GetBranches (G, 6, O). During the first phase, GetBranches inserts the vertices

v 1 6 , v 4 5 , v 1 4 , v 2 3 , v 3 2 into two ISs: D 1 = {v 1 6 , v 4 5 , v 3 2 } and D 2 = {v 1 4 , v 2 3 }. After- wards, v 3
1 has adjacent vertices in both D 1 and D 2 , and GetBranches cannot create a new IS D 3 = {v 3 1 } because then 3 j=1 w max (D j) > 6. Hence, the first phase gives

A = {v 1 6 , v 4 5 , v 1 4 , v 2 3 , v 3 2 } and B = {v 3 1 }.
The second phase of GetBranches (lines 12-18) tries to remove each vertex b i ∈ B from B and insert it into A.

v 3 1 v 3 2 v 2 3 v 1 4 v 4 5 v 1 6 Figure 1: A graph with ω v (G)=6 Recall that Π = {D 1 , D 2 , . . . , D |Π| } and A = V (Π). In order to insert b i into A, we have to show that G[A ∪ {b i }]
does not contain any clique of weight greater than t. Since any clique in G[A ∪ {b i }] is formed by at most one vertex from each IS of Π and possibly by b i , an upper bound of its weight is

|Π| j=1 w max (D j) + w(b i).
This upper bound is very conservative because it is tight only if the clique is formed by the most weighted vertex of every IS of Π and by b i . However, a set of q ISs often cannot form a clique containing q vertices, and such a set is said to be conflicting [START_REF] Li | An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem[END_REF]. The main task of the second phase of GetBranches is to improve this upper bound by identifying as many conflicting subsets of ISs as possible, inspired by the MaxSAT reasoning in [START_REF] Li | An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem[END_REF][START_REF] Fang | An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem[END_REF]. If the improved upper bound is not greater than t, b i is removed from B and is added to A.

Π = {D 1 , D 2 }, D 1 = {v 1 6 , v 4 5 , v 3 2 }, D 2 = {v 1 4 , v 2 3 }, B = {v 3
1 } and t = 6 (cf. Example 1). Our objective here is to show that the vertices in Π ∪ {{v 3 1 }} cannot form any clique of weight greater than 6.

The initial upper bound for

Π ∪ {{v 3 1 }} is w max (D 1) + w max (D 2) + w(v 3 1) = 9. If v 3 1 is in a clique C G of G, then v 1 4 , v 4 5 and v 1 6 cannot be in C G because they are not adjacent to v 3 1 . So, we remove v 1 4 from D 2 , and v 4 5 and v 1 6 from D 1 . Since D 1 becomes unit, its unique vertex v 3 2 is added to C G , which removes v 2 3 from D 2 because v 2 3 is not adjacent to v 3 2 , and D 2 becomes empty. This reasoning shows that if v 3 1 is in a clique C G and D 1 contains a vertex in C G , then D 2 cannot contain any vertex in C G . So, D 1 , D 2 and D 3 are conflict- ing, because one of these ISs cannot contain any vertex in C G . Since min(w max (D 1), w max (D 2), w max (D 3)) = 2, the initial upper bound is improved from 9 to 9 -2 = 7.
Observe that the improved upper bound is tight only if C G contains the most weighted vertices v 4 5 and v 3 1 , which is impossible because v 4 5 and v 3 1 are not adjacent in G. A further improvement of the upper bound can be obtained by splitting all the weights greater than 2 in D 1 , D 2 and {v 3 1 }. The splitting gives a set of ISs Π

1 = {{v 1 6 , v 2 5 , v 2 2 }, {v 1 4 , v 2 3 }, {v 2
1 }}, in which the maximum weight in each IS is 2, and a set of ISs Π R = {{v 2 5 , v 1 2 }, {v 1 1 }} consisting of the weights split from Π. Note that the splitting of Π is equivalent to splitting G into the two graphs G 1 and G R of Figure 2, where the vertices with weight 0 in G R are added to facilitate the understanding.

Any clique C G in G is also a clique C G1 in G 1 and a clique C G R in G R . It holds that w(C G) = w(C G1) + w(C G R), because the weight of any vertex v in G is equal to the sum of weights of v in G 1 and G R . Let UB G1 (UB G R) denote an upper bound of the weight of C G1 (C G R). It holds that w(C G) ≤ UB G1 + UB G R . In other words, UB G1 + UB G R is an upper bound of ω v (G). v 2 1 v 2 2 v 2 3 v 1 4 v 2 5 v 1 6 v 1 1 v 1 2 v 0 3 v 0 4 v 2 5 v 0 6 Figure 2: Graphs G 1 (left)
and G R (right) obtained by splitting the graph G of Figure 1 Since Π 1 partitions G 1 and is conflicting, for any clique in G 1 , there is an IS of Π 1 such that the clique does not contain any vertex from the IS. So,

UB G1 = 2 + 2 + 2 -2 = 4. Π R = {{v 1 1 }, {v 2 5 , v 1 2 }} partitions G R after removing all the vertices with weight 0. If v 1
1 is in a clique, then the most weighted vertex v 2 5 in {v 2 5 , v 1 2 } cannot be in the clique, because v 1 1 and v 2 5 are not adjacent. Consequently, {v 2 5 , v 1 2 } can be split into {v 1 5 } and {v 1 5 , v 1 2 }, so that {v 1 1 } and {v 1 5 } are conflicting, suggesting us to split G R into the graphs G 2 and G 3 of Figure 3, where G 2 can be partitioned into Π 2 = {{v 1 1 }, {v 1 5 }} and G 3 can be partitioned into Π 3 = {{v 1 5 , v 1 2 }}, after removing all the vertices with weight 0.

v 1 1 v 0 2 v 0 3 v 0 4 v 1 5 v 0 6 v 0 1 v 1 2 v 0 3 v 0 4 v 1 5 v 0 6 Figure 3: Graphs G 2 (left) and G 3 (right) obtained by split- ting the graph G R of Figure 2 Any clique C G R in G R is also a clique C G2 in G 2 and a clique C G3 in G 3 . It holds that w(C G R) = w(C G2) + w(C G3). Let UB G2 (UB G3) denote an upper bound of ω v (G 2) (ω v (G 3)). Then UB G2 + UB G3 is an upper bound of ω v (G R). So, w(C G) ≤ UB G1 + UB G2 + UB G3 . Clearly, UB G2 = UB G3 = 1. So w(C G) ≤ 4 + 1 + 1 = 6, meaning that v 3
1 can be removed from B and added to A.

An IS containing exactly one vertex is a unit IS, and so Π ∪ {{b i }} contains at least one unit IS. Example 2 illustrates how to propagate the unit IS {b i }: repeatedly select a unit IS {v} and remove all the vertices non-adjacent to v from the other ISs, possibly resulting in new unit ISs, until an empty IS is produced or there is no more unit IS. If an empty IS S 0 is produced, we retrace the unit IS propagation to identify all ISs responsible to produce the empty IS, obtaining a conflicting subset of ISs {S 0 , S 1 , S 2 , . . . , S r }. Let δ = min(w max (S 0), . . . , w max (S r)), we split each weight greater than δ in S j , 0 ≤ j ≤ r, to obtain S j and S j so that w max (S j) = δ and w max (S j) = w max (S j)δ. For instance, in Example 2, with δ = 2, the IS {v 1 6 , v 4 5 , v 3 2 } is split into S = {v 1 6 , v 2 5 , v 2 2 } and S = {v 2 5 , v 1 2 } by splitting all the weights w greater than δ into δ and wδ and by keeping all the weights smaller than or equal to δ in S . Consequently, we obtain a conflicting subset of ISs {S 0 , S 1 , S 2 , . . . , S r }, in which w max (S j) = δ for each j, 0 ≤ j ≤ r, and a subset of ISs {S 0 , S 1 , S 2 , . . . , S r } from which further conflicts can be detected. The set of conflicting ISs {S 0 , S 1 , S 2 , . . . , S r } allows to improve the upper bound by δ, because at least one IS cannot contribute any of its vertices to form a clique.

In some cases, unit IS propagation does not result in an empty IS, but removes the most weighted vertices from an IS. A set of conflicting ISs can also be identified in these cases. For example, let

S 0 = {v 7 1 , v 4 2 , v 3 3 , v 1 4 }.
Assume that unit IS propagation involving the ISs S 1 , S 2 and S 3 removes v 7 1 and v 4 2 from S 0 , and we have min(w max (S 1), w max (S 2), w max (S 3)) = 2. We split

S 0 into S 0 = {v 2 1 , v 1 2 } and S 0 = {v 5 1 , v 3 2 , v 3 3 , v 1
4 }, and S j into S j and S j so that w max (S j) = 2 and w max (S j) = w max (S j) -2 for each j, where 1 ≤ j ≤ 3. Clearly, {S 0 , S 1 , S 2 , S 3 } is a set of conflicting ISs in which w max (S j) = 2 for each j, where 0 ≤ j ≤ 3. The weight of v 1 and v 2 in S 0 and S 0 is determined as follows. Their weight in S 0 should be at least 3 so that v 1 and v 2 remain to be the most weighted vertices in S 0 to ensure w max (S 0) = w max (S 0) + w max (S 0). The weight of v 1 in S 0 is then min(7 -3, w max (S 1), w max (S 2), w max (S 3)) = 2, and the weight of v 2 in S 0 is then min(4 -3, w max (S 1), w max (S 2), w max (S 3)) = 1.

Generally speaking, let S 0 = {u w1 1 , . . . , u w k k , . . . , u

w |S 0 |
|S0| } be an IS in which the k most weighted vertices u w1 1 , . . . , u w k k are removed by unit IS propagation involving the ISs S 1 , S 2 , . . . , S r . Without loss of generality, assume that

w 1 ≥ • • • ≥ w k ≥ w k+1 ≥ • • • ≥ w |S0| . Let δ = min(w 1 -w k+1 , w max (S 1), . . . , w max (S r)) and let w j = w j -min(δ, w j -w k+1) for 1 ≤ j ≤ k. We split S 0 into S 0 = {u min(δ,w1-w k+1) 1 , . . . , u min(δ,w k -w k+1) k } and S 0 = {u w 1 1 , . . . , u w k k , u w k+1 k+1 , . . . , u w |S 0 |
|S0| }, and S j into S j and S j so that w max (S j) = δ and w max (S j) = w max (S j)δ for each j, where 1 ≤ j ≤ r.

It holds that:

(1) min(δ, w 1 -w k+1) ≥ min(δ, w 2 - w k+1) ≥ • • • ≥ min(δ, w k -w k+1) in S 0 ; (2) w 1 ≥ w 2 ≥ • • • ≥ w k ≥ w k+1 ≥ • • • ≥ w |S0| in S 0 .
To see (2), note that, for any numbers x 1 , x 2 and x 3 , we have x 1 + min(x 2 , x 3) = min(x 1 + x 2 , x 1 + x 3), and

x 1 -min(x 2 , x 1) ≥ 0. So, for 1 ≤ j < k, w j -w j+1 = w j -min(δ, w j -w k+1) -w j+1 + min(δ, w j+1 -w k+1) = w j -w j+1 + min(δ, w j+1 -w k+1) -min(δ, w j -w k+1) = min(w j -w j+1 + δ, w j -w k+1) -min(δ, w j -w k+1) ≥ 0; furthermore, w k -w k+1 = w k -min(δ, w k -w k+1) - w k+1 = w k -w k+1 -min(δ, w k -w k+1) ≥ 0.
From (1) and (2), we easily see that w max (S 0) +

w max (S 0) = min(δ, w 1 -w k+1) + w 1 = min(δ, w 1 - w k+1) + w 1 -min(δ, w 1 -w k+1) = w 1 = w max (S 0).
Therefore, if unit IS propagation involving the ISs S 1 , S 2 , . . . , S r removes the most weighted vertices of an IS S 0 , we can split the weights to obtain a conflicting subset of ISs {S 0 , S 1 , S 2 , . . . , S r }, and a subset of ISs {S 0 , S 1 , S 2 , . . . , S r } from which further conflicts can be detected.

Algorithm 4 implements the function UP&Split which performs unit IS propagation in a set of ISs Π ∪ {{b i }}. Every time an empty IS is produced or the most weighted vertices of an IS are removed, it calls the function split(S, δ) to split each involved IS S into two ISs S and S as follows. Let S = {u w1 1 , . . . , u

w |S| |S| } with w 1 ≥ • • • ≥ w k ≥ δ ≥ w k+1 ≥ • • • ≥ w |S| , split(S, δ) returns S = {u δ 1 , . . . , u δ k , u w k+1 k+1 , . . . , u w |S| |S| } and S = {u w1-δ 1 , . . . , u w k -δ k }.
In other words, each weight w i greater than δ is split into δ and w iδ, and each weight w i not greater than δ remains in S . Observe that w max (S) = w max (S) + w max (S). As a result, Algorithm 4 obtains a subset of conflicting ISs and continues applying unit IS propagation to other ISs. Note that the sum of the maximum weights of the ISs is not changed by the splittings.

Finally, Algorithm 4 transforms

Π∪{{b i }} into Π 1 ∪Π 2 ∪ . . . ∪ Π p , where each Π j = {S j1 , S j2 , . . . , S j|Πj | }, 1 ≤ j ≤ p,
is a subset of ISs formed by some vertices occurring in Π ∪ {{b i }}, and each Π j has an associated weight function w j . The transformation fulfills the following conditions:

1. For each Π j , 1 ≤ j ≤ p, S jk ∩ S jk = ∅ if k = k . 2. For each vertex v ∈ V (Π ∪ {{b i }}), the set of vertices occurring in Π ∪ {{b i }}, w(v) = p j=1 w j (v)
, where w is the weight function of G, w j is the weight function associated with Π j , and

w j (v) = 0 if v ∈ V (Π j). 3. |Π| j=1 w max (D j) + w(b i) = p j=1 |Πj | k=1 w j
max (S jk). 4. For each j, 1 ≤ j < p, Π j is a set of conflicting ISs, and

w j max (S j1) = w j max (S j2) = • • • = w j max (S j|Πj |). Let C be a maximum weight clique of G[V (Π ∪ {{b i }})],
and let UB j be an upper bound of the weight of C using the weight function w j . Since w(C) = If ub ≤ t, b i is removed from B and is added to A. Then, the reasoning on b i-1 is performed using Π p ∪ {{b i-1 }}. [START_REF] Fang | An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem[END_REF]. MWCLQ, at every search tree node, encodes G = (V, E, w) to a so-called LW-MaxSAT instance φ and performs MaxSAT reasoning to split the soft clauses in φ using two sophisticated inference rules called δ-rule and (k, δ)-rule, to compute an upper bound of w v (G). MaxSAT reasoning in MWCLQ is not incremental and is not used for reducing the set of branching vertices, because it encodes the whole G into φ and considers simultaneously all the clauses of φ. If the computed upper bound of w v (G) is not better than the weight of the best clique found so far, the effort spent in MaxSAT reasoning is useless. However, GetBranches does not encode G to MaxSAT and begins IS splitting from a part of G, which is particularly effective on large graphs, because B is generally significantly reduced, even if w v (G) is greater than the weight of the best clique found so far.

Algorithm 4: UP&Split(G, Π, ub, t) Input: G = (V, E, w), Π = {D 1 , D 2 , . . . ,
w |S 0 | |S0| } with w 1 ≥ • • • ≥ w k ≥ w k+1 ≥ • • • ≥ w |S0| ; 16 Let u w1 1 , . . . ,
Algorithm 5: WLMC(G), a BnB algorithm for MWC Since G is large, the first level subgraphs may still contain a lot of vertices. With a growing lower bound w(C max) of ω v (G), the first level subgraphs can be further reduced, which is useful to speed up the search in SearchWMax-Clique. Moreover, re-ordering the vertices in the subgraphs near the root of the search tree was showed to be very effective in BnB MC algorithms [START_REF] Konc | An improved branch and bound algorithm for the maximum clique problem[END_REF]. This is the rationale behind also applying Initialize to the first-level subgraphs.

Input: G = (V, E, w) Output: a maximum weight clique C max of G 1 begin 2 (C 0 , O 0 , G) ← Initialize(G, 0); 3 C max ← C 0 , V ← the vertex set of G ; 4 order V w.r.t. the initial ordering O 0 ; 5 for i:= |V | to 1 do 6 P ← Γ(v i)∩{v i+1 ,v i+2 ,. . .,v |V | }; 7 if w(P) + w(v i) > w(C max) then 8 (C 0 , O 0 , G) ← 9 Initialize(G[P], w(C max) -w(v i)); 10 if w(C 0) + w(v i) > w(C max) then 11 C max ← C 0 ∪{v i }; 12 C ← SearchM axW Clique(G , C max , 13 {v i }, O 0); 14 if w(C) > w(C max) then C max ← C ;

Empirical Investigation

We empirically evaluated WLMC and compared it with some of the most competitive exact and heuristic MWC algorithms (also called solvers). WLMC was implemented in C and compiled using GNU gcc -O3. Its source code is available at http://home.mis.u-picardie.fr/˜cli/EnglishPage.html. Experiments were performed on an AMD Opteron CPU 2435@2.6GHz under Linux with 32GB memory.

In the experiments, we compared the following solvers:

Cliquer: It is an exact solver for both MC and MWC (Ostergard 2001;[START_REF] Ostergard | A fast algorithm for the maximum clique problem[END_REF]. We used its latest version (http://users.tkk.fi/pat/cliquer.html), released in 2010.

MWCLQ: It is one of the best exact MWC solvers, which applies a MaxSAT reasoning variant to compute a tighter UB of ω v (G) at each search tree node [START_REF] Fang | An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem[END_REF] to reduce the search space.

LSCC+BMS: It is a very recent heuristic MWC solver, which uses a heuristic, called Best from Multiple Selection (BMS), to improve the performance in large sparse graphs [START_REF] Wang | Two efficient local search algorithms for maximum weight clique problem[END_REF].

FastWClq: It is a yet more recent heuristic MWC solver, which interleaves between clique construction and graph reduction, and can prove the optimality of its solutions in some cases [START_REF] Cai | Fast solving maximum weight clique problem in massive graphs[END_REF].

The source code of the last three solvers was provided by their authors, and compiled using their Makefiles.

In the first experiments, we considered 187 real-world graphs from the Network Data Repository [START_REF] Rossi | The network data repository with interactive graph analytics and visualization[END_REF], available at http://networkrepository.com, including the 86 and 90 graphs used to evaluate LSCC+BMS and FastWClq in [START_REF] Wang | Two efficient local search algorithms for maximum weight clique problem[END_REF][START_REF] Cai | Fast solving maximum weight clique problem in massive graphs[END_REF]. Weights were assigned to vertices as in [START_REF] Cai | Fast solving maximum weight clique problem in massive graphs[END_REF]. For WLMC, LSCC+BMS and FastWClq, Table 1 shows their best solutions and runtimes in seconds (including the preprocessing and search times, not including the time for reading the input graphs). For heuristic solvers, 10 independent runs with different seeds were performed for each graph, each run finding a solution sol that is the best in this run. The mean time (avgt.) to reach sol over the 10 runs, as well as the best quality sol (best) over the 10 runs, is showed. The cutoff time was set to 1000s, except for 6 hard graphs whose limit was 5 hours.

For lack of space, we exclude 135 graphs that are solved by WLMC within 3s and report results for the remaining 52 graphs, whose number of vertices ranges from 8K to 59M. The best times are in bold (for heuristic solvers, times are not in bold if the best weight found is not the optimum).

WLMC finds and proves the optimum for all the graphs. Among the 52 instances reported in Table 1, Fast-WClq proves the optimum for 8 instances. Nevertheless, LSCC+BMS and FastWClq do not find the optimum on 31 and 21 instances, respectively. For friendster, whose optimum is 5511, the best solution is 2885 for both heuristic solvers; and for soc-sinaweibo, whose optimum is 4759, the best solutions of LSCC+BMS and FastWClq are 3555 and 1424, respectively. For the 6 hardest instances, LSCC+BMS and FastWClq do not find any optimum in 5h.

In terms of runtimes, WLMC needs less time on 44 instances. For soc-dogster, WLMC needs 8.03s, which is 41 and 72 times faster than LSCC+BMS (332.9s) and Fast-WClq (585.3s), and for dbpedia-link, WLMC needs 54.97s, which is 8 and 15 times faster than LSCC+BMS (442.7s) and FastWClq (839.3s). Moreover, the heuristic solvers fail to find the optimum of these graphs. In general, WLMC is faster than LSCC+BMS and FastWClq. These results indicate that WLMC is an extremely competitive exact solver.

We also compared WLMC with two exact solvers: Cliquer and MWCLQ. While WLMC solved all the 187 graphs, MWCLQ did not find any optimum for the graphs in Table 1 and Cliquer only found 5 optimums (rec-dating, reclibimseti-dir, rec-movielens, scc twitter-copen, sc-TSOPF-RS-b2383-c1) for the graphs in Table 1. Although Cliquer and MWCLQ are efficient on small and medium graphs, they are not suitable for large graphs.

We evaluated the impact of preprocessing the first level subgraphs and of incremental vertex-weight splitting in WLMC by comparing it with the following variants: WLMC\prep1: It is WLMC without preprocessing the first level subgraphs. Line 8 in Algorithm 5, which calls the procedure Initialize, is removed.

WLMC\UP&Split: It is WLMC without incremental vertex-weight splitting. UP&Split is removed from Get-Branches (Algorithm 3).

Table 2 shows the search tree size and the search time of WLMC, WLMC\prep1 and WLMC\UP&Split on the graphs of Table 1 with solving times beyond 40s, and using the same cutoff times. With preprocessing and incremental vertex-weight splitting, the search tree size of WLMC is almost always the smallest. The search time of WLMC is comparable with that of WLMC\prep1 and WLMC\UP&Split on easy graphs. However, WLMC is substantially faster than WLMC\prep1 and WLMC\UP&Split on hard graphs. In particular, both WLMC\prep1 and WLMC\UP&Split fail to solve the 6 hard graphs within the cutoff times. In addition, WLMC is 13 and 18 times faster than WLMC\prep1 and WLMC\UP&Split, respectively, for soc-flickr-und.

Table 3 shows the effect of the procedure Initialize. For each graph G of Table 2, Table 3 reports ω v (G), the weight of the initial clique C 0 found by Initialize at the root of the search tree (line 2 of Algorithm 5), the ratio rt of the number . We can see that the quality of C 0 is good for several graphs and that these graphs are significantly reduced at the root and the first level of the search tree by the procedure Initialize.

We conducted additional experiments and compared the quality of the solution found by WLMC, MWCLQ, Cliquer, LSCC+BMS and FastWClq for large DIMACS graphs1 within 3600 seconds. These graphs have more than 1000 vertices. The original graphs are not weighted. We assign weights to their vertices as in [START_REF] Cai | Fast solving maximum weight clique problem in massive graphs[END_REF]. Table 4 shows the results. LSCC+BMS generally finds better solutions than the other algorithms. WLMC is comparable to MWCLQ and FastWClq, because WLMC finds better solution than FastWClq and MWCLQ for five and six graphs respectively, while FastWclq and MWCLQ find better solutions than WLMC for six and four graphs respectively. Nevertheless, while LSCC+BMS and FastWClq find an optimal solution for six graphs, WLMC finds and proves an optimal solution for seven graphs. An important application of MWC is to solve the winner determination problem (WDP) in combinatorial auctions, because WDP can naturally be formulated as MWC [START_REF] Fang | An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem[END_REF]. We compared WLMC with MWCLQ, Cliquer, LSCC+BMS and FastWClq on the WDP benchmark provided in [START_REF] Lau | An intelligent brokering system to support multi-agent web-based 4 th-party logistics[END_REF], which has been widely used to test WDP algorithms [START_REF] Fang | An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem[END_REF]. The benchmark contains 500 instances with up to 1500 items and 1500 bids, and can be divided into 5 groups by the item number and the bid number. Each group contains 100 instances labeled as REL-m-n, where m is the number of items and n is the number of bids. When formulated as MWC, the graphs contain up to 1500 vertices with density from 0.06 to 0.33.

Table 5 shows the average performance of the five MWC solvers for the five groups of the WDP instances. WLMC and MWCLQ are the only solvers able to quickly find and prove the optimal solution of all the instances. The two heuristic algorithms LSCC+BMS and FastWClq cannot find any optimal solution for some graphs within the cutoff time.

Conclusions

We proposed WLMC, a new exact MWC algorithm that is very effective on large graphs because it combines an efficient preprocessing and incremental vertex-weight splitting in a BnB scheme. WLMC greatly outperforms relevant heuristic and exact solvers on practical instances, and the reported results refute the prevailing hypothesis that exact algorithms are less adequate for large graphs.

Example 2 .

 2 Let us illustrate how to identify a conflicting subset of ISs to improve an upper bound by continuing with the graph G of Figure 1. In the first phase, GetBranches gives

 and w j (C) ≤ UB j , it holds that w(C) ≤ p j=1 UB j . By Condition 4, UB j ≤ (|Π j | -1) × w j max (S j1) for each j < p. Hence, w(C) ≤ j1) by Condition 3, which is the improved upper bound ub of w(C) returned by UP&Split together with Π 1 ∪ Π 2 ∪ . . . ∪ Π p .

 WLMC. It combines the procedures Initialize and SearchMaxWClique. Roughly speaking, WLMC calls Initialize to preprocess both the input G and the first-level subgraphs in the search tree, and then calls SearchMaxWClique to recursively search for a maximum weight clique in the reduced subgraphs. WLMC first calls Initialize(G, 0) (the initial lb of ω v (G) is 0) to derive an initial clique C 0 , an initial ordering O 0 and a reduced subgraph G , and instantiates C max with the initial clique C 0 . Then, WLMC unrolls the first level subgraphs induced by the set of candidates Γ(v i)∩{v i+1 , . . ., v |V | }, denoted by P , for i = |V | to 1 respecting the initial vertex ordering O 0 . If w(P)+w(v i) is not greater than w(C max), then a clique of weight greater than w(C max) cannot be found in G[P] and the search in G[P] is pruned. Otherwise, WLMC calls Initialize(G[P], w(C max)-w(v i)) to compute an initial clique C 0 of G[P], a vertex ordering O 0 and a reduced subgraph G of G[P]. Finally, SearchWMaxClique is called to recursively search for a clique C containing v i , of weight greater than w(C max), in the subgraph G , and updates C max with C if w(C) is greater than w(C max).

 denote the total weight of v and its neighbors in G;

	16

15

G ← G after removing vertices v s.t. w * (v) ≤ lb;

 is not greater than w(C max)w(C), and B = {b 1 , b 2 , . . . , b |B| }

	is the returned set of branching vertices. If B is empty, the
	search is pruned and the current best clique C max is re-
	turned. Otherwise, it recursively searches for a maximum
	weight clique in G[Γ(b i) ∩ ({b i+1 , b i+2 , . . . , b |B| } ∪ A)], to
	be added in C ∪ {b i }, for i = |B|, . . . , 1. Note that the algo-
	rithm iterates over B in the inverse ordering of O, because O
	is computed by the procedure Initialize and greater vertices
	w.r.t. O have more chance to form larger cliques.
	Algorithm 3 describes function GetBranches(G, t, O),
	where t is an integer representing a weight and O is an or-
	dering over the vertices of G. GetBranches works in two
	phases. In the first phase (lines 2-11), it computes a set of
	independent sets (ISs) Π = {D 1 , D 2 , . . . , D |Π| } by sequen-
	tially inserting vertices of G, starting from the greatest w.r.t.
	O, into these ISs, provided that

 w) be the graph of Figure 1, where v wi i denotes vertex v i with weight w i = w(v i), and let O: v 1 <v 2 <• • •<v 6 be the vertex ordering. As-

	Algorithm 2: SearchMaxWClique(G, C max , C, O)
	Input: G = (V, E, w), the best clique C max so far, the
	current growing clique C, a vertex ordering O
	Output: Clique C if w(C)>w(C max); otherwise C max
	1 begin
	2

 D |Π| } is a set of ISs, ub and t are positive integer Output: the improved ub and transformed Π Let S 1 , S 2 , . . . , S r be the ISs responsible of removing all the vertices of S 0 ;

	1 begin
	2	Δ ← ∅;
	3	while there is a non-marked unit IS {v} in Π do
	4	remove vertices non-adjacent to v from their IS;
	5	if there is a non-marked empty IS S 0 then
	6	restore all the removed vertices into their IS;

7 8 δ ← min(w max (S 0), . . . , w max (S r)); 9 for each IS S j in {S 0 , S 1 , S 2 , . . . , S r } do 10 (S j , S j) ← split(S j , δ); 11 Δ ← Δ ∪ {S 0 , S 1 , . . . , S r }; 12 Π ← (Π \ {S 0 , . . . , S r }) ∪ {S 0 , . . . , S r }; 13 ub ← ubδ; 14 else if there is a non-marked IS S 0 in which the k most weighted vertices are removed then 15 Let S 0 = {u w1 1 , . . . , u w k k , . . . , u

 u w k k be the k most weighted vertices removed from S 0 ; Note that Π 1 ∪ Π 2 ∪ . . . ∪ Π p-1 is not used for reasoning on b i-1 in this case, because this set is formed by all the conflicting subsets of ISs used to remove b i and are marked as such. If ub > t, b i is not removed from B, Π is not transformed, and Π ∪ {{b i-1 }} is used for reasoning on b i-1 .GetBranches performs IS splitting incrementally. It first performs IS splitting in Π∪{{b |B| }}, obtaining an improved upper bound ub and a set Π of ISs; If ub ≤ t, it performs IS splitting in Π ∪ {{b |B|-1 }}, and so on. The approach here is different from the BnB MWC algorithm MWCLQ

	22	S 0 ← {u	min(δ,w1-γ) 1	, . . . , u	min(δ,w k -γ) k	};
	24	S 0 ← {u	w 1 1 , . . . , u	w k k , u	w k+1 k+1 , . . . , u	w |S 0 | |S0| };

17

β ← w 1w k+1 ; 18 restore all the removed vertices into their IS; 19 Let S 1 , S 2 , . . . , S r be the ISs responsible of removing u w1 1 , . . . , u w k k from S 0 ; 20 δ ← min(β, w max (S 1), . . . , w max (S r)); 21 γ ← w k+1 ; 23 Let w j be w jmin(δ, w jγ) (1≤j≤k); 25 for each IS S j in {S 1 , S 2 , . . . , S r } do 26 (S j , S j) ← split(S j , δ); 27 Δ ← Δ ∪ {S 0 , S 1 , . . . , S r }; 28 Π ← (Π \ {S 0 , . . . , S r }) ∪ {S 0 , . . . , S r }; 29 ub ← ubδ; 30 if ub ≤ t then 31 mark all ISs in Δ; break; 32 restore all the removed vertices into their IS; 33 return (ub, Δ ∪ Π);

Table 1 :

 1 Comparison of WLMC with two heuristic algorithms LSCC+BMS and FastWClq. The optimum and best times are in bold. '-' means that LSCC+BMS or FastWClq did not find the displayed solution in all runs.

	Instance	WLMC	LSCC+BMS	FastWClq
	#cutoff=1000s	ωv(G) time	best	avgt.	best	avgt.
	aff-flickr-user-groups	1720	9.23	1720	10.95	1640	371.1
	aff-orkut-user2groups	971	764.7	965 -	373.0	831	445.4
	bn-human-BNU 1 00 25865 session 2-bg	19189 204.6	13604 -571.7 19189	105.7
	channel-500x100 x100-b050	796	13.47	796	3.75	796	1.04
	dbpedia-link	5062	54.97	4396 -	442.7 4156 -	839.3
	delaunay n22	796	3.36	793 -	172.9	796	3.42
	delaunay n23	798	5.24	794 -	481.9	798	6.71
	delaunay n24	797	11.86	790 -	461.5	797	12.95
	friendster	5511	13.02	2885 -	437.8	2885	134.6
	hugebubbles-00020	400	9.87	400 -	83.62	400	10.37
	hugetrace-00010	400	4.75	399	18.42	400	5.42
	hugetrace-00020	400	7.72	400 -	160.0	400	7.19
	inf-europe osm	646	13.24	594 -	280.4	646	15.12
	inf-germany osm	597	4.44	579 -	550.0	597	3.65
	inf-road-usa	766	11.51	597 -	423.9	766	14.73
	rec-dating	1699	37.42	1699	1.50	1459	612.7
	rec-epinions	1054	10.37	1054	20.59	1028	594.4
	rec-libimseti-dir	1938	32.17	1938	3.26	1768	415.5
	rec-movielens	3777	63.57	3777	10.64 3288 -	740.4
	rgg n 2 23 s0	2407	10.61	2192 -	574.2	2407	16.60
	rgg n 2 24 s0	2514	23.75	2177 -	373.5	2514	64.84
	scc twitter-copen	58699 95.89	58699	2.50	58699	0.43
	sc-rel9	572	3.43	572 -	122.4	572	21.35
	sc-TSOPF-RS -b2383-c1	960	55.46	960 -	513.9	960 -	897.2
	soc-BlogCatalog	4803	6.13	4803 -	325.5	4803	170.1
	soc-buzznet	2981	3.90	2981	31.21	2981	98.67
	soc-digg	5303	10.23	5283 -	549.6	5303	113.8
	soc-dogster	4418	8.03	4356 -	332.9 4404 -	585.3
	socfb-A-anon	2872	9.99	2872 -	400.2	2872	57.75
	socfb-B-anon	2662	9.30	2620 -	324.7	2662	112.9
	socfb-uci-uni	1045	27.30	995 -	642.1	1045	110.0
	soc-flickr	7083	8.94	7050 -	298.7	7083	38.94
	soc-flickr-und	10127 329.8	9935 -	311.0 10115	921.3
	soc-livejournal	21368 3.25	17375 -532.7 21368	14.28
	soc-livejournal-user-groups	1054	133.1	1054 -	440.6	878 -	849.5
	soc-ljournal-2008	40432 14.96	37363 -368.6 40432	75.40
	soc-orkut-dir	6147	95.34	6084 -	629.5	6147	133.5
	soc-orkut	5452	100.2	5452 -	524.6	5452	120.4
	soc-pokec	3191	7.19	3191 -	592.8	3191	8.02
	soc-sinaweibo	4759	90.57	3555 -	469.2 1424 -	703.5
	soc-twitter-higgs	8039	6.81	8039 -	305.2	5383	276.2
	tech-ip	668	17.47	668 -	573.8	123	1.03
	web-baidu-baike	3814	7.73	2651 -	486.8	3814	101.9
	web-wikipedia-growth	4741	22.69	4741 -	449.9	4741	269.0
	web-wikipedia link it	89947 190.3	89947 -322.3	2202	115.3
	wikipedia link en	4624	14.77	1856 -	488.8	4624	195.5
	#cutoff=5h for the following 6 hard instances				
	aff-digg	3836	1288	3776 -	5371	3353 -	11882
	bio-human-gene1	134713 15686 134292 -9314	134362 -7273
	bio-human-gene2	135310 13226 135152 -9018	135059 -1768
	bio-mouse-gene	59952 13787 59921 -7112	59855 -2930
	bn-human-BNU 1 0 025865 session 1-bg	20598 2237	19539	2845	20214 -8441
	twitter mpi	13524 4117	12939 -7162	12145 -16218

of vertices in the reduced graph G to the number of vertices in the original graph, and the mean ratio rt of the number of vertices in the reduced graphs G of the first level (line 8

Table 2 :

 2 Search tree sizes in thousands and search times in seconds of WLMC, WLMC\prep1 and WLMC\UP&Split.

	Instance	WLMC	WLMC \prep1	WLMC \UP&Split
		tree	time	tree	time	tree	time
	aff-digg	20459 1288	26868 1670	156682 1520
	aff-orkut-user2groups	3458 764.7	3446	596.8 3470	859.6
	bio-human-gene1	2601 15686	-	-	-	-
	bio-human-gene2	2817 13226	-	-	-	-
	bio-mouse-gene	5722 13787	-	-	-	-
	bn-human-BNU 1 0025865 session 1-bg	786.1 2237	-	-	-	-
	bn-human-BNU 1 0025865 session 2-bg	421.0 204.6	-	-	-	-
	dbpedia-link	617.1 54.97	622.7 43.36 656.5 60.54
	rec-movielens	427.2 63.57	635.2 58.12 1752	54.27
	sc-TSOPF-RS-b2383-c1	237.7 55.46	163.1 56.66 245.3 32.77
	scc twitter-copen	217.2 95.89	240.9 107.8 217.2 42.41
	soc-flickr-und	741.1 329.8	5570	4274	212938 5970
	soc-livejournal-user-groups	2344 133.1	2355	99.20 2594	110.5
	soc-orkut	613.2 100.2	631.6 66.83 741.0 89.38
	soc-orkut-dir	538.9 95.34	608.5 77.63 773.2 88.15
	soc-sinaweibo	667.4 90.57	711.2 94.08 710.2 99.22
	twitter mpi	4133 4117	-	-	-	-
	web-wikipedia link it	203.4 190.3	203.4 195.8 203.4 98.58

Table 3 :

 3 The effect of preprocessing: C 0 is the initial clique found at the root, rt is the ratio of the number of vertices in the reduced G at the root to the number of vertices in the original G, and rt is the mean ratio of the number of vertices in the reduced G at the first level to the number of vertices in G[P].

	Instance	ωv(G)	w(C0)	rt	rt
	aff-digg	3836	2721	0.168	0.380
	aff-orkut-user2groups	971	213	0.849	0.019
	bio-human-gene1	134713	131692	0.283	0.949
	bio-human-gene2	135310	132080	0.353	0.953
	bio-mouse-gene	59952	44472	0.403	0.573
	bn-human-BNU 1 00 25865 session 1-bg	20598	16749	0.074	0.517
	bn-human-BNU 1 00 25865 session 2-bg	19189	8411	0.054	0.463
	dbpedia-link	5062	1152	0.186	0.022
	rec-movielens	3777	2167	0.949	0.381
	sc-TSOPF-RS-b2383-c1	960	415	0.994	0.010
	scc twitter-copen	58699	57995	0.090	0.918
	soc-flickr-und	10127	6698	0.040	0.292
	soc-livejournal-user-groups	1054	489	0.413	0.038
	soc-orkut	5452	1898	0.756	0.071
	soc-orkut-dir	6147	1170	0.862	0.079
	soc-sinaweibo	4759	834	0.126	0.026
	twitter mpi	13524	9101	0.033	0.192
	web-wikipedia link it	89947	89539	0.003	0.987
	of Algorithm 5) to the number of vertices in G[P]

Table 4 :

 4 Solution quality for DIMACS graphs with more than 1000 vertices within 3600 seconds. Optimums marked with '*'.

	Instance	WLMC	MWCLQ Cliquer LSCC+BMS	FastWClq
	C1000.9	7341	8471	1165	9072	8552
	C2000.5	2466	2466	2466	2466	2449
	C2000.9	7862	10034	529	10333	9516
	C4000.5	2438	2698	1233	2792	2542
	DSJC1000 5	2186*	2186*	2186*	2186*	2186*
	MANN a45	34265*	34133	1276	34183	34121
	MANN a81	111139	111033	195	111094	110481
	hamming10-2	50512*	50512*	50512*	50512*	50512*
	hamming10-4	4812	4614	735	5129	4990
	keller6	4760	6316	511	7360	5772
	p hat1000-1	1514*	1514*	1514*	1514*	1514*
	p hat1000-2	5777*	5777*	5612	5777*	5777*
	p hat1000-3	8086	7588	2417	8111	7967
	p hat1500-1	1619*	1619*	1619*	1619*	1619*
	p hat1500-2	7360	7104	2897	7360	7355
	p hat1500-3	9846	8449	1497	10278	9875
	san1000	1716*	1716*	929	1716*	1716*

Table 5 :

 5 Mean runtimes in seconds for five groups of WDP instances, '#' stands for the number of instances for which an optimal solution is found by a solver within 500 seconds.

	Group	WLMC	MWCLQ	Cliquer	LSCC +BMS	Fast WClq
		#	time # time	# time #	time # time
	REL-500-1000	100 117 100 97.1	20 377 88 101 0	-
	REL-1000-1000	100 2.81 100 2.44	100 5.58 100 4.62 77 103
	REL-1000-500	100 0.11 100 0.12	100 0.11 100 0.23 100 2.08
	REL-1000-1500	100 2.26 100 2.48	100 4.46 100 8.25 78 130
	REL-1500-1500	100 3.24 100 3.71	100 5.14 100 5.00 83 108

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

available at http://cs.hbg.psu.edu/txn131/clique.html

Acknowledgements

This work is supported by NSFC Grants No. 61272014, No. 61370183, No. 61472147 and No. 61370184, the MeCS platform of the University of Picardie Jules Verne and the HPC platform of Jianghan Univeristy. The third author was supported by Mobility Grant PRX16/00215 of the Ministerio de Educación, Cultura y Deporte, the Generalitat de Catalunya grant AGAUR 2014-SGR-118, and the MINECO-FEDER project RASO TIN2015-71799-C2-1-P.