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Abstract

We propose a new family of multiscale hybrid mixed methods (MHM) for the
reactive-advective-diffusive (RAD) equation in complex domains. It generalizes
the MHM methods originally proposed in Harder, Paredes and Valentin (2013
and 2015) to polytopal meshes and covers all asymptotic regimes of the model
within a single mathematical framework. As a result, the skeletal MHM method
changes its structure automatically, from primal to mixed forms, depending on the
asymptotic of local RAD solutions, which respond to multiscale basis functions
at the element level. We establish the existence, uniqueness, and optimality of
the MHM solution with respect to two-scale mesh parameters, relating it to the
solution of a discrete primal hybrid version of the RAD model. Furthermore,
we estimate the conditioning of the matrices associated with the local problems
responsible for upscaling, from which we establish upper limits for the condition
number of the algebraic system associated with the MHM method. Numerical
experiments validate theoretical results.

Keywords: Finite element method, multiscale problems, reaction-advection-diffusion
model, polytopal meshes
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1 Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open, bounded domain with polytopal Lipchitz bound-
ary ∂Ω. We consider the reaction-advection-diffusion problem of finding u : Ω → R
such that {

∇ · (−ε∇u+αu) + σ u = f in Ω ,
u = 0 on ∂Ω ,

(1)

where, ε ∈ L∞(Ω)d×d, α ∈ W 1,∞(Ω)d and σ ∈ L∞(Ω) are the diffusive, advective,
and reactive coefficients, respectively, and f ∈ L2(Ω) is the source term. Hereafter,
we use the standard notation for Sobolev spaces. We assume that the diffusive tensor
ε := {εij} is symmetric and uniformly elliptic, i.e., there exist positive constants εmin

and εmax, such that

εmin |z|2 ≤ εij(x) zi zj ≤ εmax |z|2 for all z = {zi} ∈ Rd , a.e. x ∈ Ω̄ , (2)

where | · | is the Euclidean norm, and we employ the Einstein summation conven-
tion, i.e., repeated indices indicate summation. The advective and reactive coefficients
satisfy

1

2
∇ ·α(x) + σ(x) ≥ 0 , a.e. x in Ω̄ . (3)

The exact solution of (1) presents boundary layers when the reaction or advection
coefficients dominate the diffusion ones. Fast variations also characterize the solution
of (1) in dominant diffusion regimes when the diffusion coefficient is multiscale. A
typical example is the Poisson problem with a highly oscillatory coefficient. In those
scenarios, the standard Galerkin method with piecewise polynomial interpolations
needs fine meshes, which is costly, to approximate the exact solution accurately. Thus,
alternative methods have been developed in the last decades to improve the accuracy
of the finite element method on coarse meshes. Among them are the stabilized meth-
ods, which are based on adding local variational forms to the Galerkin method related
to the residual of the Lagrange equation. They have been applied to dominant advec-
tion problems since the seminal works [1] and [2, 3], for example. Other possibilities
are enriched methods, like Residual-Free Bubbles (RFB) and the (Petrov-)Galerkin
enriched method ((P)GEM) [4, 5]. In those cases, the standard approximation spaces
are enhanced with non-polynomial functions driven by the original operator at the
element level (see [6, 7] for interconnection between stabilized and enriched methods).

On the other hand, there has been a vast literature on multiscale finite element
methods since the seminal work [8]. Multiscale methods share the commonality of hav-
ing global problems built on the solution of local problems that scale up the structures
under the mesh. An attractive feature is that independent problems can locally com-
pute the multiscale basis functions. Examples are the variational multiscale method
(VMS) [9], the multiscale finite element method (MsFEM) and its generalization
(GMsFEM) [10], the multiscale heterogeneous method (HMM) [11], multiscale mortar
method [12], the local orthogonal decomposition (LOD) method [13], the hybrid local-
ized spectral decomposition (LSD) method [14] and the higher order hybrid multiscale
method (MsHHO) [15], to name a few. Enriched methods are also closely related to
multiscale methods, as established, for instance, in [16].
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The MHM method is a member of the multiscale finite element family. It was
initially proposed in [17] for the Poisson equation, and a priori and a posteriori error
estimates for the MHM method were established in [18]. It was extended to polygonal
meshes in [19] and, recently, to general polytopal meshes in the context of the elasticity
problem in [20]. The MHM method is a by-product of a hybrid formulation that starts
at the continuous level defined on a coarse partition, which characterizes the exact
solution in local and global contributions. When discretized, it dissociates local from
global problems. The global formulation is responsible for the degrees of freedom on the
mesh skeleton, and the local problems provide the multiscale basis functions. In this
context, the MHM method was extended to deal with the reactive-advective-diffusive
(RAD) model in [21] and numerically validated in two-dimensional problems. The
multiscale basis functions satisfy local RAD problems with prescribed Robin boundary
conditions, which were assumed to be well-posed. Indeed, the MHM method for the
RAD model was formally built and validated numerically in singularly perturbed
problems (e.g., advective and reactive dominate regimes), yet the numerical analysis
of the method was absent in [21].

So, the first objective is to fill this theoretical gap and present a numerical analysis
of the two-level method introduced in [21]. The two-level nomenclature means that the
multiscale bases are locally approximated by a second level of discretization. For this,
we establish the well-posedness and optimal convergence of a new family of two-level
MHM methods for the RAD model in terms of the two-scale mesh parameters that
includes the method in [21] as a particular case. In addition to the numerical analysis
of the method in [21], in this work we

• propose a novel MHM method (see (42)) that automatically change its structure
from a primal formulation to a mixed one, so that the local RAD model responsible
for the multiscale basis is well-posed in all asymptotic regimes. In the process, we
establish sufficient conditions for the RAD model with Robin boundary condition
to be well-posed, which is surprisingly absent in the literature to our knowledge.
Thus, the new method generalizes the method in [21] and recovers the original
method proposed in [17] in cases of null reaction and advection coefficients. Such
a construction depends on a new space decomposition that differs from the one
proposed in [21];

• establish a numerical analysis of the new method on general polytopal grids.
Notably, we prove the existence and uniqueness under compatible conditions
between the interpolation space used locally to approximate the solution of local
problems and the interpolation space in the partition skeleton. Furthermore, we
establish optimal convergence results based on the mesh parameters (see Theorem
3), highlighting the interaction between the diameter of the mesh skeleton and the
diameter of the sub-meshes used to approximate local problems. Particularly, we
show that fixing the coarse mesh and refining the mesh skeleton convergence is
achieved. Such analysis are a first for the MHM method applied to RAD equations,
even for simplicial meshes. The proof is based on a pre-established equivalence
between the two-level MHM method and the discretized primal hybrid formulation
of the RAD equation. Such a technique differs from that used in [17] (see [22, 23]
for similar approaches);
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• calculate upper bounds for the conditioning number of the matrices underlying
the local and global problems in the MHM algorithm with respect to the physical
coefficients and mesh parameters. We show that, thanks to the spatial decompo-
sition inherent to the proposed MHM method, we maintain a favorable matrix
conditioning when compared to that obtained by the standard Galerkin method in
piecewise continuous polynomial spaces. This study is the first for MHM methods
that prove to be useful for solving global problems via iterative solvers, aiming to
reduce the computational cost of the MHM algorithm stage which is not naturally
parallelizable;
• validate the MHM method on polytope meshes through two and three-dimensional

problems. The numerical evaluation extends the results presented in [21] and verifies
convergence estimates and theoretical results related to matrix conditioning.

The outline of this work is as follows: In Section 2 we present the continuous
and discrete hybrid formulation defined on polytopal meshes and some preliminary
results. Section 3 is dedicated to the introduction of the MHM method based on a
new decomposition of spaces and its numerical analysis. We establish estimates for
the conditioning numbers of matrices associated with local and global systems in
Section 4, and present practical details of the MHM algorithm in Section 5. Also,
Section 5 presents numerical validations of the method, and conclusions are addressed
in Section 6.

2 Primal hybridization and preliminary results

2.1 Partitions

Let {PH}H>0 be a family of conforming partitions of Ω̄, composed of closed, bounded,
disjoint polytopes K such that Ω̄ = ∪K∈PHK. The diameter of K ∈PH is HK , and
without loss of generality, we shall use hereafter the terminology employed for three-
dimensional domains. Each polytope K has a boundary ∂K consisting of facets E.
We collect the boundaries associated with PH in ∂PH and its facets in EH, that is
∂PH = {∂K : K ∈PH}, and

EH =

{
E = ∂K ∩ ∂K ′, or
E = ∂K ∩ ∂Ω

∣∣∣∣ K,K ′ ∈PH,K 6= K ′, and
E is not an edge nor a point

}
.

For each E ∈ EH we associate a normal vector nE coinciding with n if E ⊂ ∂Ω, and
we further denote by nK the outward normal vector on ∂K for each K ∈ PH. We
introduce {EHH }H>0 a shape regular family of meshes for EH, such as each E ∈ EH
is split into simplicial facets F of diameter HF ≤ H := maxF∈EH HF . By EH(K)
and EHH (K) we understand the restriction of the sets EH and EHH to K ∈ PH. The
following technical assumption on EHH (K) will require that neighbouring facets are
not too dissimilar:

(A1): The mesh EHH (K) is such that for all K ∈PH, a conforming and shape regular
simplicial triangulation ΞH(K) of K can be constructed such that its restriction on
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∂K coincides with EHH (K).

The conforming triangulation ΞH := ∪K∈PHΞH(K) will be useful in the proofs below
but not used explicitly in the implementation of the method. We will also need the
following definitions:

- for each F ∈ EHH , we denote κKF the only element in ΞH(K) such that F = ∂κKF ∩∂K
where ∂κKF is the boundary of κKF . For simplicity, let us assume that, for two F1, F2 ∈
EH , κKF1

6= κKF2
;

- for each K ∈ PH, we introduce a shape regular family of simplicial triangulations
{T K

h }h>0 built in the following way: For each K

(i) the triangulation ΞH(K) undergoes a red refinement, i.e., a tetrahedron K is
refined by inserting the intersection points of the tetrahedron edges. The resulting
triangulation is called minimal triangulation;

(ii) the family {T K
h }h>0 is formed by red refinements of minimal triangulation.

The diameter of κ ∈ T K
h is denoted by hκ, and h := maxK∈PH maxκ∈T K

h
hκ, and

Th := ∪K∈PHT K
h . It is important to highlight that, if E = K1 ∩ K2 ∈ EH, where

K1, K2 ∈ PH, then the traces of the two neighboring triangulations T K1

h and T K2

h

do not necessarily coincide (see Figure 1 for a two-dimensional sketch).

Fig. 1: The domain Ω is partitioned by a conforming polygonal mesh PH. Two sub-
meshes (green and orange) discretize two different elements K of PH with different
granularity, where κ ∈ T K

h . The red line represents an edge E ∈ EH, and the blue
line an element F ∈ EHH of the skeleton mesh.

2.2 Broken spaces and norms

Let K ∈PH and m ≥ 1, we consider the local space Hm(K) equipped with the semi-
norm | · |m,K and the norm ‖ · ‖m,K , with their usual definitions. Thus, we define the
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broken space

Hm(PH) := {v ∈ L2(Ω) : v|K ∈ Hm(K), for all K ∈PH}, (4)

equipped with the broken (semi-)norm,

|v|m,PH :=

( ∑
K∈PH

|v|2m,K

) 1
2

and ‖v‖m,PH :=

( ∑
K∈PH

‖v‖2m,K

) 1
2

.

Also, we set V := H1(PH) and equip it with the norm ‖v‖V :=
(∑

K∈PH
‖v‖2V (K)

) 1
2

,

with ‖v‖V (K) :=
(
|v|21,K + 1

d2
Ω
‖v‖20,K

) 1
2

for all v ∈ H1(K), where dΩ := diam Ω. As

usual, (·, ·)D stands for the L2(D) inner product for a measurable set D ⊂ Rd, and
for all u, v ∈ V

(u, v)PH :=
∑

K∈PH

(u, v)K and (u, v)V :=
1

d2
Ω

(u, v)PH + (∇u,∇v)PH .

We define the space of Lagrange multipliers as follows

Λ :=
{
q · nK |∂K , for all K ∈PH : q ∈ H(div; Ω)

}
,

and equip it with the norm

‖µ‖Λ := inf { ‖q‖div : q ∈ H(div; Ω) and q · nK |∂K = µ |∂K , for all K ∈PH},

where

‖q‖div :=
(
‖q‖20,Ω + d2

Ω ‖∇ · q‖20,Ω
) 1

2 for all q ∈ H(div; Ω).

We adopt the following notation

〈µ, v〉∂PH :=
∑

K∈PH

〈µ, v〉∂K for all (µ, v) ∈ Λ× V, (5)

where 〈·, ·〉∂K stands for the duality product between H−
1
2 (∂K) and H

1
2 (∂K). Notice

that, if v ∈ H1
0 (Ω) then

〈µ, v〉∂PH = 0 for all µ ∈ Λ . (6)

Also, from [20], the following identity holds

‖µ‖Λ = sup
v∈V

〈µ, v〉∂PH

‖v‖V
for all µ ∈ Λ, (7)
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and then

〈µ, v〉∂PH =
〈µ, v〉∂PH

‖v‖V
‖v‖V ≤ sup

w∈V

〈µ,w〉∂PH

‖w‖V
‖v‖V ≤ ‖µ‖Λ ‖v‖V . (8)

Above and hereafter, we lighten notation and understand the supremum to be taken
over sets excluding the zero function, even though this is not specifically indicated.

Let k ≥ 1, and K ∈PH. We introduce the following local finite element space

Vh(K) := {vh ∈ C0(K) : vh|κ ∈ Pk(κ), for all κ ∈ T K
h } , (9)

where L2
0(K) is the space of functions in L2(K) with zero average in K. The global

counterpart of Vh(K) on the partition PH is denoted by Vh :=
∏
K∈PH

Vh(K). Also,

let ` ≥ 0 and consider the following finite element space on the skeleton mesh EHH

ΛH :=
{
µH ∈ Λ : µH |F ∈ P`(F ), for all F ∈ EHH

}
. (10)

Above and hereafter, Pm(D) denotes the space of piecewise continuous polynomial of
degree up to m ≥ 0 on D.

2.3 Space compatibility and interpolation mappings

This section describes the interpolation operators used throughout this work, for which
the compatible conditions between Vh and ΛH provided in [19, Section 3] and [20,
Lemma 4.1] are required. For the sake of clarity, we remind them below:
(A2): Spaces Vh and ΛH in (9) and (10) are compatible as follows:

- For d = 2:

If k = `, we make one refinement on ΞH(K) for ` ≥ 2 and two for ` = 0, 1;
If k = `+ 1, we make one refinement on ΞH(K) for ` ≥ 0;
If k ≥ `+ 2 then no further refinement on ΞH(K) for ` ≥ 0.

- For d = 3, we set k ≥ `+ 3 with no extra refinements on ΞH(K) for ` ≥ 0.

Consider that assumptions (A1) and (A2) hold. Using [19, Theorem 2] and [20,
Lemma 4.1] there exists a mapping Πh : V → Vh such that∫

F

Πhv µH =

∫
F

v µH for all µH ∈ ΛH and F ∈ EHH , (11)

‖Πhv‖V ≤ cF ‖v‖V , (12)

for all v ∈ V and where cF > 0 does not depend on mesh and physical parameters.
Next, let w ∈ H`+2(PH)∩H1

0 (Ω) be such that−ε∇w+wα ∈ H`+1(PH)d∩H(div; Ω),
with ` ≥ 0, and µ ∈ Λ be defined by

µ|E :=

(
− ε∇w · nK +

1

2
(α · nK)

)∣∣∣∣
E

for all E ∈ EH.

7



Following closely [19, Lemma 3], there exists µH ∈ ΛH such that

‖µ− µH‖Λ ≤ C H`+1

∣∣∣∣− ε∇w +
1

2
wα

∣∣∣∣
`+1,PH

, (13)

where C is a positive constant independent of the mesh and physical parameters.

2.4 Continuous hybrid formulation

The weak solution of problem (1) corresponds to: Find u ∈ H1
0 (Ω) such that

(ε∇u, ∇v)Ω +
1

2
(α · ∇u, v)Ω −

1

2
(u, α · ∇v)Ω + (ν u, v)Ω = (f, v)Ω, (14)

for all v ∈ H1
0 (Ω), where ν ∈ L∞(Ω) is a non-negative function defined by

ν :=
1

2
∇ ·α+ σ. (15)

The well-posedness of the skew-symmetric formulation (14) follows from the Lax-
Milgram’s Lemma (see [24, Lemma 2.2]).

The primal hybrid formulation associated to (14) corresponds to: Find (u, λ) ∈
V × Λ such that

a(u, v) + 〈λ, v〉∂PH = (f, v)PH for all v ∈ V ,
〈µ, u〉∂PH = 0 for all µ ∈ Λ ,

(16)

where the bilinear form a : V × V → R is

a(u, v) :=
∑

K∈PH

aK(u, v) , (17)

and the local bilinear form aK : H1(K)×H1(K)→ R, for all K ∈PH, is

aK(u, v) := (ε∇u,∇v)K +
1

2
(α · ∇u, v)K −

1

2
(u,α · ∇v)K + (ν u, v)K . (18)

Using (2), and (3), it holds

‖a‖ := sup
w,v∈V

a(w, v)

‖w‖V ‖v‖V
≤ max

{
εmax, dΩ ‖α‖1,∞,Ω, d2

Ω ‖σ‖0,∞,Ω
}
. (19)

The next lemma state that the hybrid formulation (16) is well-posed, and its solution
coincides with the solution of (14).
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Lemma 1. Function u ∈ H1
0 (Ω) solves (14) iff (u, λ) ∈ V ×Λ solves (16) and, for all

K ∈PH,

λ|∂K = σ · nK |∂K where σ := −ε∇u+
1

2
uα. (20)

Proof. Let u ∈ H1
0 (Ω) be the (unique) solution of (14) and consider the continuous

linear functional on V
L(v) := (f, v)PH − a(u, v) .

Then L(·) vanishes on H1
0 (Ω), and it follows from [25], that there exists a unique

λ ∈ Λ such that L(v) = 〈λ, v〉∂PH , for all v ∈ V . Hence, the pair (u, λ) ∈ V ×Λ is the
(unique) solution of (16). Now, since f = ∇ · (−ε∇u+αu) + σ u, in a distributional
sense, and using integration by parts, we get

L(v) =
∑

K∈PH

〈
−ε∇u · nK +

1

2
u (α · nK), v

〉
∂K

= 〈λ, v〉∂PH ,

which proves (20). Conversely, assume that (u, λ) ∈ V ×Λ is the solution of (16). The
characterization of space H1

0 (Ω) (c.f. [25]) with the second equation in (16) implies
that u ∈ H1

0 (Ω). From the first equation in (16), and (6), we get

(ε∇u, ∇v)Ω +
1

2
(α ·∇u, v)Ω−

1

2
(u, α ·∇v)Ω +(ν u, v)Ω = (f, v)Ω for all v ∈ H1

0 (Ω),

thus u solves (14).

2.5 Discrete hybrid formulation

Let Vh and ΛH be given in (9) and (10), respectively. The discrete counterpart of (16)
reads: Find (uh, λH) ∈ Vh × ΛH

a(uh, vh) + 〈λH , vh〉∂PH = (f, vh)PH for all vh ∈ Vh ,
〈µH , uh〉∂PH = 0 for all µH ∈ ΛH .

(21)

The next theorem establishes the well-posedness of the discrete hybrid method
(21) under the compatible conditions given in (A2). Furthermore, it provides error
estimates that take into account the two levels of space discretization.
Theorem 2. Assume that (A1) and (A2) hold. Then problem (21) is well-posed

‖uh‖V ≤
c2B
εmin

‖f‖0,Ω and ‖λH‖Λ ≤ cF
(

1 +
c2B
εmin

‖a‖
)
‖f‖0,Ω, (22)

where cB is a positive constant independent of mesh and physical parameters and cF
is given in (12). Moreover, assume the exact solution u ∈ Hk+1(PH) ∩ H1

0 (Ω) and
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−ε∇u+uα ∈ H`+1(PH)d∩H(div; Ω), with k ≥ 1 and ` ≥ 0. Then, there are positive
constants C1 and C2, independent of mesh parameters, such that

‖u− uh‖V ≤ C1

(
H`+1 | − ε∇u+

1

2
uα|`+1,PH + hk |u|k+1,PH

)
, (23)

‖λ− λH‖Λ ≤ C2

(
H`+1

∣∣∣− ε∇u+
1

2
uα
∣∣∣
`+1,PH

+ hk |u|k+1,PH

)
. (24)

Proof. Let Nh be the following null space

Nh := {vh ∈ Vh : 〈µH , vh〉∂PH = 0, for all µH ∈ ΛH}. (25)

Let vh ∈ Nh, E ∈ EH, and µE ∈ ΛH be defined by

µE |∂K|E′ =

{
nE · nK |E′ , E′ = E

0, E′ 6= E
, (26)

on each E′ ∈ EH, then it is clear that∫
E

JvhK = 〈µE , vh〉∂PH = 0 for all E ∈ EH . (27)

Using the Poincaré–Friedrich inequality for piecewise H1 functions (c.f. [26, equation
(1.3)]) and (26), we have that there exists a positive constant cB , that depends only
on the shape of the polytope of PH but not on h, H, or H, such that

‖vh‖V ≤ cB |vh|1,PH , for all vh ∈ Nh. (28)

Thus,

a(vh, vh) ≥ εmin |vh|21,PH ≥
εmin

c2B
‖vh‖2V for all vh ∈ Nh. (29)

Moreover, under the assumption (A2), we use (11)–(12) to prove

c−1
F ‖µH‖Λ = c−1

F sup
v∈V

〈µH , v〉∂PH

‖v‖V
≤ sup
vh∈Vh

〈µH , vh〉∂PH

‖vh‖V
. (30)

Hence, using [24, Theorem 2.34] we obtain (22) and the well-posedness of problem
(21). Next from [24, Lemma 2.44], we obtain the best approximation results

‖u− uh‖V ≤ c1 inf
vh∈Vh

‖u− vh‖V + c2 inf
ρH∈ΛH

‖λ− ρH‖Λ,

‖λ− λH‖Λ ≤ c3 inf
vh∈Vh

‖u− vh‖V + c4 inf
ρH∈ΛH

‖λ− ρH‖Λ,
(31)

where, c1 := (1 +
c2B
εmin
‖a‖) (1 + cF ), c2 :=

c2B
εmin

, c3 := c1 ‖a‖ cF , and c4 := 1 +
cF + c2 ‖a‖ cF . The error estimates (24) and (23) arise using (13), (31), and classical
Lagrange interpolation estimates.
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Remark 1 (Convergence with fixed H). Under conditions (A1)–(A2) the error
estimates (23) and (24) indicate that convergence can be achieved by fixing the coarse
mesh (i.e. H is fixed) and refining the facet meshes (e.g. H → 0).
Remark 2 (Second level numerical pollution). Due to the relationship between the
polynomial degrees ` and k given in (A2), we note that the main error is of the order
O(H`+1), unless ` = k is used where special attention must be given to refining the
second level so that the error associated with the second level of discretization (i.e.
O(hk)) does not pollute the first one (i.e. O(H`+1)).

3 The Multiscale Hybrid-Mixed Method

The formal construction of the two-level MHM method starts from the discrete hybrid
formulation given in (21) using a decomposition of the space Vh. The objective is to
locate calculations through element-by-element RAD problems that are responsible for
calculating the multiscale basis. The occurrence of such spatial decomposition depends
on the advection and reaction coefficients to ensure that these local problems are well-
posed. We describe the strategy in this section, propose and analyse the two-level
MHM methods.

3.1 Space decomposition

Let V0 be the piecewise constant polynomial space

V0 := {v0 ∈ Vh : v0|K ∈ P0(K) for all K ∈PH}, (32)

and consider the subspace W0 of V0

W0 := {v0 ∈ V0 : v0|K = 0 for all K ∈P0
H}, (33)

where

P0
H := {K ∈PH : there exists ξh ∈ Vh(K) such that aK(1K , ξh) > 0}. (34)

We decompose the discrete space Vh given in (9) by

Vh = W0 ⊕ W̃h, (35)

with respect to the inner product (·, ·)V , and then W̃h corresponds to

W̃h := {w̃h ∈ Vh : w̃h|K ∈ L2
0(K), for all K ∈PH \P0

H}. (36)

We observe then that the dimension of (33) depends on the physical coefficients. For
instance, W0 = V0 in the pure diffusion case and W0 is trivial when the reaction
coefficient is present.
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Remark 3 (Characterisation of W0). Notice that W0 coincides with the null space

{v0 ∈ Vh : a(v0, vh) = 0 for all vh ∈ Vh}, (37)

and also is equal to

{v0 ∈ Vh : a(vh, v0) = 0 for all vh ∈ Vh}. (38)

This follows by first observing that W0 is a subspace of (37). For the opposite inclusion,
take v0 in (37) and note that a(v0, v0) ≥ εmin|v0|21,PH . Therefore, v0|K ∈ P0(K) for
all K ∈PH which implies that (37) is a subspace of V0. Writing v0|K = 1KcK , where
cK ∈ R, we have cKaK(1K , ξh) = 0 for all ξh ∈ Vh(K), and therefore, cK = 0 ⇒
v0|K = 0 if K ∈P0

H which implies v0 ∈W0. Then (37) is also a subspace of W0. The
equivalence (37) and (38) follows by noting that if there exists ξh ∈ Vh(K) such that
aK(1K , ξh) > 0, then we can propose ξ?h ∈ Vh(K) using ξh such that aK(ξ?h, 1K) > 0.

3.2 The method

Let Th ∈ L(Λ, W̃h) and T̂h ∈ L(L2(Ω), W̃h) be two mappings defined such that, given
ρ ∈ Λ and q ∈ L2(Ω), the functions Th ρ and T̂h q satisfy

a(Th ρ, ṽh) = −〈ρ, ṽh〉∂PH for all ṽh ∈ W̃h, (39)

a(T̂h q, ṽh) = (q, ṽh)PH for all ṽh ∈ W̃h. (40)

The operators Th and T̂h are well-defined element-by-element as the bilinear form a(·, ·)
given in (17)–(18) induces a bijective operator on W̃h. It follows from [24, Proposition
2.21] that there is a positive constant γ such that

inf
wh∈W̃h

sup
vh∈W̃h

a(wh, vh)

‖wh‖V ‖vh‖V
≥ γ , (41)

and then, from (39)–(41) the mappings are bounded with ‖Th‖ ≤ 1
γ and ‖T̂h‖ ≤ dΩ

γ .

The two-level MHM method writes: Find (λH , u
H
0 ) ∈ ΛH ×W0 such that

−〈µH , Th λH〉∂PH − 〈µH , uH0 〉∂PH = 〈µH , T̂h f〉∂PH for all µH ∈ ΛH ,

−〈λH , v0〉∂PH = − (f, v0)PH for all v0 ∈W0 .
(42)

The local problems ThλH and T̂hf intent to approximate the fine and under-mesh
structure of u using the coarse and global MHM’s solution (λH , u

h
0 ). As such, the exact

solution u is approximated by

u ∼ uH,h := uH0 + Th λH + T̂h f. (43)
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As a result, we have the characterisation

uH0 |K =
1

|K|

∫
K

uH,h dx ∼
1

|K|

∫
K

u dx for all K ∈PH \P0
H,

and λH represents the approximate flux on the elements boundary which is in local
equilibrium with external force, i.e.,∫

∂K

λH ds =

∫
K

f dx for all K ∈PH \P0
H.

Remark 4 (Variants of the method (42)). The two-level MHM method (42) recovers
previous MHM methods for the RAD model as a function of the structure of the coarse
W0 space. Notably:

• W0 = {0} case: We find the method originally proposed in [21], i.e., find λH ∈ ΛH

−〈µH , Th λH〉∂PH = 〈µH , T̂h f〉∂PH for all µH ∈ ΛH . (44)

This case occurs, for instance, when ν ≥ ν0 > 0 in Ω, or when ν = 0 and there
exists ξK ∈ Vh(K) such that (1K ,α · ∇ξK)K > 0 for all K ∈PH;

• W0 = V0 case: We find the method originally proposed in [18, 19], that is, the method
(42) with W0 replaced by V0. This scenario occurs in the pure diffusive case, for
example. Furthermore, it occurs when ν = 0 and α is such that (α ,∇vh)K = 0 for
all vh ∈ Vh and K ∈ PH. A typical example is when the advection field satisfies
∇ ·α|K = 0 and α · nK |∂K = 0 for all K ∈PH.

3.3 Well-posedness and convergence

We follow the strategy proposed in [22, 23] to analyze the well-posedness and con-
vergence of the MHM method (42). Specifically, and unlike the original MHM work,
we directly estimate the error in (43), without first estimating the error between the
flow variable λ and λH (see [27] for a similar strategy).

Theorem 3. Assume that (A1) and (A2) hold. Then the method (42) has a unique
solution (λH , u

h
0 ) ∈ ΛH × W0. Moreover, if (uh, λH) is the solution of the discrete

hybrid problem, then

uh = uH0 + Th λH + T̂h f,

where Th and T̂h are given in (39)–(40). Also the error estimates (23)–(24), with
uh = uH,h given in (43), hold.

Proof. Let (ρH , w0) be an element of ΛH ×W0 such that

−〈µH , w0〉∂PH − 〈µH , Th ρH〉∂PH = 0 for all µH ∈ ΛH , (45)
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−〈ρH , v0〉∂PH = 0 for all v0 ∈W0. (46)

Testing (45) with (µH , v0) = (ρH , w0) and subtracting (46) from (45), we get

0 = −〈ρH , Th ρH〉∂PH = a(Th ρH , Th ρH) ≥ εmin |Th ρH |21,PH ⇒ Th ρH ∈ V0.

On the other hand, (45) implies that w0 +Th ρH ∈ Nh and using the definition of W̃h

given in (36), and (28) we get

‖w0‖2V + ‖Th ρH‖2V = ‖w0 + Th ρH‖2V ≤ c2B |Th ρH |21,PH = 0⇒ w0 = Th ρH = 0.

We conclude ρH = 0 from the injectivity of Th using (A2), thus the well-posedness
of (42) follows. Next, notice that the (unique) solution uh of (21) belongs to the null
space Nh and that the discrete hybrid formulation (21) is equivalent to find uh ∈ Nh

a(uh, vh) = (f, vh)PH for all vh ∈ Nh.

Also, observe that uH,h given in (43) belongs to Nh by taking v0 = 0 in (42). Let vh
be an element of Nh decomposed as vh = v0 + ṽ, with v0 ∈ W0 and ṽh ∈ W̃h. Using
the definitions of the space W0 in (37), mappings Th and T̂h in (39)–(40), and the
second equation in (42), we get

a(uH,h, vh) = a(uH0 + Th λH + T̂h f, v0) + a(uH0 + Th λH + T̂h f, ṽh)

= a(Th λH + T̂h f, ṽh)

= −〈λH , ṽh〉∂PH + (f, ṽh)PH

= −〈λH , ṽh〉∂PH − 〈λH , v0〉∂PH + (f, v0)PH + (f, ṽh)PH

= −〈λH , vh〉∂PH + (f, vh)PH = (f, vh)PH .

Hence, uh = uH,h by the unicity of the solution of (21). Finally, the error estimates
(23) and (24) follow from Theorem 2.

Remark 5 (Strong Dirichlet boundary conditions). The numerical analysis of the
MHM method with weakly imposed Dirichlet boundary conditions can be easily extended
to the case where the Dirichlet condition is strongly imposed (c.f. [21]). To this end, we
redefine some geometric and functional settings. First, we distinguish between internal
and external elements as follows

Pext
H := {K ∈PH : |∂K ∩ ∂Ω| > 0} and Pint

H := PH \Pext
H ,

and denote the internal boundaries of K ∈PH by δK := ∂K\∂Ω, note that δK = ∂K
for all K ∈Pint

H . Next, we define the space of Lagrange multipliers as

Λ :=
{
q · nK |δK , for all K ∈PH : q ∈ H(div; Ω)

}
,
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equipped it with the norm

‖µ‖Λ := inf { ‖σ‖div : σ ∈ H(div; Ω) and σ · nK |δK = µ, ∀K ∈PH}.

We also define V := {v ∈ V : v|∂Ω = 0}, the duality product 〈·, ·〉∂PH
: Λ×V → R, by

〈µ, v〉∂PH
:=

∑
K∈Pint

H

〈µ, v〉
H−

1
2 (∂K)×H

1
2 (∂K)

+
∑

K∈Pext
H

〈µ, v〉
H−

1
2 (δK)×H

1
2
00(δK)

,

for all (µ, v) ∈ Λ × V . The Sobolev spaces H−
1
2 (D), H

1
2 (D) and H

1
2
00(D) have their

usual meaning (c.f [28] and [29, pp. 121]). Observe that

〈µ, v〉∂PH
= 〈µ, v〉∂PH ∀µ ∈ Λ, ∀µ ∈ Λ, ∀v ∈ V . (47)

The identity (47) implies that the use of the dual product 〈·, ·〉∂PH can be mimic by
〈·, ·〉∂PH

making trivial adaptations. Notably, following [30, Lemma 1], we can write

H1
0 (Ω) := {v ∈ V : 〈µ, v〉∂PH

= 0, for all µ ∈ Λ},

and consider the following hybrid variational problem as the starting point of the
construction of the MHM method: Find (u, λ) ∈ V × Λ such that{

a(u, v) + 〈λ, v〉∂PH
= (f, v)PH for all v ∈ V

〈µ, u〉∂PH
= 0 for all µ ∈ Λ.

(48)

The proof of the well-posedness of the problem (48) as well as its equivalence with
the problem (14) follow closely those given in Lemma 1 and Theorem 2, respectively.
Then, the other theoretical results remain valid. Strong conditions are used in the
computational simulations in [21, Fig. 6] and in Section 5.

4 Conditioning Analysis

Solving an algebraic system of equations accurately in a computationally efficient way
involves theoretical knowledge of the conditioning number of the matrices. This is
more dramatic when iterative solvers are employed, which are attractive for solving
the global MHM system that is coupled, unlike the local problems that are already
solved in an “embarrassingly parallel” way. It turns out that the local and global
linear systems that arise in the two-level MHM method change from mixed to positive
defined forms as a function of physical and mesh parameters, with an immediate
impact on the conditioning of the matrices. How physical and mesh parameters impact
the conditioning of global and local linear systems is the topic of this section.

For completeness, we recall some fundamental concepts related to conditioning
used in the rest of this section. LetM∈ RN×N be a non-singular matrix. The 2-norm
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of a vector x ∈ RN is defined as ‖x‖2 :=
(
x2

1 + · · ·+ x2
N

) 1
2 . The 2-norm of a matrixM

is given by ‖M‖2 := supx∈RN
‖Mx‖2
‖x‖2 , and the condition number of M is defined by

cond(M) := ‖M‖2 ‖M−1‖2. (49)

Consider a finite-dimensional linear space Z span by {z1, . . . , zN} equipped with the
norm ‖ · ‖Z . Given x := x1 z1 + · · · + xN zN ∈ Z, we denote x = [x1 · · ·xN ]T ∈ RN
and then the following equivalence of norms holds

c1 ‖x‖2 ≤ ‖x‖Z ≤ c2 ‖x‖2 , (50)

where c1, c2 are positive constants dependent only on N . Also we consider a bounded
bilinear form b : Z ×Z → R and its induced norm ‖b‖, and assume that the following
inf–sup condition holds

inf
x∈Z

sup
y∈Z

b(x, y)

‖x‖Z ‖y‖Z
≥ γb > 0.

Then, given a matrixM with entriesMij := b(zj , zi), for i, j = 1, . . . , N , the condition
number of M in (49) is bounded as follows

cond(M) ≤
(
c2
c1

)2 ‖b‖
γb
. (51)

In what follows, we use (51) to estimate the condition number of the local and global
matrices from the two-level MHM methods.

4.1 Settings

To avoid unnecessary technicalities and simplify the presentation, we assume in this
section that: (i) the coarse partitions PH, the facet partition EHH and the local meshes
Th are quasi-uniform; (ii) the elements K ∈ PH are such that the local Poincaré-
Wirtinger inequality holds

‖vh‖2V (K) ≤ (1 + c2K) ‖∇vh‖20,K = c2W ‖∇vh‖20,K for all vh ∈ Ṽh(K) , (52)

where cW > 0 does not depend on K or H. For instance, this is the case when K is
convex; (iii) the elements K ∈ PH are the image by an affine transformation of a
reference element. In addition, we assume the following constraint on the advection
field (more in Remark 6)
(A3): There exists ξh ∈ Vh, with maxκ∈Th ‖ξh‖1,∞,κ ≤ 1, and a positive constant ω,
independent of mesh parameters, such that

− 1

2
α · ∇ξh + ν ξh ≥ ω, in Ω0 , (53)
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where Ω0 is the interior of the union of polytopes
⋃
K∈P0

H
K.

Notice that (A3) immediately implies the existence of ξ?K ∈ Vh(K) such that

aK(1K , ξ
?
K)

|K| 12 ‖ξ?K‖V (K)

≥ ω for all K ∈P0
H. (54)

Remark 6 (Satisfying condition (A3)). Note that the (A3) assumption is not very
restrictive. In fact, if ν|Ω0 ≥ ν0 > 0, the condition (53) is valid taking ξh = 1 in
Ω0. The zero reaction situation is more involved. In this case, we can assume that a
continuous counterpart of (A3) is valid to prove (53), more specifically,

‖ξ‖1,∞,Ω0
≤ 1 and − 1

2
α · ∇ξ + ν ξ ≥ ω̄ in Ω0 , (55)

for a given ξ ∈ Wm,∞(Ω0), m ≥ 2, and positive constant ω̄ > 0 independent of mesh
parameters, for all h ≥ h0 > 0. Observe that condition (55) is fulfilled, for example, if
the advective field has no closed curves or stationary points in Ω0 (see [31] for details).
Then from (55), we prove that (A3) is valid. Indeed, let Ikh : W k+1,∞(Ω0) → Vh be
the Lagrange interpolation operator. Using [24, Corollary 1.109], we have

‖v − Ikhv‖0,∞,Ω0
+ h max

κ∈Th
|v − Ikhv|1,∞,κ ≤ Ck hk+1 |v|k+1,∞,Ω0

. (56)

Now, setting ω1 := 1 + Ck h0 (h0 + 1) |ξ|k+1,∞,Ω0
and taking ω := ω̄

2ω1
and ξh :=

1
ω1

Ih(ξ) condition (A3) holds.

4.2 Equivalence of Norms

To use (51) estimation in practice, it is necessary to estimate the constants c1 and c2
in (50) in relation to the norms induced by the local and global weak forms of the
MHM method. This is covered in this section and summarized in the following lemma.

Lemma 4. The following equivalence of norms holds:

(1) Let K ∈ PH, under a quasi-uniformity assumption on {T K
h }h>0 there exist

positive constants c1 and c2, independent of h, such that

c1 h
d
2 ‖vh‖2 ≤ ‖vh‖V (K) ≤ c2 h

d
2−1 ‖vh‖2 for all vh ∈ Vh(K) . (57)

(2) Under a quasi-uniformity assumption on {PH}H>0 there exist positive constants
c1 and c2, independent of H, such that

c1H
d
2 ‖v0‖2 ≤ ‖v0‖V ≤ c2H

d
2 ‖v0‖2 for all v0 ∈ V0 . (58)
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(3) Under a quasi-uniformity assumption on {EHH }H>0 there exist positive constants c1
and c2, independent on H and H, such that

c1H
d−1

2 ‖µH‖2 ≤

 ∑
F∈EHH

‖µH‖20,F

 1
2

≤ c2H
d−1

2 ‖µH‖2 for all µH ∈ ΛH . (59)

(4) Under a quasi-uniformity assumption on {EHH }H>0 and assuming that PH can be
generated from one reference polytopal through an affine transformation, there exist
positive constants c1 and c2, independent of H and H, such that

c1H
d
2 ‖µH‖2 ≤ ‖µH‖Λ ≤ c2

H
d−1

2

H 1
2

‖µH‖2 for all µH ∈ ΛH . (60)

Proof. The item (1) is a straightforward application of [24, Lemma 9.7]. For item (2),
we consider v0 ∈ V0 and characterize it as v0 =

∑
K∈PH

vK 1K , with vK ∈ R for all

K ∈ PH, thus ‖v0‖22 :=
∑

K∈PH
v2
K . We immediately get the desired result due to

the quasi-uniformity of the family {PH}H>0. The proof of item (3) starts by defining
a nodal basis for ΛH denoted by B = {ψ1, . . . , ψdim ΛH}, and BE = {ψE ∈ B :
supp(ψE) ⊆ E}. Then we observe that µH ∈ ΛH can be expressed as

µH =
∑
E∈EHH

#BE∑
i=1

cEi ψ
E
i ,

with cE1 , . . . , c
E
#BE

∈ R, and, ψE1 , . . . , ψ
E
#BE

∈ BE . Following the proof of [24, Lemma
9.7] there exist constants c1 > 0 and c2 > 0, independent of H or |E|, such that

c1H
d−1

#BE∑
i=1

(cEi )2 ≤ ‖µH‖20,E ≤ c2Hd−1

#BE∑
i=1

(cEi )2,

and summing over EH we arrive to (59). We begin the proof of item (4) by considering
a simplex of reference F̂ ⊂ Rd−1 and define an affine isomorphism SF : F̂ → F
for each F ∈ EHH . In addition we consider a bubble function p̂ = l1 · · · ld ∈ Pd(F̂ ),

where li : F̂ → R is the i-th linear Lagrange polynomial with i ∈ {1, . . . , d}. As
µ̂ 7→ ‖p̂ 1

2 µ̂‖0,F̂ , for all µ̂ ∈ P`(F̂ ), is a norm on P`(F̂ ), thus we can establish the

existence of positive constants ĉ1 and ĉ2, depending only on `, p̂, and F̂ , such that

ĉ1 ‖µ̂‖0,F̂ ≤ ‖p̂
1
2 µ̂‖0,F̂ ≤ ĉ2 ‖µ̂‖0,F̂ , for all µ̂ ∈ P`(F̂ ). (61)

Then, for any F ∈ EHH , the polynomial p̂ ◦S−1
F : F → R is also a bubble function and,

moreover, by setting µ̂ = µ◦SF ∈ P`(F̂ ) for all µ ∈ P`(F ), and using standard scaling
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arguments, we arrive at

ĉ1 ‖µ‖0,F ≤ ‖(p̂ ◦ S−1
F )

1
2 µ‖0,F ≤ ĉ2 ‖µ‖0,F , for all µ ∈ P`(F ), (62)

where ĉ1 and ĉ2 are the constants in (61). Let K ∈PH and consider the triangulation
ΞH(K) defined in Assumption (A1). Also, let κ̂ ⊂ Rd be a simplex of reference and
Rκ : κ̂ → κ an affine isomorphism,for all κ ∈ ΞH(K). Then, by setting v̂ := v ◦ Rκ ∈
H1(κ̂) for all v ∈ H1(κ), and using standard scaling arguments, we prove the existence
of positive constants ĉ1 and ĉ2, independent of H, such that

ĉ1 ‖v̂‖1,κ̂ ≤
(
‖v‖1,κ +

1

d2
Ω

‖v‖0,κ
) 1

2

≤ ĉ2H
d
2−1 ‖v̂‖1,κ̂ , for all v ∈ H1(κ) . (63)

Now, let µH ∈ ΛH and consider the finite element space

VH(K) := {vH ∈ C0(K) : vH |κ ∈ P`+d(κ) for all κ ∈ ΞH(K)} .

Observe that the product function gF := (p̂ ◦ S−1
F )µH |∂K |F belongs to P`+d(F ) and

gF |∂F = 0, for all F ∈ EHH such that F ⊂ ∂K, and let wF ∈ VH(K) be the extension
by zero of gF to K. Note that wF has support in a single κF ∈ ΞH(K) from the
definition of the mesh ΞH(K). This implies that the functions in {wF ∈ VH(K) : F ∈
EHH , and, F ⊂ ∂K} are H1(K)-orthogonal. In addition, from (63), [32, Proposition
3.37], and the quasi-uniformity of

{
EHH
}
H>0

, we arrive at

‖wF ‖V (K) =

(
‖wF ‖1,κF +

1

d2
Ω

‖wF ‖0,κF
) 1

2

≤ ĉ H d
2−1 ‖ŵF ‖1,κ̂ ≤ ĉ H

d
2−1 ‖µ̂H‖0,F̂

= ĉ H
d
2−1 |F̂ |

1
2

|F | 12
‖µH‖0,F ≤

ĉ

H
1
2

‖µH‖0,F .

Thus, by defining wK :=
∑

F∈EHH (K)

wF we obtain

‖wK‖2V (K) =
∑

F∈EHH (K)

‖wF ‖2V (K) ≤
∑

F∈EHH (K)

ĉ2

H
‖µH‖20,F ≤

ĉ2

H
‖µH‖20,∂K . (64)

For F ∈ EHH (K), we use standard scaling arguments and (62) to get∫
F

µH wK =

∫
F

(p̂ ◦ S−1
F )µ2

H ≥ ĉ ‖µH‖20,F . (65)
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Let define now w ∈ V such that w|K = wK for all K ∈PH. Then, from (65) and (64)
we arrive at

sup
v∈V

〈µH , v〉∂PH

‖v‖V
≥ 〈µH , w〉∂PH

‖w‖V
=

∑
K∈PH

∑
F∈EHH (K)

∫
F
µH wK( ∑

K∈PH

‖wK‖2V (K)

) 1
2

≥ ĉ H 1
2

∑
K∈PH

∑
F∈EHH (K)

‖µH‖20,F( ∑
K∈PH

‖µH‖20,∂K

) 1
2

≥ ĉ H 1
2

 ∑
F∈EHH

‖µH‖20,F

 1
2

. (66)

Let consider now a polytopal of reference K̂ ⊂ Rd and K ∈ PH. From point (iii) in
Section 4.1, we have the existence of an affine isomorphism RK : K̂ → K such that
R∂K := RK |∂K̂ : ∂K̂ → ∂K is also an affine isomorphism. By following standard
arguments and using the quasi-uniformity of {PH}H>0, there exist positive constants
ĉ1 and ĉ2, independent of H, such that

ĉ1 ‖v̂‖1,K̂ ≤ ‖v‖V (K) ≤ ĉ2H
d
2−1 ‖v̂‖1,K̂ , for all v ∈ H1(K) , (67)

with v̂ = v ◦RK . Similarly, we can prove that there exist ĉ1 and ĉ2, both positive and
independent of H, such that:

ĉ1H
d−1

2 ‖µ̃‖0,∂K̂ ≤ ‖µ‖0,∂K ≤ ĉ2H
d−1

2 ‖µ̃‖0,∂K̂ , for all µ ∈ L2(∂K), (68)

with µ̃ = µ ◦R∂K . From (67)–(68) and the standard trace inequality, we get

‖v‖0,∂K ≤ ĉH
d−1

2 ‖v̂‖0,∂K̂ ≤ ĉH
d−1

2 ‖v̂‖1,K̂ ≤ ĉ
1

H 1
2

‖v‖V (K) , (69)

for all v ∈ H1(K), where the positive constant ĉ does not depend on H. From the
Cauchy-Schwarz inequality and estimate (69), it holds

sup
v∈V

〈µH , v〉∂PH

‖v‖V
= sup
v∈V

∑
K∈PH

∫
∂K

µH v

‖v‖V
≤ sup
v∈V

∑
K∈PH

‖µH‖0,∂K ‖v‖0,∂K

‖v‖V

≤ 2

 ∑
F∈EHH

‖µH‖20,F

 1
2

sup
v∈V

( ∑
K∈PH

‖v‖20,∂K

) 1
2

‖v‖V

≤ ĉ

H 1
2

 ∑
F∈EHH

‖µH‖20,F

 1
2

, (70)
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where ĉ is positive constant independent on H or H. Finally, we use (66), (70) and
(59) to obtain (60).

4.3 Conditioning of local problems

Let aK , with K ∈ P0
H, and ãK , with K ∈ PH \P0

H, be the local matrices induced
by left-hand side of the local problems (39)–(40) (for more details see Section 5.1).
The objective of this section is to propose upper bounds for these local matrices. The
proof is postponed to the end of this section.

Theorem 5. Assume that (A1)–(A3) hold. Then, there exist positive constants c1
and c2, independent of meshes and physical parameters, such that

cond(aK) ≤ c1
(
ω + ‖a‖

ω

)2 ‖a‖
εmin

1

h2
for all K ∈P0

H, (71)

cond(ãK) ≤ c2
‖a‖
εmin

1

h2
for all K ∈PH \P0

H. (72)

In addition, if K ∈ P0
H, with ν|K ≥ ν0 > 0, there exists a positive constant c3,

independent of meshes and physical parameters, such that

cond(aK) ≤ c3
‖a‖
h2


ν0 d

2
Ω if εmin ≥ ν0 d

2
Ω,

c2I εmin+ν0 h
2

c2I+ h2

d2
Ω

if εmin < ν0 d
2
Ω,

(73)

where cI is the inverse constant such that ‖∇vh‖0,K ≤ cI
h ‖vh‖0,K , for vh ∈ Vh(K).

Before proceeding to prove such a result, and since conditioning is closely related
to the (inverse of) inf-sup constant γ, we first estimate a lower bound for it.

Lemma 6. Under assumptions (A1) and (A3), the constant γ given in (41) satisfies
the following lower bound

γ ≥
(

ω

ω + ‖a‖

)2
εmin

c2W
, (74)

with cW given in (52) and ω in (A3).

Proof. Let 0 6= wh be an arbitrary function in W̃h and consider the decomposition
wh = w0 + w̃h ∈ V0 ⊕ Ṽh. Note that w0|K = 0 for all K ∈PH \P0

H from (36). Using

the existence of ω and ξ?K in (54), we define v̄h ∈ W̃h as

v̄h|K :=

{
0 , K ∈PH \P0

H
‖w0‖V (K)

‖ξ?K‖V (K)
ξ?K , K ∈P0

H
, (75)
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and then ‖v̄h‖V = ‖w0‖V and a(w0, v̄h) ≥ ω ‖w0‖2V . Next, we consider v?h ∈ W̃h

v?h|K :=

 ω
c2W
εmin

wh , K ∈PH \P0
H(

ω + ‖a‖2
ω

)
c2W
εmin

wh + 2 v̄h , K ∈P0
H

. (76)

For K ∈P0
H, and using ‖wh‖2V (K) = ‖w̃h‖2V (K) + ‖w0‖2V (K), it holds

aK(wh, v
?
h) =

(
ω +

‖a‖2

ω

)
c2W
εmin

aK(wh, wh) + 2 aK(w0, v̄h) + 2 aK(w̃h, v̄h)

≥
(
ω +

‖a‖2

ω

)
‖w̃h‖2V (K) + 2ω ‖w0‖2V (K) − 2 ‖a‖ ‖w̃h‖V (K) ‖w0‖V (K)

= ω ‖wh‖2V (K) +

(
‖a‖
ω

1
2

‖w̃h‖V (K) − ω
1
2 ‖w0‖V (K)

)2

≥ ω ‖wh‖2V (K),

and then a(wh, v
?
h) ≥ ω ‖wh‖2V . On the other hand, from the definition of v?h in (76)

we get

‖v?h‖V ≤
c2W
εmin

(
ω2 + 2 εmin

c2W
ω + ‖a‖2

ω

)
‖wh‖V ≤

c2W
εmin

(ω + ‖a‖)2

ω
‖wh‖V ,

then it follows
a(wh, v

?
h)

‖v?h‖V
≥
(

ω

ω + ‖a‖

)2
εmin

c2W
‖wh‖V , (77)

and the result follows.

Furthermore, we can particularize (74) for the three different asymptotic regimes
present in the local problems defined in K ∈ PH, in order to obtain more precise
estimates. Specifically:

• Assume K ∈P0
H for an arbitrary ν. In this case (77) implies that for all vh ∈ Vh(K)

there exists v?h such that

aK(vh , v
?
h) ≥

(
ω

ω + ‖a‖

)2
εmin

c2W
‖vh‖V (K) ‖v?h‖V (K). (78)

• Assume K ∈PH \P0
H. Then,

aK(ṽh , ṽh) ≥ εmin

c2W
‖ṽh‖2V (K) for all ṽh ∈ Vh(K) ∩ L2

0(K) , (79)

where cW is given in (52).
• Assume K ∈P0

H with ν such that ν|K ≥ ν0 > 0. In this case we have

aK(vh , vh) ≥ εmin ‖∇vh‖20,K + ν0 ‖vh‖20,K for all vh ∈ Vh(K).
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In the asymptotic regime εmin ≥ ν0 d
2
Ω we arrive at

aK(vh , vh) ≥ ν0 d
2
Ω ‖vh‖2V (K) for all vh ∈ Vh(K) . (80)

Conversely, by assuming εmin < ν0 d
2
Ω and using inverse inequality ‖∇vh‖0,K ≤

cI
h ‖vh‖0,K , we prove the bound

aK(vh , vh) ≥ c2I εmin + ν0 h
2

c2I + h2

d2
Ω

‖vh‖2V (K) , for all vh ∈ Vh(K), (81)

where cI > 0 is independent of h or any data parameter.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Applying (51) to the matrices induced by the left side of (39)
and (40), and using the norm equivalence in (57) and the estimates in (78)–(81), the
result follows.

4.4 Conditioning of the global problem

This section is dedicated to prove upper bound for the conditioning of matrices associ-
ated with the left-hand side of the MHM method (42). For that, we define the mapping
A : ΛH → Λ′H , B : ΛH →W ′0 and BT : W0 → Λ′H given by

〈A ρH , µH〉Λ′H ,ΛH := −〈µH , Th ρH〉∂PH

〈B µH , w0〉W ′0 ,W0
= 〈BT w0, µH〉Λ′H ,ΛH := −〈µH , v0〉∂PH .

(82)

For simplicity, we also denote by A and B the matrices associated to operators in (82).

Theorem 7. Assume that (A1)-(A3) hold. Then there exist positive constants Ci,
i = 1, .., 4, independent of physical parameters, and mesh parameters H and H, but
which may depend on h, such that

cond(A) ≤ C1

γ θ

1

HH
if W0 = {0} , (83)

cond

([
A BT
B 0

])
≤ C2

γ%
max

{
C3

1

HH
,C4

(
H
H

)d}
if W0 6= {0} , (84)

where γ is bounded in Lemma 6, and

θ :=
εmin

‖a‖ (θ1 ‖a‖+ θ2 εmin)
and % ≥ β θ γ2

dΩ ((1 + γ + θ)2 γ2 β2 + (1 + β)2 θ2)
1
2

,

where θ1, θ2 and β are positive constant independent of mesh and physical parameters.
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The proof of Theorem 7 is postponed until the end of this section. Before, we first
estimate lower bounds for the inf-sup constants associated with the matrices A and B.

Lemma 8. Assume (A1) and (A2) hold. There exist positive constants θ1 and
θ2, independent of mesh or physical parameters, such that if we define θ :=

εmin

‖a‖ (θ1 ‖a‖+θ2 εmin) , then

inf
ρH∈NH

sup
µH∈NH

〈A ρH , µH〉Λ′H ,ΛH
‖ρH‖Λ ‖µH‖Λ

≥ θ , (85)

where
NH := {µH ∈ ΛH : 〈B µH , w0〉W ′0 ,W0

= 0 for all w0 ∈W0} . (86)

Moreover, if W0 6= {0}, there exists a positive constant β, independent of any mesh or
physical parameters, such that

inf
w0∈W0

sup
µH∈ΛH

〈B µH , w0〉Λ′H ,W0

‖w0‖V ‖µH‖Λ
≥ β . (87)

Proof. Let ρH ∈ NH , and consider Th ρH ∈ W̃h with its orthogonal decomposition
Th ρH = v0 + ṽh ∈ V0 ⊕ Ṽh. Consider the global lowest order Raviart–Thomas space
defined on the virtual mesh ΞH , i.e.,

XH := {τH ∈ H(div; Ω) : τH |κ ∈ RT0(κ) for all κ ∈ ΞH}. (88)

Given v0 ∈ W0, there exists τ̃H ∈ XH such that ∇ · τ̃H = − v0 in Ω and a positive
constant β independent of mesh parameters

β ‖τ̃H‖div ≤ dΩ ‖v0‖0,Ω ≤ d2
Ω ‖v0‖V . (89)

Thus,

(τ̃H ,∇Th ρH)PH ≤ ‖τ̃H‖0,Ω |Th ρH |1,PH ≤ d2
Ω

1

β
‖v0‖V |Th ρH |1,PH

= d2
Ω

1

β
‖v0‖V |ṽ|1,PH ≤ d2

Ω

1

β
‖v0‖V ‖ṽ‖V .

(90)

Then, take µ̃H ∈ ΛH be such that µ̃H := τ̃H ·nK |F on every F ∈ EHH . Using integration
by parts, the definition of τ̃H , and (90), we arrive at

〈µ̃H , Th ρH〉∂PH = (τ̃H ,∇Th ρH)PH + (∇ · τ̃H , Th ρH)PH

≤ d2
Ω

1

β
‖v0‖V |Th ρH |1,PH − ‖v0‖20,Ω

≤ d2
Ω

1

β
‖v0‖V ‖ṽ‖V − d2

Ω ‖v0‖2V .
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Let w0 ∈ W0, and observe that w0|K = 0 on every K ∈P0
H (see (33)). On the other

hand, as a consequence of (v0 + ṽh)|K = Th ρH |K ∈ Vh(K) ∩ L2
0(K) we have that

v0|K = 0 on every K ∈PH \P0
H, then (w0, v0)PH = 0. As a result,

〈µ̃H , w0〉∂PH =
∑

K∈PH

〈τ̃H · nK , w0〉∂K = (∇ · τ̃H , w0)PH =
∑

K∈PH

− (w0, v0)K = 0 ,

and, thus, µ̃H ∈ NH . We define now ρ?H :=
c2W
εmin

(
1 + 1

β2

)
ρH + 2 1

d2
Ω
µ̃H ∈ NH , then

−〈ρ?H , Th ρH〉∂PH = − c2W
εmin

(
1 +

1

β2

)
〈ρH , Th ρH〉∂PH − 2

1

d2
Ω

〈µ̃H , Th ρH〉∂PH

≥
(

1 +
1

β2

)
‖ṽh‖2V −

2

β
‖v0‖V ‖ṽh‖V + 2 ‖v0‖2V

= ‖Th ρH‖2V +

(
1

β
‖ṽh‖V − ‖v0‖V

)2

≥ ‖Th ρH‖2V . (91)

Next, using (30) and (46) we arrive at

c−1
F ‖ρH‖Λ ≤ sup

vh∈Vh

〈ρH , vh〉∂PH

‖vh‖V
≤ sup
ṽh∈W̃h

〈ρH , ṽh〉∂PH

‖ṽh‖V

= sup
ṽh∈W̃h

a(Th ρH , ṽh)

‖ṽh‖V
≤ ‖a‖ ‖Th ρH‖V ,

thus ‖ρH‖Λ ≤ cF ‖a‖ ‖Th ρH‖V . Using (89) and the definition of ρ?H , we obtain

‖ρ?H‖Λ ≤
c2W
εmin

(
1 +

1

β2

)
‖ρH‖Λ + 2

1

d2
Ω

‖µ̃H‖Λ

≤ c2W
εmin

(
1 +

1

β2

)
cF ‖a‖ ‖Th ρH‖V + 2

1

β
‖v0‖V

≤
(
c2W
εmin

(
1 +

1

β2

)
cF ‖a‖ + 2

1

β

)
‖Th ρH‖V ,

and then,

‖ρH‖Λ ‖ρ?H‖Λ ≤
(
θ1
‖a‖
εmin

+ θ2

)
‖a‖ ‖Th ρH‖2V , (92)

where the constants θ1 and θ2 independent of mesh and data parameters. The result
(85) follows replacing (91) into (92). Using W0 is a subspace of V0, the inf-sup condition
(87) follows from [19, eq. (28)].

The next result follows the analysis proposed in [33, Theorem 3] by combining
(87) and (85).
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Corollary 9. Assume (A1) and (A2) hold and W0 6= {0}. Then,

inf
(ρH ,w0)∈ΛH×W0

sup
(µH ,v0)∈ΛH×W0

〈A ρH , µH〉Λ′H ,ΛH + 〈BTw0, µH〉Λ′H ,ΛH + 〈B µH , w0〉W ′0 ,W0

(‖ρH‖2Λ + ‖w0‖2V )
1
2 (‖µH‖2Λ + ‖v0‖2V )

1
2

≥ %

where % satisfies

% ≥ β θ γ2

dΩ ((1 + γ + θ)2 γ2 β2 + (1 + β)2 θ2)
1
2

, (93)

with γ bounded in Lemma 6, and θ and β in Lemma 8.

Finally, we are ready to prove Theorem 7.

Proof of Theorem 7. Regarding the condition number of the matrix that defines the
global problem (82), it is first necessary to have an estimate for the norm of the bilinear
form that defines (42). Therefore, using (82) and ‖Th‖ ≤ 1

γ we note that

sup
µH∈ΛH
ρH∈ΛH

〈A ρH , µH〉Λ′H ,ΛH
‖ρH‖Λ ‖µH‖Λ

≤ sup
ρH∈ΛH

‖Th ρH‖V
‖ρH‖Λ

≤ 1

γ
. (94)

For the case W0 6= {0}, we get

sup
(µH ,v0)∈ΛH×W0

(ρH ,w0)∈ΛH×W0

〈A ρH , µH〉Λ′H ,ΛH + 〈BTw0, µH〉Λ′H ,ΛH + 〈B µH , w0〉W ′0 ,W0

(‖ρH‖2Λ + ‖w0‖2V )
1
2 (‖µH‖2Λ + ‖v0‖2V )

1
2

≤ 1 +
1

γ
.

(95)
Thus, the bilinear form in the left-hand side of (42) is bounded by 1 + 1

γ .

Therefore, we prove (83) using (51) for the matrix A in (82), along with the
equivalence given in (60), Lemma 8 and estimate (94). Following the same idea, we
prove (84) using (51) for each of the block diagonal matrices in (82) along with the
equivalence (58) and Corollary 9, and estimate (95).

Remark 7. As was highlighted in Remark 4, if ν ≥ ν0 > 0 in Ω, then (42) simplifies
to (44). In addition from (80) and (81) we arrive at the coercivity a(vh, vh) ≥ γ ‖vh‖2V
for all vh ∈ Vh, with

γ :=


ν0 d

2
Ω if εmin ≥ ν0 d

2
Ω

c2I εmin+ν0 h
2

c2I+ h2

d2
Ω

if εmin < ν0 d
2
Ω

. (96)

Then, we also obtain the coercivity

−〈µH , Th µH〉∂PH = a(Th µH , Th µH) ≥ γ

cF ‖a‖
‖µH‖2Λ , for all µH ∈ ΛH .
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Therefore, % = θ ≥ γ
cF ‖a‖ . This provides a lower bound for θ (and %) which is robust

with respect to small values of the physical parameter εmin and it does not depends on
ω.

5 Computational Aspects

5.1 The two-level MHM Algorithm

We present the matrix versions of the two-level MHM method (39)–(40) and (42) and
the parallel algorithm underlying it. Let K be an element of the partition PH, and
consider a basis for Vh(K) given by {φ1, . . . , φNK}, with NK := dimVh(K). We define
the local matrix aK ∈ RNK×NK with entries

aKij := aK(φj , φi) , for all i, j ∈ {1, . . . , NK} . (97)

Also, let ãK ∈ R(NK−1)×(NK−1) be the reduced matrix, where ãKij := aKij for all i , j ∈
{1, . . . , NK − 1}, and pK ∈ RNK×(NK−1) a rectangular matrix with entries

pKij := δij −
1

|K|

∫
K

φj dx , for (i, j) ∈ {1, . . . , NK} × {1, . . . , NK − 1} ,

where δij represents the Kronecker delta. Let {ψ1, . . . , ψdim ΛH} be a basis for ΛH , and
let us collect the basis functions with support on ∂K in the set {ψK1 , . . . , ψKMK

}, with
MK := dim ΛH(K). We define a local-global mapping

iK : {1, . . . ,MK} 7→ {1, . . . ,dim ΛH} , (98)

to properly identify the global degrees of freedom from local numbering. As such, we
have ψKj = ψiK(j) for j ∈ {1, . . . ,MK}. Then, we represent the right-hand side of the

local problems (39)–(40) using the matrix bK ∈ RNK×(MK+1) with entries

bKij := −〈ψKj , φi〉∂K , for all (i, j) ∈ {1, . . . , NK} × {1, . . . ,MK} ,
bKi,MK+1 := (f, φi)K , for all i ∈ {1, . . . , NK} .

We also consider a reduced matrix b̃K ∈ R(NK−1)×(MK+1) which is obtained by exclud-
ing the last row of the matrix bK . Owing to the previous constructions, we proceed
to compute the basis functions matrix cK as follows:{

Solve: aK cK = bK for K ∈P0
H

Solve: ãK c̃K = b̃K and cK = pK c̃K for K ∈PH \P0
H
. (99)

Therefore, solutions of (39) and (40) are locally computed as

Th ψ
K
j |K =

NK∑
i=1

cKi,j φi , for j ∈ {1, . . . ,MK} and T̂h f |K =

NK∑
i=1

cKMK+1,i φi. (100)
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It remains to write the linear system associated with (42). First, we construct a
matrix A ∈ Rdim ΛH×dim ΛH along with a vector f ∈ Rdim ΛH , with entries Ai,j :=

−〈ψj , Th ψi〉∂PH and fj := 〈ψj , T̂h f〉∂PH for i, j ∈ {1, . . . ,dim ΛH}. The procedure
to treat local problems detailed in (99) allows to construct A and f locally, through

the product of matrices q :=
(
cK
)T

bK on each K ∈PH. Then, by using the mapping
(98), we assemble A and f as follows

qKi,j
contributes to7−−−−−−−−−→ AiK(j),iK(i) , and − qKMK+1,j

contributes to7−−−−−−−−−→ fiK(j) ,

for i, j ∈ {1, . . . , NK}. If W0 is non-trivial let {w1, . . . , wdimW0
} be its canonical basis.

In this case we need to construct the matrix B ∈ RdimW0×dim ΛH and the vector
g ∈ RdimW0 with entries Bi,j := −〈wj , Th ψi〉∂PH and gj := − (f , wj)Ω, for i ∈
{1, . . . ,dim ΛH} and j ∈ {1, . . . ,dimW0}, respectively. To localize those computations,
we consider K ∈ PH \P0

H and set nK as the unique index in {1, . . . ,dimW0} such
that wnK = 1K . Furthermore, we set nK = [1, . . . , 1] ∈ RNK and rK = nK bK , thus
for j ∈ {1, . . . , NK} we have

rKj
contributes to7−−−−−−−−−→ BnK ,iK(j), and, − rKMK+1

contributes to7−−−−−−−−−→ gnK .

Finally, the matrix form (42) writes[
A BT
B 0

] [
λH
u0

]
=

[
f
g

]
. (101)

Therefore, uH0 ∈ W0 is recovered by u0|K = (u0)nK for all K ∈ PH \P0
H, and the

full discrete MHM’s solution uH,h restricted to K ∈PH writes

uH,h|K = uH0 |K +

MK∑
j=1

(λH)iK(j) Th ψ
K
j |K + T̂hf |K . (102)

The process of building the linear system in (101) serves as the foundation for imple-
menting the MHM method. A crucial point concerns the practical implementation of
the P0

H partition criterion. An element K is categorized into PH \P0
H if ‖aK nTK‖2

is below a predefined numerical tolerance, otherwise it belongs to P0
H. The entire

process is described in Algorithm 1.

5.2 Numerical experiments

We present two-dimensional and three-dimensional numerical experiments verifying
the theoretical results for the two-level MHM method (42) using solutions of the
RAD equation (1) with highly oscillatory behavior or boundary layers. They comple-
ment the extensive numerical validation presented in [21]. We distinguish two types
of convergence in numerical tests based on Theorem 3:

• H → 0. This is the usual mesh convergence, called mesh-based;
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Algorithm 1 Two-Level MHM Algorithm

for K ∈PH do (in parallel)
nK = [1, . . . , 1] ∈ RNK
if (||aK nTK ||2 > tol) then

solve aK cK = bK

set uH0 |K = 0
else

solve ãK c̃K = b̃K

set cK = pK c̃K

nK bK
contributes to7−−−−−−−−−→ B and g

end if(
cK
)T

bK
contributes to7−−−−−−−−−→ A and f

end for

solve

[
A BT
B 0

] [
λH
u0

]
=

[
f
g

]
for K ∈PH do (in parallel)

process uH,h|K from (100) and (102)
end for

• H → 0 with fixed H, called space-based.

We adopt second-level simplicial meshes to approximate the solution of local problems
and select the diameter h in order to avoid second-level pollution in the conver-
gence according to the error estimates (23). Furthermore, we verify the theoretical
upper bounds for local and global matrix conditioning in terms of physical and mesh
parameters.

5.2.1 An analytical oscillatory case

Consider the diffusion-advection problem defined in a unit square, with diffusive coef-
ficient ε = 10−1 I and advective field α = (1, 0) if d = 2, and α = (1, 0, 0) if d = 3.
We define the right-hand side such that the exact solution to the problem is given by

u(x, y) = sin(2nπx) sin(2mπy), with n,m ∈ N, if d = 2 ,

u(x, y, z) = sin(2nπx) sin(2mπy) sin(2lπz) , with n,m, l ∈ N, if d = 3 .

We asses the error estimates in the two-dimensional case using meshes composed of
the following polygons: triangle, square, rhombus, hexagon and L-shaped. The second-
level local meshes correspond to the minimum triangulations allowed by the stability
results in (A2) for the case k = `+2. The convergence profiles for m = 7 and n = 3 are
presented in Figure 2, where we can observe that the errors tend to zero as predicted
by theory for the mesh-based case (see Theorem 3). For the space-based case, we
found that the numerical solution is superconvergent with an extra O(H1/2) rate. Such
behavior was recently demonstrated in [34] for the Poisson model. We illustrate the
isolines of the solution in some of the polygonal meshes in Figure 3.
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Fig. 2: Convergence rates for mesh-based (left) and space-based (right) approach.

(a) rhombus (b) hexagons (c) L-shaped

Fig. 3: Isolines of the solution using H = H, ` = 1 and k = 3.

For the 3D tests, we set ` = 1 and k = 4, and the mesh-based strategy in the
MHM method. In this case, we adopt l = 1, m = 2 and n = 3 and tetrahedral meshes
to compare our result with those obtained by the classical Galerkin method using
quadratic interpolations. In Figure 4 we present the isolines of the solutions. We note
that the MHM method achieves high accuracy with fewer degrees of freedom when
compared to the Galerkin method.

5.2.2 An analytical boundary layer case

The domain Ω = (0, 1)2, and the physical coefficients are ε = ε I, ε ∈ R+, α = (a, 0),
a ∈ R, and σ = 0. The source term f = 1, and the Dirichlet boundary conditions at
x = 0 and x = 1, and the Neumann boundary conditions at y = 0 and y = 1 are
chosen such that the exact solution is given by

u(x, y) :=
1

a

(
x−

sinh
(
a
2εx
)

sinh
(
a
2ε

) e a2ε (x−1)

)
.

In Figure 5 we note the high accuracy of the MHM method for approximating bound-
ary layers without spurious oscillations in polygonal meshes (hexagons). In Figure 6
we present convergence curves with respect to mesh parameters for the mesh- and
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(a) Galerkin method with
145,505 dof

(b) MHM method with 71,424
dof.

Fig. 4: Isovalues of the solution using tetrahedral meshes in z = 0.75. On the right is
the MHM solution and on the left is the Galerkin solution with quadratic interpolation.

Fig. 5: Comparison of elevation between the Galerkin method with k = 2 (left), and
MHM with ` = 1, k = 3 on hexagonal elements (center). Profiles of Galerkin (blue)
and MHM (red) solutions, and the exact solution (black dot) at y = 0.4375 (right).
Here a = 1 and ε = 10−2.

space-based strategies of the MHM method, and compare them with those obtained
from the Galerkin method. We also compare the MHM and Galerkin methods in terms
of accuracy for different numbers of degrees of freedom (DoF). We observe that errors
decrease drastically when using the MHM method instead of the Galerkin method, if
we pay the price of computing multiscale basis functions in a completely parallel way.

5.3 Checking theoretical conditioning of matrices

This section is dedicated to validate the estimates presented in Theorem 5 and
Theorem 7. Consider problem (1) with Ω = (0, 1)2, f = 1, ε = ε I, ε ∈ R+, and
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Fig. 6: Comparison between Galerkin (k = 2) and MHM method (` = 1) using mesh-
and space-based strategies using hexagonal elements. Here a = 1 and ε = 10−2.

σ ∈ L∞(Ω) defined by

σ(x, y) =

{
ν1, x ∈ (0.0, 0.5]
ν0, x ∈ (0.5 , 1.0)

,

where ν0, ν1 ∈ R+ ∪ {0}. To define α, we partition Ω into 16 equal square regions
S1, . . . , S16 and consider a vector function β : Ω → R2 such that β|Si ∈ Q2(Si)

2 for
all i = 1, . . . , 16, satisfying ∇ · β|Si = 0 and β · nSi = 0. Thus we set α(x, y) :=
χβ(x, y) + (δ(x, y) , 0) for all (x, y) ∈ Ω, with χ ∈ R and δ : Ω→ R given by

δ(x, y) :=

 ω, (x, y) ∈ (0, 1)× (0.0, 0.5]
(3− 4 y) (ω − ω0) + ω0, (x, y) ∈ (0, 1)× (0.5 , 0.75)

ω0, (x, y) ∈ (0, 1)× [0.75 , 1.0)
,

where ω, ω0 ∈ R. Then, we approximate the solution of (1) using the method (42)
in a partition PH composed of the squares S1, . . . , S16 as described in Figure 7. To
cover a representative set of scenarios, we consider five cases as described in Table 1,
for which we check the estimates provided by Theorem 5 and Theorem 7 in relation to
ε, ω and H. For each case of Table 1 we highlight the structure of the MHM method,
that is, whether it has a mixed form such as (42) or primal given in (44). Next, the

χ ω0 ν0 ν1 Method’s Type
Case 1 7.5 × 101 0 0 0 Mixed
Case 2 1.0 × 100 0 0 1.0 × 100 Mixed
Case 3 1.0 × 100 5.0 × 10−1 0 0 Primal
Case 4 1.0 × 100 0 1.0 × 100 1.0 × 101 Primal
Case 5 2.5 × 101 1.0 × 100 1.0 × 100 0 Primal

Table 1: Summary of physical cases with ε and ω to be set.

analysis of local problems is limited to the problems defined in the square highlighted
in Figure 7. Our initial study, summarized in Figure 8, focuses on analyzing the depen-
dence of condition numbers on ε. We observed that cases 1, 3 and 5 corroborate the
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Fig. 7: Illustration of the partition PH with an example of α taking the values ω = 1
and ω0 = 0. The red element is used to calculate the condition number of matrices
associated with local problems.

estimates (71) regarding local problems. As predicted, the condition number increases
as ε−1 for small values of ε, and for large values of ε the condition number increases as
ε2 (see Figure 7 on left). According to (74) and (84), we anticipated that the global
problem condition number for cases 1 and 2 would follow a rate ε−3 for small values
of ε. However, both numerical data sets consistently exhibit a ε−2 rate. As for larger
values of ε, both cases actually show an anticipated rate of ε2, which corroborates the
theoretical results (see Figure 7 on right).

As proposed by Theorem 7, in the case W0 = {0}, the condition number of the
global problem (42) depends on the inverse of the product θ γ. We observe that θ =
O(ε) and γ = O(ε) for small values of ε. Then, we expect a rate of ε−2, that is
accurately fulfilled by case 3. We notice that case 5 shows a better order (ε−1) than
predicted by the theory. On the other hand, in case 4, using Remark 7, we can see that
the condition number does not depends on ε which is corroborate by the numerical
results (see Figure 8). Similarly, for W0 6= {0} the condition number of the global
problem (42) depends on the inverse of the product % γ. We observe that % = O(ε2)
for small values of ε thus we expect that the condition number of the global problem
has a rate of ε−3. The numerical results in Figure 8, for cases 1 and 2, show a better
order of dependence of the condition number with respect to ε, than the predicted by
the theory.

The theoretical behavior of the condition number for local problems relative to
small values of ω follows from the estimate (71). In cases 1, 3 and 5, a rate of ω−2 is
predicted, while cases 2 and 4 are expected to exhibit stable behavior as predicted by
(73). Notably, these theoretical estimates closely match the numerical results shown in
Figure 9 (left). For large values of ω, both theoretical estimates and numerical results
show a linear increase with respect to ω.
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Fig. 8: Conditioning of matrices related to local (left) and global (right) problems
with respect to ε. Here, ` = 0, k = 2, h = H = H, and ω = 1.

Figure 9 right shows that the condition number associated with the global problem
increases as ω2 for large values of ω in all five cases. This behavior was anticipated
by (83) for cases 3 and 5, but for cases 1 and 2, the theoretical prediction of (84)
suggested a rate of ω6. This may indicate that the (84) estimate is pessimistic and
can be improved.

Similarly, using (83) joint to (74) we can see that, cases 3 and 5 define global
problems with a condition number following a rate of ω−2, for ω small. That behavior
is corroborate by the numerical results in Figure 9 (right). By the other side, (84)
with the definition of % in Theorem 7, predicts that the condition number of the global
problem increase with a rate of ω−6, for small values of ω. However, the numerical
results in Figure 9 show a rate of ω−2 for cases 1 and 2. Notably, in case 4 the numerical
experiments show that the condition number is robust with respect to small values of
ω, as predicted by (83) using Remark 7.

Estimates for the conditioning of the global system, given in (83) and (84), may
depend on the small length-scale parameter h through the constant C1. In Figure 10
(left), we numerically study the dependence of cond(A) in terms of h, and one finds
that it remains stable over a large range of h, indicating that the constant C1 may
depend only slightly on h. This is particularly attractive when using the MHM method
in highly multiscale problems, where the second-level mesh must be refined.

Also in Figure 10 (right), we validate (83) and (84) in terms of H for a fixed H.
We observe that the numerical experiments for the cases 3, 4 and 5 exactly recover
the theoretical estimate given in (83). Interestingly, we find that the estimate behaves
like H−1 which is better than the theoretical estimate of order H−2 given in (84).
Additional studies are needed to verify whether (84) can be improved.

Finally, we illustrate the advantages of the proposed method in comparison to the
classical Galerkin method in Figure 11. Specifically, we compare the performance of
the Galerkin method using P1 elements with the MHM method (with ` = 0) for the
problem in the Section 5.2.2 with ε = a = 1, and considering different choices for

34



10
-4

10
-2 1 10

2
10

4
10

6
10

8
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
-4

10
-2 1 10

2
10

4
10

6
10

8
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

Fig. 9: Conditioning of matrices related to local (left) and global (right) problems
with respect to ω. Here, ` = 0, k = 2, h = H = H and ε = 1.
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the second level approximation. The idea is to measure how the conditioning of the
matrices underlying the Galerkin and MHM methods behaves in relation to the error
you want to achieve. In all cases (see Figure 11), we observe a clear advantage of the
MHM method. Note that for a given target error, this advantage arises when we refine
H, which impacts the condition number with a rate H−1 in the case of the MHM
method, in contrast to a rate of h−2 observed in the Galerkin method.
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6 Conclusions

The present work proposed a general methodology to construct and analyze a new
family of MHM methods for the RAD model for polytopal elements, where the methods
in [21] and [19] are particular cases. In this sense, the present work is a companion
article to [21], which proves the well-posedness and optimal convergence of the method
proposed in [21], while also extending it to polytopal meshes. The functioning of the
upscaling procedure in the novel MHM methods depends on the balance between
the diffusion, reaction and advection coefficients at the elementary level, impacting
the mathematical structure of the method. Notably, the method recovers the original
mixed form of the MHM method for the Poisson model in [18] since the multiscale basis
functions satisfy local Neumann problems with a zero mean value constraint. On the
other hand, when the reaction coefficient is present (but the advective term is absent),
the local problems are still of the Newman type, and the MHM method induces a
coercive operator in the H1-space. The presence of an advection field in the model
is more involved. In this case, the MHM method relies on local RAD problems with
Robin boundary conditions. Since the mathematical structure of the MHM method
depends on the well-posedness of local problems, whenever a local RAD problem is
identified as ill-posed, the MHM method becomes of mixed type, which recovers the
well-posedness of the local problem.

Such an adaptive mechanism naturally impacts the matrix conditioning of linear
algebraic systems (local and global) underlying the MHM method. We prove theoreti-
cal upper bounds of the condition number for the local and global matrices associated
with the method and study their asymptotic behavior from the point of view of physical
coefficients and different spatial scales. The main conclusions are that the associated
global matrix is better conditioned (i.e. O(H−1) instead of O(H−2) for the classical
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Galerkin method) when we use the method in its space-based form (H fixed, H → 0)
and is also insensitive to local refinement of sub-meshes (h → 0). This last feature is
particularly attractive when dealing with multi-scale problems where the local mesh
must be refined.

Furthermore, we prove that the new MHM methods are well-posed under the same
compatibility conditions between the interpolation spaces presented in [19] and [20]
and achieve optimal convergence in term of the skeletal mesh diameter assuming local
regularity. Interestingly, such proofs did not follow the original strategy proposed in
[18] but are the result of the equivalence between the two-level MHM methods and a
discrete version of the primal hybrid formulation following the idea proposed in [22, 23]
for the Poisson equation.

Extensive numerical tests validated the theoretical results on meshes contain-
ing L-type and hexagonal elements, for example, applied to problems with solutions
containing boundary layers and oscillatory behaviors in two-dimensional and three-
dimensional domains, showing the robustness of the methods in terms of physical
parameters. On the other hand, the theoretical demonstration of such robustness
with regard to the impact of physical parameters on error estimates remains an open
problem and will deserve further investigation.
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