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1. Supplementary theoretical results

1.1. Proof of Theorem 4

Theorem 4 (FDR control with BH [1]). Let m be a positive integer and (Xi)m
1

be independent random variables such that Xi ∼ P0, 1 ≤ i ≤ m0, and Xi ∼ P1,
m0 + 1 ≤ i ≤ m. Let us also define the set of true p-values, for all 1 ≤ i ≤ m
by pi = PX∼P0(X ≥ Xi) ∈ [0, 1], and assume that each pi ∼ U([0, 1]). Then for
every α ∈]0, 1], BHα applied to p = (pi)1≤i≤m yields the exact FDR control at
the prescribed level α that is,

FDRm
1 (εBHα

, p) = m0α

m
.

Proof of Theorem 4. Let R be a random variable describing the number of re-
jections made by BHα that is, R =

∑m
i=1 Di, where Di = 1 if hypothesis H0,i

is rejected. Let also FP be the number of false positives made by BHα. Then,
FP =

∑m
i=1 AiDi =

∑m0
i=1 Di, where Ai is a random variable equal to 1 if

hypothesis H0,i is true and 0 otherwise. Furthermore

FDP = FP

R
=

m0∑
i=1

1[pi ≤ αR
m ]

R
(since Di = 1[pi ≤ αR

m ])

=
m∑

k=1

m0∑
i=1

1[pi ≤ αk
m ]1[R = k]

k
. (1.1)

Let us now introduce the random variables R(i) that are the number of re-
jections generated by BH when pi is replaced by the value 0 that is, R(i) =
BHα(p1, .., pi−1, 0, pi+1, . . . , pm). It results that

1[pi ≤ αk

m
]1[R = k] = 1[pi ≤ αk

m
]1[R(i) = k],
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since, on the event {pi ≤ αk
m }, pi is rejected and therefore R = R(i). Let us also

notice that the independence between the p-values is already used at this stage
since modifying the value of pi does not affect that of the others.

By combining the previous argument and the independence between R(i) and
the other p-values, the expectation on both sides yields

FDP =
m∑

k=1

m0∑
i=1

1[pi ≤ αk
m ]1[R(i) = k]

k

⇒ FDR = E[FDP ] =
m∑

k=1

m0∑
i=1

P[pi ≤ αR
m ]P[R(i) = k]

k

=
m∑

k=1

m0∑
i=1

αk
m P[R(i) = k]

k

= m0α

m
,

where the last equality results from the fact that the true p-values follow a
uniform distribution on [0, 1]. The result finally follows from noticing that for
each 1 ≤ i ≤ m0,

∑m
k=1 P[R(i) = k], since R(i) ≥ 1 by definition.

1.2. FDR control with disjoint subseries

1.2.1. Preliminary discussion: Disjoint and Overlapping subseries

In the context of online anomaly detection, the main focus in what follows is
put on two situations where the data-driven thresholds (ε̂t)t≥0 can be defined
from a set of m empirical p-values: (i) the disjoint case where disjoint subseries
of length m are successively considered, and (ii) the overlapping case where the
subseries (of length m) successively considered share m−1 common observations
at each step.

Let us start with a subseries of length m where each observation is summa-
rized by its corresponding empirical p-value, and let us assume that there exists
a function fm : [0, 1]m → [0, 1] that is mapping a set of m empirical p-values
onto a real-valued random variable. This random variable corresponds to the
data-driven threshold that is applied to the subseries of length m to detect po-
tential anomalies. This function fm is called the local threshold function since
it outputs a threshold which applies to a subseries of length m.

Given the above notations, the threshold sequences ε̂d = (ε̂d,t)t and ε̂o =
(ε̂o,t)t can be defined as follows.

• Disjoint subseries: ε̂d : t 7→ ε̂d,t is given by

∀k ≥ 0, ∀t ∈ Jkm + 1, (k + 1)mK, ε̂d,t = fm(p̂km+1, . . . , p̂(k+1)m)
(1.2)
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• Overlapping subseries: ε̂o : t 7→ ε̂o,t is given by

∀t ≥ m, ε̂o,t = fm(p̂t−m+1, . . . , p̂t). (1.3)

Figure 1 illustrates these two situations. In Figure 1a, the full time series is split
into small disjoint subseries of length m. fm is applied to each such subseries and
the threshold is the same for all observations within a given subseries. Figure 1b
displays the situation where overlapping subseries are successively considered.
Because two successive subseries differ from each other by two observations, the
thresholds are different at each time step unlike the disjoint case. Furthermore

p̂1, . . . , p̂(k−2)m+1, . . . , p̂(k−1)m, p̂(k−1)m+1, . . . , p̂km

fmfm

ε̂d,1, . . . , ε̂d,(k−2)m+1, . . . , ε̂d,(k−1)m, ε̂d,(k−1)m+1, . . . , ε̂d,km

(a) Illustration of disjoint windows.

p̂1, . . . , p̂t−2m, . . . , p̂t−m−1, p̂t−m, p̂t−m+1, . . . , p̂t−1, p̂t

fmfmfm

ε̂o,1, . . . , ε̂o,t−2m, . . . , ε̂o,t−m−1, ε̂o,t−m, ε̂o,t−m+1 . . . , ε̂o,t−1, ε̂o,t

(b) Illustration of Overlapping sliding windows.

Figure 1: Comparison of disjoint window and overlapping window for the thresh-
old function.

the sequences ε̂d and ε̂o do not enjoy the same dependence properties. Figure 1a
illustrates that all thresholds ε̂d,(k−1)m+1, . . . , ε̂d,km are computed by applying
fm to the same subseries p̂(k−1)m+1, . . . , p̂km. Therefore only thresholds com-
puted from different subseries are independent, while all thresholds from the
same subseries are equal. In other words, ε̂d,t1 and ε̂d,t2 are independent if and
only if t1 and t2 belong to different subseries that is, ⌊t1/m⌋ ≠ ⌊t2/m⌋, where ⌊·⌋
denotes the integer part. By contrast Figure 1b shows that the variables ε̂o,t and
ε̂o,t−1 are dependent because they share m − 1 common observations. But all of
them are still different and, for each t, ε̂o,t is independent from ε̂o,t−m−1. This
can be reformulated as ε̂o,t1 , ε̂o,t2 are independent if and only if |t1 − t2| > m.

In the present online anomaly detection context, considering the overlapping
case sounds more convenient since the detection threshold can be updated at
each time step (as soon as a new observation has been given), which makes
the anomaly detector more versatile. However for technical reasons, next Sec-
tion 1.2.2 still focuses disjoint subseries as a means to introduce important
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notions without introducing too many technicalities, while the main paper in
Section 4.1 gives a more general and realistic case of overlapping subseries.

1.2.2. FDR control with disjoint subseries

As illustrated in Section 4 in the main paper, controlling FDR on each subseries
of length m (locally) is not equivalent to controlling FDR (globally) on the full
time series. However in online anomaly detection, a decision has to be made at
each time step regarding the potential anomalous status of each new observation.
(This is a typical instance of a local decision since at step t, the decision making
process ignores what will be observed at the next step.) This requires a criterion
to be optimized locally (on subseries) in such a way that the resulting global
FDR value (the one of the full time series) can be proved to be controlled at
the desired level α.

This requirement for a local criterion justifies the introduction of the modified
FDR criterion, denoted by mFDR [10, 5], which is defined as follows.

Definition 1 (mFDR). With the previous notations, the mFDR expression of
the subseries from t − m + 1 to t is given by

mFDRt
t−m+1(ε̂, p̂) =

E

[∑
u∈H0,t−m+1≤u≤t 1[p̂u ≤ ε̂u]

]
E

[∑t
u=t−m+1 1[p̂u ≤ ε̂u]

] ,

where ε̂ = (ε̂u)t−m+1≤u≤t denotes a sequence of thresholds, p̂ is a sequence of
empirical p-values evaluated at each observation of the subseries from t − m + 1
to t.

Mathematically the difference between the mFDR and the FDR is that the
expectation is no longer on the ratio but independently on the numerator and
the denominator. The main interest for mFDR is clarified by Theorem 5, which
establishes its connection to FDR. To be more specific, the control of the latter
at the α level provides a global control of the FDR at the same level under
simple conditions.

Theorem 5 (Global FDR control with disjoint subseries). Assume that ε̂d :
t 7→ ε̂d,t is given by ε̂d,t = fm(p̂km+1, . . . , p̂(k+1)m), for any t ∈ Jkm+1, (k+1)mK
(k ≥ 0) and any integer m ≥ 1 (see Eq. (1.2)). Let us also assume that the p-
value random process p̂ = (p̂t)t≥1 follows the scheme detailed in Definition 3
of the main paper. Then, the global FDR value of the full (infinite) time series
is equal to the local mFDR value of the any subseries of length m from t =
km + 1, k ∈ N

∗. More precisely,

FDR∞
1 (ε̂d, p̂) = mFDR

(k+1)m
km+1 (ε̂d, p̂) = mFDR

(k+1)m
km+1 (ε̂d, p̂).

Since the full time series is assumed to be infinite, Theorem 5 is an asymptotic
result. It gives rise to a strategy for controlling the (asymptotic) FDR criterion
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at level α by means of successive local controls of mFDR on small subseries
of length m. According to the asymptotic nature of Theorem 5, there is no
particular constraint on the integer m. However when dealing within time series
of a finite length T , the Theorem 5 proof suggests that choosing an m “not too
large” would be better since then, k = T/m would take large values making
the LLN applicable (see for instance Eq. (1.4)). Actually in the online anomaly
detection context, practitioners only have a limited freedom regarding the choice
of m. Therefore, for a given fixed m, the control of the FDR value of the full
time series given by Theorem 5 will be all the more accurate as T will be large.
Fortunately this is not a limitation in the online anomaly detection context. The
main limitation of Theorem 5 lies in the use of disjoint subseries, which sounds
somewhat restrictive (at least from a practical perspective). This limitation is
be overcome by Theorem 2 in the main paper.

Proof of Theorem 5. Let k ≥ 1 denote an integer and T = mk. Then, the FDP
definition and the At variables introduced in Definition 3, in the main paper,
justify that

FDP T
1 (ε̂d, p̂) = FP T

1 (ε̂d, p̂)
RT

1 (ε̂d, p̂)
=

∑T
t=1 1[p̂t < ε̂d,t](1 − At)∑T

t=1 1[p̂t < ε̂d,t]
,

where RT
1 (ε̂d, p̂) and FP T

1 (ε̂d, p̂) respectively denote the number of rejections
(resp. false positives) at the threshold ε̂d for the subseries p̂.

Using the partitioning into k subseries of length m, its first comes that
FP T

1 (ε̂d, p̂) =
∑k

i=1 FP
(i+1)m
im−1 (ε̂d, p̂). It is also noticeable that the k random

variables {FP
(i+1)m
im−1 (ε̂d, p̂)}1≤i≤k are independent and identically distributed

since the thresholds ε̂d,i
remain unchanged within each subseries, they are iden-

tically distributed from one block to another, and the empirical p-values from
different blocks are independent and identically distributed as well. Therefore
the random variables (FP

(i+1)m
im−1 (ε̂d, p̂))1≤i≤k are independent and identically

distributed, which implies (Law of Large Numbers theorem) that, almost surely,

lim
k

1
k

k∑
i=1

FP
(i+1)m
im−1 (ε̂d, p̂) = E[FP m

1 (ε̂d, p̂)], (1.4)

where the expectation is taken over all sources of randomness. (Here it is im-
plicitly assumed that T can go to +∞.) Repeating the argument forRT

1 (ε̂d, p̂),
it also comes that

E[Rm
1 (ε̂d, p̂)] = lim

k

1
k

k∑
i=1

R
(i+1)m
im−1 (ε̂d, p̂), a.s..

The conclusion then results from noticing that

mFDRm
1 (ε̂d, p̂) = E[FP m

1 (ε̂d, p̂)]
E[Rm

1 (ε̂d, p̂)] = lim
k

∑k
i=1 FP

(i+1)m
im−1 (ε̂d, p̂)∑k

i=1 R
(i+1)m
im−1 (ε̂d, p̂)

= lim
T

FDP T
1 (ε̂d, p̂).
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2. Supplementary experiments

2.1. Comparison of p-values estimators

The control of the FDR is not achievable using classical multiple testing [2, 9]
since the empirical p-value estimator, shown in Section 2.2 of the main paper,
is not super-uniform. Conformal p-value estimator p̃, shown in Equation 2.1,
verifies the super-uniform property.

p̂e(st, Scal
t ) = 1

|Scal
t | + 1

1 +
∑

s∈Scal
t

1[st > s]

 (2.1)

However, this estimator p̃ ≥ 1
m+1 has lower power because zero anomalies

are detected with thresholds below 1
m+1 .

Figure 2 displays the comparison between estimated p-values and conformal
p-values using the BH-procedure. As shown in Figure 2a, the conformal p-values
ensure an upper bound on the FDR at level m0

m α, while the estimated p-values
ensure only a lower bound at the same level. Moreover, perfect control are
reached for n = 1000 and n = 2000 with conformal p-values while the control
is reached for n = 999 and n = 1999 with estimated p-values. As shown in
Figure 2b, the FNR for conformal p-values estimator is always larger than the
one for estimated p-values. However for the n points that control the FDR, the
FNR values are close.

To conclude, the choice between conformal p-values and estimated p-values
depends on the calibration set size. Indeed, for calibration set n = 1000 the
performances are similar. But for other calibration set sizes as n = 1500 the
FDR control are similar but the FNR is better for estimated p-values.

(a) FDR (b) FNR

Figure 2: Comparison between p-value estimators using Benjamini-Hochberg
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2.2. Disjoint subseries vs overlapping subseries

Experiment Description Theorems 5 and 2 theoretically prove the control
of the FDR over the full time series throw control of the mFDR over disjoint
subseries or overlapping subseries. According Corollary 5 in the main paper,
the procedure mBHα allows the control of the mFDR over subseries under
assumption Heuristic and Power that are hard to verify. Empirical results
from Section 5.2 of the main paper show that control of mFDR for the disjoint
subseries can be obtained for scenarios where the level of atypicity δ is high
enough. It still unknown whether these results hold true in cases where the
subseries overlap In this section FDR control throw disjoint and overlapping
subseries are compared.

For each scenario, the quantities mFDRm
1 and FNRm

1 are estimated two
times, using disjoint subseries and using overlapping subseries. All subseries are
extracted from the same time series of size T = 104. The distribution of these
estimations is obtained by repeating the experiment across B = 100 time series.
Thus, the two estimations of mFDRm

1 and FNRm
1 quantities can be compared.

The experimental design is described as follows:

1. With b in J1, BK and t in J1, T K, the time series is generated from a mixture
model:

• Ab,t ∼ Ber(π)

• If Ab,t = 0, pb,t ∼ U([0, 1])

• Otherwise: pb,t ∼ U([0, 1/δ])

2. The thresholds of mBH are estimated on each subseries pb,k,t+1, . . . , pb,k,t+m0+m1 :

• ε̂b,t = mBHα(pb,k,t+1, . . . , pb,k,t+m0+m1).

3. The numbers of rejections, false positives and false negatives are calcu-
lated, according the different cases.

(a) In the disjoint subseries case, the quantities are computed using only
thresholds on the form ε̂b,km over disjoint subseries
For 1 ≤ b ≤ L and 1 ≤ k ≤ K = T/m:

• Rb,k,d =
∑(k+1)m

t=km+1 1[pb,k,t ≤ ε̂b,km],

• FPb,k,d =
∑(k+1)m

t=km+1 1[pb,k,t ≤ ε̂b,km](1 − At),

• FNb,k,d =
∑(k+1)m

t=km+1 1[pb,k,t > ε̂b,km]At.

The mFDR and FNR are estimated:

• mFDRb,d = 1
K

∑K
k=1 FPb,k,m,d

1
K

∑K
k=1 Rb,k,m,d,

• FNRb,d = 1
K

∑K
k=1

F Nb,k,m,d

m1
.
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(b) In the overlapping subseries case, the quantities are computed using
the thresholds from all overlapping subseries ε̂b,t:
For 1 ≤ b ≤ L and 1 ≤ k ≤ K = T/m:

• Rb,k,o =
∑(k+1)m

t=km+1 1[pb,t−m+1,t,o ≤ ε̂b,t],

• FPb,k,o =
∑(k+1)m

t=km+1 1[pb,t−m+1,t ≤ ε̂b,t](1 − At),

• FNb,k,o =
∑(k+1)m

t=km+1 1[pb,t−m+1,t > ε̂b,t]At.

Notice the difference with disjoint windows case, all p-values of a
subseries are compared to different thresholds and not to the same
ε̂b,km.

The mFDR and FNR are estimated:

• mFDRb,o = 1
K

∑K
k=1 FPb,k,m,o

1
K

∑K
k=1 Rb,k,m,o,

• FNRb,o = 1
K

∑K
k=1

F Nb,k,m,o

m1
.

Different scenarios are generated by varying the proportion of anomalies
π and the atypicity level δ.

Results and analysis As shown in Figure 3, disjoint and overlapping sub-
series control give similar results in mFDR and FNR for considered cases. In-
deed, the curves are indistinguishable and decrease at the same rate.

(a) mFDR, α = 0.1, π = 0.01 (b) FNR, α = 0.1, π = 0.01

Figure 3: Comparison of mFDR and FNR control with disjoint and overlapping
windows method.

Conclusion The FDR control quality are similar for both strategies, over-
lapping windows and disjoint windows. This imply that performances of the
anomaly detector to not decrease by using overlapping windows instead of dis-
joint windows. This is a practical result that allows to do real time detection
without having to wait to complete disjoint windows.
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2.3. Example on real data

In this section, the anomaly detector is applied to one real data example:
the musk dataset [3]. The Musk Anomaly Detection dataset describes a set
of molecules, and the objective is to detect musks (normal) from non-musks
(anomalies). This dataset contains 3000 instances of 166 features with 3% anoma-
lies. This is tabular data, but it is assumed that the data arrives sequentially.
The goal is to detect anomalies online and check that the FDR remains less
than α = 0.1.

Our data set is divided into three sets.

• The training set is used to learn the atypicity score. In this section, the
atypicity score is estimated using Isolation Forest [7].

• The calibration set, which is used to calculate the p values. It contains
normal data only. In this section, the same calibration set is used for all
data.

• The test set, which contains data arriving sequentially and for which
anomalies are to be detected.

Anomalies are detected using the following steps:

1. First, the scoring function is trained on the training set. Here, the “fit”
method from the “IForest” class in the “PyOD” [11] Python library is
used. The atypicity score resulting from this training is noted by â.

2. The atypicity scores of the calibration set data points are calculated. This
is essential for estimating the p-values of the observations.

3. To apply Theorem 3, the parameter α′ must be specified, so that
ER∗,m

1,α′

ERm
1,α′

α′ ≤

α. In order to achieve this, the ratio
ER∗,m

1,α′

ERm
1,α′

can be estimated for different
values of α̃, as described in Appendix A.1.2. In this section the training set
data is reused. The function a is applied to each data point in the training
set, then these score values are compared with those in the calibration set
to find out their empirical p-value. For each value of α̃, to estimate ERm

1,α′

the average number of rejections is counted when BH is applied to sub-
series of length m = 100. Similarly, to estimate ER∗,m

1,α′ one of the p-values
is replaced by 0. The results are shown in Figure 4. The x-axis represents
the α̃ parameter used in BH, and the y-axis represents an upper bound on
the mFDR. The largest α̃ ensuring ER∗,m

1,α̃

ERm
1,α̃

α̃ ≤ α, is α′ = 0.074 according
to Figure 4.

If the proportion of π anomalies were known then α′ could be estimated
from the heuristic described in Appendix A.1.1, α′ = α

(
1 + 1−α

mπ

)−1 =
0.075. The results are therefore very similar.



E. Krönert et al./FDR control for Online Anomaly Detection 10

Figure 4: Illustration of α′ selection method

Threshold estimation FDR FNR
our (BHα′ ) 0.08 0.1
Fixed Threshold 0.54 0.0

Table 1
Anomaly detection, according to the threshold selection procedure on musk dataset.

4. In the final step, the anomaly detector is applied to the test set data. For
each data point Xt coming from the test set, the score function a is applied
to obtain st. Then st is compared to the scores of the calibration set Scal

to obtain an estimate of the p − value p̂t. In order to control the FDP, the
detection threshold ε̂t is estimated by applying the Benjamini-Hochberg
procedure at the α′ level on p̂t−m, . . . , p̂t. The status of Xt is obtained by
comparing p̂t and ε̂t.

The results of the detection are presented in Table 1. The columns represent
the FDR and FNR for the detection on the musk dataset. For comparison, the
result using a fixed threshold (εt = 0.05) is used, as in Conformal Anomaly
Detection [6].

Table 1 shows that when a fixed threshold is used, the proportion of false
detections is not controlled. In this example, the FDR is 0.54. The FDR is
controlled to a value of 0.08 using the multiple testing procedure developed in
this paper.
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3. Supplementary Figures

3.1. Effect of the number detections by BH on the intermediate
drops for the FDR control in Section 5.1

(a) m1 = 1 (b) m1 = 1

(c) m1 = 2 (d) m1 = 2

(e) m1 = 3 (f) m1 = 3

(g) m1 = 4 (h) m1 = 4

Figure 5: Effect of the number detections by BH on the intermediate drops for
the FDR control
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3.2. Figures related to experiment of Section 5.2

(a) mFDR, α = 0.1, π =
0.07

(b) FDR, α = 0.1, π =
0.07

(c) FNR, α = 0.1, π =
0.07

(d) mFDR, α = 0.05, π =
0.07

(e) FDR, α = 0.05, π =
0.07

(f) FNR, α = 0.05, π =
0.07

(g) mFDR, α = 0.2, π =
0.07

(h) FDR, α = 0.2, π =
0.07

(i) FNR, α = 0.2, π =
0.07

(j) mFDR, α = 0.1, π =
0.01

(k) FDR, α = 0.1, π =
0.01

(l) FNR, α = 0.1, π =
0.01

Figure 6: Effect of the atypicity level on the mFDR, FDR and FNR, according
to different multiple testing procedures.
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3.3. Figures related to experiment of Section 2.2

(a) mFDR, α = 0.1, π =
0.01

(b) mFDR, α = 0.1, π =
0.02

(c) mFDR, α = 0.2, π =
0.02

(d) FNR, α = 0.1, π =
0.01

(e) FNR, α = 0.1, π =
0.02

(f) FNR, α = 0.2, π =
0.02

Figure 7: Effect of atypicity level on mFDR and FNR, depending on whether
detection is on disjoint or overlapping subseries
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