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Abstract: The goal of anomaly detection is to identify observations gen-
erated by a process that is different from a reference one. An accurate
anomaly detector must ensure low false positive and false negative rates.
However in the online context such a constraint remains highly challeng-
ing due to the usual lack of control of the False Discovery Rate (FDR). In
particular the online framework makes it impossible to use classical mul-
tiple testing approaches such as the Benjamini-Hochberg (BH) procedure.
Our strategy overcomes this difficulty by exploiting a local control of the
“modified FDR” (mFDR). An important ingredient in this control is the
cardinality of the calibration set used for computing empirical p-values,
which turns out to be an influential parameter. It results a new strategy
for tuning this parameter, which yields the desired FDR control over the
whole time series. The statistical performance of this strategy is analyzed
by theoretical guarantees and its practical behavior is assessed by simula-
tion experiments which support our conclusions.

MSC2020 subject classifications: Anomaly detection, Time series, Mul-
tiple testing.

1. Introduction

1.1. Context

By observing indicators along the time to check the system health, anomaly
detection aims at raising an alarm if abnormal patterns are detected [1, 39].
A motivation for automatic anomaly detection is to reduce the workload of
operations teams by allowing them to prioritize their efforts where necessary.
This is usually made possible by using statistical and machine learning models
[14, 10, 7]. However when badly calibrated an anomaly detector leads to alarm
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fatigue. An overwhelming number of alarms desensitizes the people tasked re-
sponding to them, leading to missed or ignored alarms or delayed responses
[15, 8]. One of the reasons for alarm fatigue is the high number of false positives
which take time to be managed [54, 35]. The main goal of the present work is to
design a new (theoretically grounded) strategy allowing to control the number
of false positives when performing automatic anomaly detection in sequential
context.

1.2. Related works

Anomaly Detection in time series According to [24] an anomaly is “An ob-
servation which deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism.” Actually the features of what is
usually called an “anomaly” is more diverse depending on the context. For exam-
ple an anomaly can refer to a value that appears larger than the mean of other
values, or to a sequence of values having a smaller variance than other neigh-
boring sequences of observations. Anomaly detection in time series is applied in
various domains such as fault [45] or attack [46] detection in information sys-
tems, fault detection in industrial equipment [36, 43], fault detection in vehicles
[29, 23], medical diagnostics [40, 37, 62] and astronomy [26]. The question of de-
signing anomaly detectors has been considered in different contexts as explained
by [14]: supervised, unsupervised and semi-supervised. The present work focuses
on the unsupervised framework which is the most widespread one since labeling
is often difficult and costly. Sometimes, specific pattern of anomalies are known,
and specific detectors can be designed to detect them [9, 25, 31]. But most of
the time the patterns have to be discovered as well. Review papers [14, 7, 51]
reveal the diversity of existing approaches. Some of the most important cate-
gories of anomaly detectors are: distance-based anomaly detectors identifying
anomalies far from other past observations [38], or probability-based anomaly
detectors identifying anomalies within a low probability area of a statistical
model fitted on past observations [2, 34]. Prediction-based anomaly detector
aims at building a forecast model on training data. Anomalies are defined with
high prediction error on streaming data [50], [48], [11], [44]. And reconstruction-
based anomaly detection uses dimension reduction and anomalies correspond to
high reconstruction errors on streaming data [32],[43], [59].

The present work describes a versatile anomaly detector that is sensitive
to all categories of anomalies depending on the underlying score function (see
Section 2.1).

A high diversity of abnormality score functions can be used to detect different
abnormality patterns [17]. Abnormality scores are often not easily interpretable
if the score distribution is unknown. Therefore, it is impossible to make a judi-
cious choice of the detection threshold. The Conformal Anomaly Detection was
introduced to alleviate this issue.
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Conformal Anomaly Detection Conformal Anomaly Detection (CAD) in-
troduced in [33] is a method derived from Conformal Prediction [3]. The goal
of CAD is to give a probabilistic interpretation of the score using empirical
p-values. Inductive Conformal Anomaly Detection (ICAD) introduced in [33]
improves the CAD linear complexity in time and adapts it for Online Anomaly
Detection by introducing the concept of calibration set. CAD can be used with
a wide variety of anomaly score functions. For instance [52] presents an anomaly
detector based kernels combined with CAD. [12] combined distance and density
based scoring function with CAD. CAD gives the opportunity to control the
expected number of false positives within a time period. But its main limitation
is that it yields no control over the false alarm rate on the whole time series
that is, the proportion of false positive among all detections. By contrast the
present work aims at having a control over it (to avoid alarm fatigue [8, 15]),
more precisely on the False Discovery Rate (FDR).

FDR Control Benjamini-Hochberg (BH) procedure [5, 6] is a multiple test-
ing procedure that controls the proportions of false positives among rejections
that is the False Discovery Rate. The BH procedure can be improved by es-
timating the proportion of anomalies in the dataset [13, 21]. Most procedure
based on Benjamini-Hochberg assume that the true p-values are known. When
the distribution of the scores under the null hypothesis is unknown it is generally
not possible to ensure the FDR control with BH. For instance the Monte-Carlo
Multiple-Testing has been suggested by [22, 19, 64] to overcome this difficulty.
An alternative method for controlling FDR is based on the so-called “local FDR”
[58, 60]. Unfortunately this approach relies on a Gaussian assumption. In the
context of ICAD, FDR can be controlled using conformal p-values with BH as
shown in [4, 61, 42]. Moreover the FDR control can be achieved simultaneously
with upper and lower bound as suggested in [41].

Online FDR Control In online multiple-testing, the decision of new observed
value as an anomaly has to be done instantaneously. If the BH procedure is
applied on the current time series, the time complexity will increase with the size
of the data. To tackle this problem, recent papers advocate different methods for
the online control of the FDR [60, 30, 49, 63]. In [60] the author suggests using
the principle of local FDR. At each observation, a decision is taken depending on
the estimation of the local FDR. The [30, 49, 63] introduce a method based on
alpha-investing. The p-value is compared to an adaptive threshold depending on
the previous decisions. But this method is not applicable for conformal p-values
because of its low detection power.

Controlling false positives for online anomaly detection remains a difficult
task. In particular two challenges arise with online anomaly detection:

• The true p-values are unknown and need to be estimated.

• The decisions are made in an online context, whereas most of the multiple
testing methods are done in the offline context.
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The main contributions are to tackle these challenges. More precisely it is
established that it is possible to design online anomaly detectors controlling the
FDR of the time series.

• This paper study the relationship between the FDR and the cardinality of
the calibration set used to estimate p-values. To guarantee FDR control,
a calibration set cardinality tuning method is proposed.

• This paper describes an online calibration strategy for anomaly detection
based on multiple testing ideas to control the False Discovery Rate (FDR).

– It explains how global control of the time series FDR can be obtained
from local control of a modified version of subseries FDR. This makes
it possible to control the FDR within an online context.

– A modified version of the Benjamini-Hochberg procedure is suggested
to achieve local control of the modified FDR.

1.3. Description of the paper

First, the problem is explained and important objects are introduced in Section
2. Second Section 3 deals with conditions on p-values estimations to ensure
local control of FDR is controlled at a desired level. Third this paper develops
algorithms that allows global control the FDR time series and studies them in
Section 4. Finally our solution is evaluated against one competitor from the
literature in Section 5.

2. Statistical framework

2.1. The Anomaly Detector

Let (X , Ω,P) be a probability space and assume a realization of the random
variables (Xt)t≥1, with Xt taking values in X for all t, is observed at equal
time steps. T ∈ N ∪ {∞} is the size of the time series. Let P0 be a probability
distribution, called reference distribution, on the space X . For each instant t, the
observation Xt is called “normal” if Xt ∼ P0. Otherwise, Xt is an “anomaly”.
The aim of an online anomaly detector is to find all anomalies among the new
observations along the time series (Xt)t≥1: for each instant t > 1, a decision is
taken about the status of Xt based on past observations: (Xs)1≤s≤t.

In this paper, the following general online anomaly detector description is
suggested. It uses multiple testing ideas from [42] and the online context from
[33]. It is based on the three following notions:

1. Atypicity score: A score a : X → R is a function reflecting the atypicity
of an observation Xt. To be more specific, the further PXt

from P0 , the
larger a(Xt).
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2. p-value: It is the probability of observing a(X) higher than a(Xt) when
X ∼ P0:

pt = PX (a(X) ≥ a(Xt)) .

The p-value enables an interpretable criterion measuring how much un-
likely Xt ∼ P0. It is estimated using empirical p-value, given in Definition
2, and it allows to tackle the problem of low interpretability of an unknown
distribution of the atypicity score.

3. Detection threshold: ε ∈ [0, 1], it discriminates observations considered
as abnormal from others. The observations considered as anomalies are xt

whose (estimated) p-value is lower than the threshold ε,

PX (a(X) ≥ a(Xt)) < ε.

This general online anomaly detector is formalized in the pseudo-code given by
Algorithm 1.

Algorithm 1 Generic Online Anomaly Detector with fixed threshold ε

Require: T > 0, (Xt)T
1 time series, a an abnormality score, ε a threshold

for 1 ≤ t ≤ T do
St ← a(Xt)
pt ← p-value(St)
if pt < ε then

dt = 1
else

dt = 0
end if

end forOutput: (dt)T
1 detected anomalies boolean

The threshold ε allows to control the “detection frequency”: a smaller thresh-
old will generate fewer detections. This is equivalent to defining anomalies as
points above a quantile in the tail of the score distribution. Nevertheless, in
practice, the calibration of the threshold is difficult. Since ε affects directly the
number of false detections (false positives), it is not possible to know in advance
the number of false positives due to the choice of ε.

One of the main contributions of this work consists in developing a data-
driven rule allowing to choose a threshold ε̂t at each time step t. This rule has
the advantage of ensuring a global control of the false discovery rate on the
complete set of observations. In this paper, it is suggested to replace the last
step of the Generic Online Anomaly Detector (Algorithm 1) with an adaptive
threshold that is computed in real time before any decision would be made.

2.2. Control of false positives and multiple testing

Since the present goal is to use FDR, a natural strategy is to rephrase the
online anomaly detection problem as a multiple testing problem: At each step
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1 ≤ t ≤ T , a statistical test is performed on the hypotheses:

H0t, “Xt is not an anomaly ” against H1t“Xt is an anomaly”.

A natural criterion controlling the proportion of type I errors (False Positives)
of the whole time series is FDR [5]. For a given data-driven threshold ε̂ and a
set of estimated p-values p̂ = (p̂t)t≥1, the FDR criterion of the sequence from 1
to T is given by

FDRT
1 (ε̂, p̂) = E[FDP T

1 (ε̂, p̂)],

with FDP T
1 (ε̂, p̂) =

∑
t∈H0

1[p̂t ≤ ε̂t]∑T
t=1 1[p̂t ≤ ε̂t]

,

with the convention that 0/0 = 0. In the above expression, FDP T
1 denotes

the False Discovery Proportion (FDP) of the time series from 1 to T . Also
H0 = {t ∈ N

∗|H0t is true} is called the set of null hypotheses. Let us emphasize
that the anomalies (according to Algorithm 1) satisfy 1[p̂t ≤ ε̂t] = 1. The main
objective of the present work is to define a data-driven sequence ε̂ : t 7→ ε̂t

such that, for a given control level α ∈ [0, 1], under weak assumptions on the
sequence p̂ : t 7→ p̂t,

FDRT
1 (ε̂, p̂) ≤ α (2.1)

The control is said exact when “≤” is replaced with “=”. Such a control would
imply that for a level α = 0.1, at most 10% of the detected anomalies along the
whole time series are false positives.

The detection power of the anomaly detector is measured by means of the
False Negative Rate defined, for the sequence from 1 to T , by

FNRT
1 (ε̂, p̂) = E[FNP T

1 (ε̂, p̂)], (2.2)

with FNP T
1 (ε̂, p̂) =

∑
t∈H1

1[p̂t ≤ ε̂t]
|H1|

, (2.3)

where FNP T
1 denotes the False Negative Proportion (FNP) of the sequence

from 1 to T and H1 = {t ∈ N
∗|H1t is true} is the set of alternative hypotheses.

However a crucial remark at this stage is that controlling FDR on the com-
plete time series is a highly challenging task in the present online context for at
least two reasons:

• The main existing approaches for controlling FDR are described in an
“offline” framework where the whole series is observed first, and decisions
are taken afterwards [5, 41]. This makes these approaches useless in the
present context.

• The already existing approaches designed in the online context [30, 63] are
difficult to parameterize and hard to apply with estimated p-values. Let
us emphasize that realistic scenarios usually exclude the knowledge of the
true probability distribution of the test statistics, leading to approximating
or estimating the related p-values in practice.
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2.3. FDR control with Empirical p-value

A classical (offline) strategy for controlling FDR is the so-called Benjamini-
Hochberg (BH) multiple testing procedure [5]. Exact control relies on the knowl-
edge of true p-values, which is usually not realistic. Actually since the true ref-
erence distribution is unknown in practical anomaly detection scenarios, there
is no true p-values available.

2.3.1. Empirical p-value

The atypicity level of an observation is quantified by an atypicity score. The
underlying scoring function assigns each observation with a real value such that
the more atypical the observation, the higher the score value.

Definition 1 (Scoring function). The scoring function is introduced: a : X → R.
The abnormality score u at the point x is defined by u = a(x).

The interpretation is that the higher the score (value) at an observation, the
more unlikely the corresponding observation has been generated from a reference
distribution implicitly encoded in the scoring function.

Examples (Examples of scoring functions). Let x ∈ X and zℓ
1 = {z1, . . . , zℓ}

be a training set generated from P0.

1. Z-score [65, 11]: Let µ and σ be estimators of mean and standard deviation
of zℓ

1,
a(x) = aZ(x, zℓ

1) = |(x − µ)/σ|

2. kNN score [53, 12]: Let d be a metric on X and k > 0 and kNN(x, zℓ
1) is

the k-th nearest neighbor of x in zℓ
1.

a(x) = akNN (x; zℓ
1, k) = 1

k

∑
z∈kNN(x,zℓ

1)

d(x, z)

3. KDE-score [53, 12]: let K a kernel function.

a(x) = aKDE(x, K, zℓ
1)

= 1
ℓ

∑
z∈zℓ

1

(−K(x, z))

4. Auto-Encoder score [65, 43]. Considers having X = R
n, a compression

function fθ : Rn → R
d with d < n, a reconstruction function gϕ : Rd → R

n

and the hypothesis spaces Θ and Φ.

(θ̂, ϕ̂) ∈ arg min
θ∈Θ,ϕ∈Φ

∑
x∈zℓ

1

||gϕ(fθ(x)) − x||2
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Then the abnormality score is given by

∀x ∈ R
n, a(x) = aAE(x, zℓ

1) = ||gϕ̂(fθ̂(x)) − x||2.

The choice of the abnormality score depends on the structure of the time
series and the type of anomalies one is looking for. Intuitively a desirable scor-
ing function should assign a high abnormality score to any true anomaly. For
example, Z-score is only able to detect anomalies that are in the tail of the
distribution. By contrast it is not effective to detect abnormal point between
two modes of data with a bimodal distribution [65, 11]. kNN or KDE scores are
more suited for multi-modal data because they raise a high score for points far
from the observations of the training set. The intuition behind such a scoring
function is that normal data should have a low distance from the training set.
Auto-Encoders are often used for multidimensional data with complex distribu-
tions. It relies on the possibility to compress the input data in a low dimensional
embedding space without losing too much information. This enables to recon-
struct the input with low reconstruction error, at the computational price of
training first a deep neural network [65, 43]. To the best of our knowledge, there
does not exist any scoring function suitable for detecting all types of anomalies.

Defining a meaningful threshold from a score is the classical strategy for
deciding that an observation is anomalous or not. This requires to know the
true distribution of these scores, which is not realistic in general. The induced
estimation step is usually made by two means. On the one hand, one can assume
a parametric Gaussian distribution for the scores [55, 11, 27]. On the other hand,
one can estimate the score distribution by use of sampling techniques [52, 12].
Since the Gaussian assumption can cause some troubles when it is violated,
the present work rather focuses on the second strategy by considering anomaly
detection relying on empirical p-values. By contrast to the Gaussian assumption,
a strong asset of empirical p-value is that they can be used no matter the true
score distribution or the scoring function.

Definition 2 (Empirical p-value). Let a be a scoring function (Definition 1).
Let {x1, ..., xn} ⊂ X be a set of data called the calibration set. The empirical
p-value is a function defined by

∀x ∈ X , p̂-value(x; {x1, ..., xn}) = 1
m

m∑
i=1

1(a(xi) ≥ a(x)). (2.4)

Let us emphasize that Definition 2 describes an estimator of the p-value
under P0 provided the calibration set is composed of points generated from the
reference distribution P0. However it is well known that the main difficulty with
this p-value estimator is that it is not itself a p-value [42] since the so-called
super-uniformity property is violated. More precisely, super-uniformity means
that, for all u ∈ [0, 1],

PX,X1,...,Xm∼P0(p̂-value(X; {X1, . . . , Xm}) ≤ u) ≤ u.
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Therefore empirical p-values are usually replaced by an other p-value estimator
called the conformal p-value[41, 33], given by

p̃-value(x; {x1, ..., xn}) = 1
m + 1

(
1 +

m∑
i=1

1(a(xi) ≥ a(x))
)

. (2.5)

This definition implies the p-value property for all u in [0, 1]. But this esti-
mator is less powerful, as illustrated by Figure 11 in Appendix A.1 where the
FNR resulting from the use of conformal p-values is always larger than that of
empirical p-values.

As a consequence, an important remark is that the present work focuses on
empirical p-values (and not on conformal ones). However another motivation
for this choice is provided in Section 3.2.2 where it is proved that the super-
uniformity property also holds true with empirical p-values under some specific
conditions that will be detailed later.

2.3.2. BH-procedure does not control FDR with empirical p-values

The present section starts by describing the behavior of the BH-procedure as well
as establishing the resulting FDR control. An illustration is provided that the
BH-procedure does not control FDR are the prescribed level when empirical p-
values are used. This illustration is then theoretically justified, which shows that
straightforwardly using the BH-procedure in our online context is prohibited.

Definition 3 (Benjamini-Hochberg ([5, 61])). Let m be an integer and α ∈ [0, 1].
Let (pi)1≤i≤m ∈ [0, 1]m be a family of p-values. The Benjamini-Hochberg (BH)
procedure, denoted by BHα, is given by

• a data-driven threshold:

εBHα
= max{αk

m
; p(k) ≤ αk

m
, k ∈ J1, mK},

• a set of rejected hypotheses:

BHα ((pi; i ∈ J1, mK)) = {i; pi ≤ εBHα
, i ∈ J1, mK} .

The intuition behind this procedure consists in drawing the ordered statistics
i 7→ p(i) (Figure 1) with p(1) ≤ · · · ≤ p(n) and the straight line i 7→ αi

m . Then
the BH-procedure amounts to rejecting all hypotheses corresponding to p-values
smaller than the last crossing point between the straight line and the ordered
p-values curve.
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Figure 1: Illustration of the Benjamini-Hochberg procedure. p-values are sorted
by increasing order. The threshold is the greatest p-value that is lower than
αk/m, when k is the rank of the p-value.

The striking property of this procedure is to yield the desired control of the
FDR at the prescribed level α as stated by the next result.

Theorem 1 (FDR control with BH [5]). Let m be a positive integer and (Xi)m
1

be independent random variables such that Xi ∼ P0, 1 ≤ i ≤ m0, and Xi ∼ P1,
m0 + 1 ≤ i ≤ m. Let us also define the set of true p-values, for all 1 ≤ i ≤ m
by pi = PX∼P0(X ≥ Xi) ∈ [0, 1], and assume that each pi ∼ U([0, 1]). Then for
every α ∈]0, 1], BHα applied to p = (pi)1≤i≤m yields the exact FDR control at
the prescribed level α that is,

FDRm
1 (εBHα

, p) = m0α

m
.

The proof of the theorem is deferred to Appendix A.3. In particular, the FDR
control results from the fact that under H0, the true p-values follow a uniform
distribution. The equality could be replaced by an upper bound if the uniform
distribution assumption were weakened by the super-uniform property.

By contrast with the previous framework, when performing anomaly detec-
tion, the abnormality score is computed using a scoring function (Definition 1),
and the true p-value is given by

pt = PX∼P0 (a(X) ≥ a(Xt)) ,
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where the notation clearly emphasizes the dependence with respect to the un-
known reference distribution. This justifies why empirical p-values are now sub-
stituted to true ones as earlier explained (see Eq. 2.4).

A difficulty resulting from using empirical p-values in the BH-procedure is
that the FDR control does no longer hold true as illustrated by Figure 2. This
figure displays the actual FDR value (plain blue curve) versus the cardinality
of the calibration set used to computed the empirical p-values (see Definition 2)
in the specific situation of Gaussian data. Except for some a few values of the
calibration set cardinality, the FDR control is no longer achieved (red horizontal
line). Furthermore the actual FDR value is higher than the desired m0/mα.
This results from the fact that the super uniform property is violated when
using empirical p-values as established by Proposition 1 below.

Proposition 1 (Distribution of empirical p-value under H0). Let X ∼ P0
where P0 is the probability distribution under H0, the calibration set cardinality
is denoted by n, and {X1, . . . , Xn} ∼ Pn

0 is the calibration set. If one further as-
sumes that there are no ties among a(X1), . . . , a(Xn), then the empirical p-value
at X is denoted by p̂-value(X; {X1, . . . , Xn}) and follows the discrete uniform
distribution

U(0,
1
n

,
2
n

, . . . , 1).

Let us mention that under H0 the empirical p-value has a different distribu-
tion from that of the conformal p-value [41] which follows U(1/(n + 1), . . . , 1).
The conformal p-value is never smaller than 1/(n + 1), which raises issues in
terms of the detection power with lots of false negatives (see the right panel of
Figure 11 and the discussion in Appendix A.1). With empirical p-values, it can
be easily checked that

P (p̂-value(X; {X1, . . . , Xn}) ≤ 0) = 1
n + 1 > 0,

which violates the super uniformity property. As a consequence, FDR is no
longer controlled by the BH-procedure [6] applied to empirical p-values. Other
consequences owing to the use of empirical p-values violating super uniformity
are illustrated in Section 3.1.

The assumption of no ties are allowed among the scores a(Xi)s is quite mild
and fulfilled most of the time as supported by Example 2.3.1 as long as the
reference distribution is continuous (admits a density).

Proof of Proposition 1. Since X ∼ P0 and X1, . . . , Xn ∼ Pn
0 are independent,

the empirical p-value p̂ is a random variable computed from X and Xn
1 and

satisfies for any 0 ≤ ℓ ≤ n that
P(p̂ = ℓ/n)
= P(a(X(ℓ+1)) < a(X) ≤ a(X(ℓ)))
= P({rank of a(X) among {a(X), a(X1), . . . , a(Xn)} is ℓ + 1}),
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where a(X(n)) < a(X(n−1)) < · · · < a(X(1)). The conclusion comes from notic-
ing that the probability distribution of {X, X1, . . . , Xn} is exchangeable, and
assumption of no ties in scores a(Xi)

Let us also notice that Figure 2 shows that there exist particular values of
the calibration set cardinality for which FDR is still controlled at the prescribed
level. This perspective is further explored in Section 3.2.2, where a new multiple
testing procedure yielding the desired FDR control for the whole time series is
devised.

3. FDR control with Empirical p-values

The goal here is to describe a strategy achieving the desired FDR control for
a time series of length m when using empirical p-values. A motivating example
is first introduced for emphasizing the issue in Section 3.1. Then a theoretical
understanding is provided along Section 3.2 which results in a new solution
which applies to independent empirical p-values. An extension is then discussed
to thz non-independent setup in Section 3.3.1. Finally experimental results are
reported in Section 3.4 to (empirically) assess the validity of our previous the-
oretical conclusions.

3.1. Motivating example

The purpose here is to further explore the effect of the calibration set cardinality
on the actual FDR control when using empirical p-values. This gives us more
insight on how to find mathematical solutions.

Let us start by generating observations using two distributions. The reference
distribution is P0 = N (0, 1) and the alternative distribution is P1 = N (4, 10−4).
The anomalies are located in the right tail of the reference distribution. The
length m of the signal is m = 100. The number of observations under P0 is
m0 = 99. The experiments have been repeated K = 104 times.

Figure 2 displays the actual value of FDR as a function of the cardinality n
of the calibration set {x1, ..., xn} used to compute the empirical p-values (see
Definition 2). One clearly see that FDR is not uniformly controlled at level
m0/mα. However there exist particular values of n for which this level of control
is nevertheless achieved. As long as n has become large enough (n ≥ 500),
repeated picks can be observed with a decreasing height as n grows.

3.2. FDR control: main results for i.i.d. p-values

The present section aims at first explaining the shape of the curve displayed in
Figure 2. This will help getting some intuition about how to design an online
procedure achieving the desired FDR control for the full time series.
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Figure 2

3.2.1. Proof of FDR control by BH revisited

The main focus is now given to independent p-values. In what follows, the
classical proof (Proof A.3) of the FDR control by the BH-procedure is revisited
then leading to the next result. Its main merit is to provide the mathematical
expression of the plain blue curve observed in Figure 2.

Theorem 2. Let n be the cardinality of the calibration set and m be that of
the set of tested hypotheses where {X1, . . . , Xm} denotes a set of random vari-
ables. Let m0 ≤ m be the cardinality of the random variables from the reference
distribution P0. Let the empirical p-value be denoted, for any i ∈ J1, mK, by
p̂i = p̂-value(Xi, {Zi,1, . . . , Zi,n}), where the calibration set is {Zi,1, . . . , Zi,n}
and each Zi,j ∼ P0. Let the random variables R(i) be the number of detections
raised by BHα when replacing Xi with 0, as defined along the proof detailed in
Appendix A.3. Then for every α ∈]0, 1], the FDR value over the sequence from
1 to m is given by

FDRm
1 (ε̂BHα

, p̂) = m0

m∑
k=1

⌊ αkn
m ⌋+1
n+1
k

P(R(i) = k),
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where ε̂BHα denotes the BHα threshold from Definition 3 when the BH-procedure
is applied to the empirical p-values p̂ = (p̂i; 1 ≤ i ≤ m).

In general it is not possible to compute the exact value of the FDR without
knowing the distribution of the random variables R(i). This is in contrast with
the case of true p-values where P(pi ≤ αk

m ) = αk
m , whereas with empirical p-

values P(p̂i ≤ αk
m ) = ⌊ αkn

m ⌋+1
n+1 , which prevents from any simplification of the

final bound. Nevertheless this value still suggests a solution to circumvent this
difficulty: requiring conditions on α, m, and n such that ⌊ αkn

m ⌋+1
n+1 = αk

m , for all
k. This is precisely the purpose of next Corollary 1.

Proof of Theorem 2. When applying Proof A.3, the only modification is that
P(p̂i ≤ αk

m ) is not equal to αk
m since p̂i now follows the discrete uniform distri-

bution

P(p̂i ≤ αk

m
) =

⌊nαk/m⌋∑
ℓ=0

P(np̂i = ℓ) =
⌊ αkn

m ⌋ + 1
n + 1 .

Plugging this in the FDR expression, it gives

FDRm
1 (ε̂BHα

, p̂) = m0

m∑
k=1

⌊ αkn
m ⌋+1
n+1
k

P(R(i) = k).

Recall that p̂i follows U(0, 1/n, 2/n, . . . , 1) entails that np̂i follows U(0, 1, 2, . . . , n).

3.2.2. Tuning of the calibration set cardinality

Corollary 1. Under the same notations and assumptions as Theorem 2, the
next two results hold true.

1. Assume that there exists an integer 1 ≤ ℓ such that ℓm
α is an integer. If

the cardinality n of the calibration set satisfies n = nℓ − 1 = ℓm/α − 1,
then

FDRm
1 (ε̂BHα

, p̂) = m0α

m
.

2. For every α ∈]0, 1], assume that the cardinality of the calibration set sat-
isfies n = nℓ − 1 = ⌈ ℓm

α ⌉ − 1, for any integer ℓ ≥ 1. Then,

n

(n + 1)
m0α

m
≤ FDRm

1 (ε̂BHα
, p̂) ≤ m0α

m
.

The proof is postponed to Section A.4. The first statement in Corollary 1
establishes that recovering the desired control of FDR at the exact prescribed
level α is possible on condition that the calibration set cardinality is large enough



E. Krönert et al./FDR control for Online Anomaly Detection 15

and more precisely that n = ℓm/α−1. This (mild) restriction on the values of α
reflects that the empirical p-values do not satisfy the super-uniformity property.
By contrast, the second statement yields the desired control at the level αm0/m
by means of lower and upper bounds. In particular, the lower bound tells us
that the FDR value can be not lower than the desired level αm0/m up to a
multiplicative factor equal to 1−1/n, which goes 1 as n grows. For instance with
α = 0.1 and m = 100, nℓ = 1000 would yield that FDRm

1 (ε̂BHα , p̂) ·m/(m0α) ∈
[0.999, 1]. This small lack of control is the price to pay for allowing any value
of α ∈]0, 1]. It is also important to recall that in the anomaly detection field,
abnormal events are expected to be rare. As a consequence m0

m is close to 1
and the actual FDR level is close to the desired α. However in situations where
m0/m could depart from 1 too strongly, then incorporating an estimator of
m0/m would be helpful.

3.3. Extension to dependent p-values

In Section 3.2, Corollary 1 states that FDR is controlled at a prescribed level
with empirical p-values for which the super-uniformity property is not fulfilled.
A key ingredient in the proof was the independence property across empirical
p-values. One purpose of the present section is to extend these results to non-
independent p-values.

Towards this extension, the concept of positive regression dependency (re-
ferred to as PRDS) [6] turns out to be useful. The PRDS property is a form
of positive dependence between p-values where all pairwise p-value correlations
are positive. It results that a small p-value for a given observation makes other
p-values for all considered observations simultaneously small as well, and vice-
versa [4].

3.3.1. Theoretical results to dependent p-values

A classical result established in [6] proves that FDR is upper bounded by αm0/m
provided the p-value family satisfies the PRDS and super-uniformity properties.
It turns out that this result can be extended to our estimator with the same
choice of calibration set cardinality as the one discussed in Corollary 1. An-
other important achievement is the fact that FDR can be also lower bounded
in the case where the calibration set is the same for all (empirical) p-values (see
Definition 2). This results originally proved by [41] is extended here to empiri-
cal p-values computed with a calibration set cardinality tuned as suggested in
Corollary 1.

In Section 3.2, considering the size of the calibration set is correctly chosen,
it has been proved that the control of the FDR can be achieved with estimated
p-values for which the super-uniformity property is not fulfilled. The results
obtained for i.I.d. p-values will be extended in this section for non i.i.d. p-values.
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For this extension, the concept of positive regression dependency on each one
from a subset called PRDS [6] is introduced. The PRDS property is a form
of positive dependence of p-values where all pairwise p-value correlations are
positive. Larger scores in the calibration set make the p-values for all test points
simultaneously smaller, and vice-versa [4].

Definition 1 (PRDS property). A family of p-values p̂m
1 is PRDS on a set

I0 ⊂ {1, . . . , m} if for any i ∈ I0 and any increasing set A, the probability
P[p̂m

1 ∈ A|p̂i = u] is increasing in u.

A classical result in [6] asserts that the FDR is upper bounded by m0
m α in

the case where the p-value family is PRDS and super-uniform. This result can
be extended our estimator with the same choice of calibration set cardinality
than in Theorem 1.

Corollary 2 (Corollary of Theorem 1.2 in [6]). Suppose the family of p-values
p̂m

1 is PRDS on the set H0 of true null hypotheses and suppose that p̂m
1 respects

super-uniformity an all thresholds that can may resulting from BH

∀k ∈ J1, mK P(p̂i <
αk

m
) ≤ αk

m
,

Then, the FDR is upper-bounded by α

FDR(p̂, ε̂BH) ≤ m0α

m

Unique calibration set More over, in the case where the calibration set is
the same for all p-values, the FDR can also be lower bounded as shown in [41].
This result can be extended to empirical p-values given in Definition 2 with a
calibration set cardinality tuned as proposed in Theorem 1.

Corollary 3 (Corollary of Theorem 3.4 in [41]). Assuming the following con-
ditions: Let n be the cardinality of the calibration set, m be the cardinality of
the active set and m0 the number of normal observations. Let P0 be the ref-
erence distribution. Let Zi for i in J1, mK independents random variables, fol-
lowing P0. Let Xi for i in J1, mK be random independents variables and inde-
pendents from (Zj). There are exactly m0 random variables following the P0
distribution. Let a be a scoring function. For all i in J1, mK, let p̂i be the empir-
ical p-values associated with the random variables Xi and computed as follows,
p̂i = p-value(Xi, {Z1, ..., Zm}, a).

If the cardinality of the calibration set is a multiple of n = nℓ = ℓm/α − 1,
then the FDR using B̂Hα on (p̂i)1≤i≤m is equal to m0α

m :

FDRm
1 (ε̂BHα

, p̂) = m0α

m

Overlapping calibration set In the context of online anomaly detection,
moving windows are classically used to capture and process the incoming data.
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This is why the calibration sets of the p-value family will overlap. To have a
perfect control of the FDR, an upper and lower bounds is needed.

According Proposition 2, p-values with overlapping calibration sets are PRDS.

Proposition 2 (PRDS property for overlapping calibration sets). Let Xi for
i in J1, mK be random independents variables. There are exactly m0 random
variables following the P0 distribution, with belong to H0. Let Z be the random
vector that combine all calibration set, all elements of Z are generated from P0.
The set of n indices defining the elements of calibration set related to p̂i in Z
is noted Di. The calibration set related to X1 is noted ZD1 = (Zi1 , ..., Zin

). For
all i in J1, mK: p̂i = p-value(Xi, ZDi).

Under these conditions, the set of p-values is PRDS on H0

The proof of the proposition is in delayed to Appendix A.2. Since such p-
values are are PRDS, it gives an upper bound control of the FDR using Corol-
lary 4.

Corollary 4 (PRDS property for overlapping calibration sets). Under the same
conditions as Proposition 2 and the condition on calibration set cardinality sat-
isfy ∃ℓ ≥ 1, n = ℓ m

α − 1:

FDR(p̂, ε̂BH) ≤ m0α

m

3.3.2. Calibration set and impact of the overlap

In the context of online anomaly detection, moving windows are usually used to
capture and process the incoming observations. In this context, the calibration
set coincides with the observations within this window. Since successive windows
are overlapping each other depending on the size of the shift, the resulting
calibration sets used for computing the successive empirical p-values are also
overlapping. To have a perfect control of the FDR, an upper and lower bounds
are needed. Since the Appendix A.2 proves that such p-values are PRDS, it gives
an upper bound control of the FDR. No theoretical results exists to compute
the lower bound, indeed the existing proof in [41] did not extend to overlapping
calibration sets. Therefore the next discussion suggests to establish this lower
bound empirically.

The following experiments aims at drawing a comparison between the FDR
values in three scenarios: independent calibration sets, partially overlapping
calibration sets with an overlap size driven by the value of sn (size of the shift),
and the same calibration set for all empirical p-values. To be more specific, the
calibration sets (and corresponding empirical p-values) were generated according
to the following scheme. Each calibration set is of cardinality n. When moving
from one calibration set to the next one, the shift size is equal to sn, where s in
[0, 1] is the proportion of independent data between calibration sets, resulting
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in an overlap of cardinality (1 − s)n. Therefore an overlap occurs as long as
s < 1. All these ways to build the calibration sets are called “calibration sets
strategies”.

1. The independent p-values (iid Cal.) are generated according to

∀i ∈ J1, mK, Zi ∼ Pn
0 , p̂1,i = p̂-value(Xi, Zi). (3.1)

2. The p-values with the same calibration set (Same Cal.) are generated by

∀i ∈ J1, mK, Z ∼ Pn
0 , p̂2,i = p̂-value(Xi, Z). (3.2)

3. The p-values with overlapping calibration sets (Over. Cal.) are generated
given, for 0 < s < n, by

∀i ∈ J1, mK, Zi = {Z⌊isn⌋+1, . . . , Z⌊isn⌋+n}, p̂3,i = p̂-value(Xi, Zi),
and {Zs+1, . . . , Z⌊2sn⌋+1, . . . , Z⌊msn⌋+1, . . . , Z⌊msn⌋+n} ∼ Pms+n

0 .
(3.3)

According to these three scenarios, as s increases, the overlap cardinality de-
creases, which results in more and more (almost) independent calibration sets.
This is illustrated by the empirical results collected in Table 1. For each cali-
bration set strategy, presented in row, and for each calibration set cardinality
in column, the estimated FDR is shown. In this experiment, the reference dis-
tribution P0 is the Gaussian N (0, 1) and the anomalies are equal to ∆ = 4.
The number of tested p-values, noted m, is equal to 100 and m1, the number of
anomalies, is equal to 1. On each sample, BH-procedure is applied with α = 0.1
and the FDP is computed. Each FDR is estimated over 103 repetitions.

Table 1
FDR results with overlapping calibration sets

n 249 250 499 500 749 750 999 1000

Same Cal. 0.164 0.175 0.112 0.183 0.137 0.131 0.097 0.154
Over Cal. (s=0.1%) 0.167 0.174 0.100 0.156 0.138 0.125 0.093 0.140
Over Cal. (s=0.2%) 0.162 0.176 0.095 0.170 0.124 0.127 0.109 0.143
Over Cal. (s=0.5%) 0.163 0.166 0.110 0.170 0.116 0.132 0.111 0.149
Over Cal. (s=1%) 0.151 0.180 0.094 0.177 0.127 0.128 0.099 0.143
Over Cal. (s=2%) 0.164 0.180 0.108 0.179 0.133 0.140 0.097 0.143
Over Cal. (s=5%) 0.168 0.172 0.108 0.169 0.125 0.130 0.096 0.144
Over Cal. (s=10%) 0.165 0.181 0.104 0.185 0.122 0.140 0.105 0.146
Over Cal. (s=20%) 0.173 0.207 0.109 0.171 0.136 0.149 0.101 0.140
Over Cal. (s=50%) 0.180 0.187 0.103 0.183 0.121 0.128 0.094 0.143
iid Cal. 0.171 0.188 0.115 0.174 0.138 0.143 0.104 0.132

The values of n in the columns of Table 1 are chosen such that, for each
pair of columns, the FDR value is smaller for the left column and larger for the
right column (see Figure 2 for a visual illustration of this phenomenon). Table 1
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illustrates that, in the context of the present numerical experiments, the FDR
estimation is not too strongly impacted by the value of s (proportion of the
overlap). To assert that the observed differences between FDR estimations in
each column are not significant, permutation tests [16, 47] are performed. Under
H0n hypothesis, the FDR are the same across all calibration set strategies for
the calibration set cardinality n. Under H1n there are at least two calibration
strategies leading to different FDR. The FDP samples that have been used
to estimate the FDR are reused. The maximal gap between sample means is
used as statistic. The test is performed using the function “permutation_test”
from the Python library called Scipy. The significance level is fixed at 0.05.
Since multiple tests are performed over the different cardinalities, the thresh-
old for rejecting a hypothesis is 0.00625, according Bonferroni correction. The
results are display in Table 2. All tested hypotheses have a p-values greater
than the threshold 0.00625. There are no significant difference in the resulting
FDR between the different proportions of overlapping in calibration sets. This
would suggest that considering overlapping calibration sets should not worsen
too much the control of false positives and negatives.

Table 2
p-values resulting from permutations test

n 249 250 499 500 749 750 999 1000

p-value of the test 0.300 0.0326 0.572 0.313 0.588 0.435 0.735 0.690

3.4. Empirical Results: Assessing the FDR control

The purpose of the present section is to compute the actual FDR value when
empirical p-value are used instead of true ones. The question raised here is to
check whether the FDR of the full time series is truly controlled at a prescribed
level α. The empirical results must be compared with the theoretical FDR ex-
pression that has been established in Theorem 2.

In what follows, Section 3.4.1 describes the simulation design that has been
considered, Section 3.4.2 details the criteria used for the assessment, and Sec-
tion 3.4.3 discusses the experimental results.

3.4.1. Simulation design

Two scenarios have been considered to explore how much the thickness of the
distribution tails can influence the results.

1. Thin tails:

The reference probability distribution is P0 = N (0, 1) for normal observa-
tions and P1 = δ∆N for anomalies, where ∆N ∈ R is a parameter encoding
the strength of the shift. Here δ∆N denotes the Dirac measure such that
δ∆N (z) = 1 if z = ∆N and 0 otherwise. A Gaussian reference distribution
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and anomalies generated from a Dirac distribution in the right tail. ∆N
is the size of the abnormal spike in the Gaussian distribution.

2. Thick tails:

P0 = T (5) is a Student probability distribution with 5 degrees of freedom
and P1 = δ∆T denotes the alternative distribution of anomalies, where
∆N ∈ R is a parameter encoding the strength of the shift.

Regarding the value of the shift strength in Scenarios 1 and 2, two values of ∆N
have been considered 3.5 and 4. The values of ∆T have been chosen such that

PX∼N (0,1)(X > ∆N ) = PX∼T (5)(X > ∆t)

for each choice of ∆N . This avoids any bias in the comparison of the detection
power of the considered strategy depending on the ongoing scenario.

Different cardinalities have been considered for the calibration set following
the mathematical expression

n ∈ {k · 10, k ∈ J1, 200K} ∪ {ℓ · 10 − 1, ℓ ∈ J1, 200K}.

In particular all integers between 10 and 2 000 are explored with a step size
equal to 10 as well as all integers between 9 and 1 999 with a step size of 10.
This choice is justified by the particular expression of the FDR value provided
by Theorem 2.

All the n elements of the calibration set are generated from the reference
distribution that is, {Z1, . . . , Zn} ∼ P0. All the m observations corresponding
to the tested hypotheses {X1, . . . , Xm} are generated according to a mixture of
m1 = 1 anomalies from P1 and m0 = m − m1 normal observations from P0.
Here m = 100 and m0 = 99.

Each simulation condition has been repeated B = 104 times. For each rep-
etition 1 ≤ b ≤ B, the observations are indexed by b such that Xb,j ∼ P1 for
each j ∈ J1, m1K, and Xb,j ∼ P0 for j ∈ Jm1 + 1, mK.

3.4.2. Criteria for the performance assessment

In the present scenarios, anomalies are all located in the right tail of the reference
probability distribution. Therefore the empirical p-value are computed according
to Definition 2 with the scoring function a(x) = x. For each repetition 1 ≤ b ≤
B,

∀1 ≤ j ≤ m, p̂b,j = p-value(Xb,j , {Zb,1, . . . , Zb,n}).

After computing the empirical p-values, the BHα procedure (see Definition 3)
is applied in such a way that, for any 1 ≤ j ≤ m,

db,j = 1BHα(p̂b,1,...,p̂b,m)(j),
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where 1I denotes the indicator function of the index set I. The FDP value of
the sequence from 1 to m is computed from the knowledge of the true label of
the observations as “normal” or “anomaly”. For each repetition 1 ≤ b ≤ B,

(FDP m
1 )b =

∑m
j=m1+1 db,j∑m

j=1 db,j
.

The results obtained after the B repetitions are averaged within the FDR
estimate of the sequence from 1 to m as

FDRm
1 = 1

B

B∑
b=1

(FDP m
1 )b.

The FNR value of the sequence from 1 to m (Equation 2.2) is estimated by

(FNP m
1 )b = 1

m − m0

m∑
j=m0+1

db,j , and FNRm
1 = 1

B

B∑
b=1

(FNP m
1 )b.

3.4.3. Experimental discoveries

Figure 3 displays the FDR value (left panel) and the FNR value (right panel)
as a function of the calibration set cardinality for the two scenarios (Gaussian
and Student) described in Section 3.4.1. The blue (respectively orange) curve
corresponds to the Gaussian (resp. Student) reference distribution. The hori-
zontal line is the prescribed level α = 0.1 at which FDR should be controlled
with true p-values (Theorem 1). Figures 3a and 3b are obtained with ∆N = 4,
while Figures 3c and 3d result from ∆N = 3.5.

According to these plots, the behavior of both FDR and FNR does not exhibit
any strong dependence with respect to the reference probability distribution.
The results are very close for both Gaussian and Student distributions.

As illustrated by Figures 3a and 3c, the FDR control at the prescribed level
is achieved for particular values of the calibration set cardinality. These values
coincide with the ones exhibited by Theorem 1, which are multiples of α/m =
103 (up to a downward shift by 1).

A striking remark is that the FNR curve sharply increases from 1 to n = 999.
This reflects that although the FDR value becomes (close to) optimal as n
increases from 1 to n = 999, the proportion of false negatives simultaneously
increases leading to a suboptimal statistical performance (because of too many
false negatives). Fortunately a larger cardinality n of the calibration set, for
instance n = 1999, would greatly improve the results at the price of a larger
calibration set, which also increases the computational cost.

Consistently with what is established in Theorem 1, the FDR value does not
depend on the strength of the distribution shift ∆ as illustrated by Figures 3a
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(a) FDR depending on n with 4 sigmas
anomalies

(b) FNR depending on n with 4 sigmas
anomalies

(c) FDR depending on n with 3.5 sig-
mas anomalies

(d) FNR depending on n with 3.5 sig-
mas anomalies

(e) FDR depending on n with 4 sigmas
anomalies and m = 150

(f) FNR depending on n with 4 sigmas
anomalies and m = 150

Figure 3: Effect of calibration set cardinality and abnormality score on the FDR
control and the FNR

and 3c. As long as FDR is concerned (which is an expectation), the shift plays
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no role. Let us mention that focusing of the expectation does not say anything
about the probability distribution of FDP, which can be influenced by the shift
strength. By contrast, the comparison of Figures 3b and 3d clearly shows the
impact of the shift strength on the FNR value. As the shift strength becomes
lower, anomalies are more difficult to be detected which inflates the FNR value.

The best cardinality n of the calibration set depends on the number m of
tested hypotheses according to Theorem 1. For instance, Figure 3a shows the
value n = 999 = 100/0.1 − 1 as a good candidate since it achieves the desired
FDR control while reducing both the number of false negatives and the computa-
tion cost. By contrast, Figure 3e rather exhibits the value n = 1499 = 150/0.1−1
as the smallest n allowing a perfect FDR control and a small number of false
negatives.

Figure 3a shows other intermediate values calibration set cardinalities yield-
ing the FDR control. For instance n = 1499 (between n = 999 and n = 1999)
is predicted by Theorem 1. However complementary experiments (summarized
by Figure 12 in Appendix B.1) illustrate that these intermediate values of n al-
lowing the FDR control actually depend on the number of anomalies m1. Their
existence can be explained by the distribution of the number of detections. For
example, Figure 12d shows a high probability of detecting 3 anomalies. Assum-
ing there exists k∗ ∈ J1, mK such that P(R(i) = k∗) ≈ 1, Theorem 2 justifies
that

FDRm
1 (ε̂BHα

, p̂) = n

n + 1 · α
m0

m
+ m0

n + 1

m∑
k=1

(1 − qn,k)
k

P(R(i) = k)

≈ n

n + 1 · α
m0

m
+ m0

n + 1
(1 − qn,k∗)

k∗ .

Then the proof detailed in Appendix A.4 yields that 1 − qn,k∗ = α
m(n+1) can

be reached for all ℓ ≥ 1, such that n = ℓ m
αk∗ − 1. This allows to conclude that

FDRm
1 (ε̂BHα

, p̂) ≈ m0α
m .

3.4.4. How to choose the right cardinality of the calibration set?

Intuitively an optimal choice of the cardinality n of the calibration set should
enable the FDR control while minimizing the number of false negatives and
avoiding any excessive computation time. To achieve this objective, the first
part of Corollary 1 explains that n must be chosen from the set N = {ℓm/α −
1, ℓ ≥ 1}. Using the simulation scenarios described in Section 3.4.1, the aim
is to visualize the relationship between the calibration set cardinality and FNR
when n ∈ N . The results are summarized by Figure 4 where the FNR value is
displayed versus n.
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(a) ∆ = 4, m1 = 1 (b) ∆ = 3.5, m1 = 1

(c) ∆ = 3, m1 = 1 (d) ∆ = 3, m1 = 5

Figure 4: FNR as a function of the calibration set cardinality constrained to
belong to N .

For all the considered scenarios (Fig. 4a, 4b, 4c, 4d), the FNR value converges
to the value reached with true p-values (horizontal dashed line) as n grows.
From Figures 4a and 4b, the convergence speed depends on the “difficulty” of
the problem.

In practice, generating experiments similar to the ones illustrated by Fig-
ure 3.4.1 does not require to know the true reference distribution of the time
series since is uses empirical p-values. However, the lack of labeled observations
prevents us from computing the abnormality score and the actual FNR value,
making the choice of the optimal value of n highly challenging. To tackle this
challenge our suggestion is to choose the largest possible value of n that does
not exceed the computation time limit. Doing that would output a value of
n minimizing the FNR criterion while meeting the computational constraints.
However following this suggestion does not prevent us from computational draw-
backs as illustrated by Figure 4a where the FNR optimal value is reached for
n = 3999 while choosing a larger n does not bring any gain (but still increases
the computational costs).

4. Global FDR control over the full time series

While working with streaming time series data, the anomaly detection problem
requires to control the FDR value of the full time series to make sure that the
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global false alarm rate (FDR) remains under control at the end of the iterative
process. The final criterion that is to be controlled is then the global FDR
criterion given by

FDR∞
1 (ε̂, p̂),

where ε̂ = (ε̂t)t≥1 denotes a sequence of data-driven thresholds, and p̂ stands
for a sequence of empirical p-values (see Section 3 for further details). By con-
trast with this global objective, anomaly detection nevertheless requires making
decision at each time step that is, for each new observation, without knowing
what the next ones look like. This justifies the need for another (local) criterion
that will be used to make a decision at each iteration, leading to the sequence
of data-driven thresholds ε̂ = (ε̂t)t≥1. One additional difficulty results from the
connection one needs to create between this local criterion and the (global) FDR
of the full time series.

To this end, Section 4.1 starts by showing that controlling the FDR criterion
for subseries of the full time series does not provide the desired global FDR
control. Here “global” means “on the full time series” by contrast with the local
FDR control, corresponding to controlling FDR for a strict subseries of the full
one. Then Section 4.2 explores the connection between FDR for the full time
series and the so-called modified-FDR (mFDR) for subseries. In particular, it
turns out that controlling the mFDR value for all subseries of a given length m
yields the desired FDR control for the full time series. Section 4.3 then explains
how the classical BH-procedure can be modified to get the mFDR control for
subseries of length m, while Section 4.4 illustrates the practical behavior of the
considered strategies on simulation experiments.

4.1. Local and global FDR controls are not equivalent

Let us consider a time series partitioned into 4 subseries as illustrated in Fig-
ure 5. The normal points are displayed in black and the anomalies in white.
The surrounded points are those that have been detected as anomalies by the
procedure. When computing the number of rejections, false positives and the

subseries 1 subseries 2 subseries 3 subseries 4

Figure 5: Illustration of anomaly detection in subseries.

False positive rate for each subseries, it comes

• Subseries 1 : 2 rejections, 1 false positive. FDP 4
1 = 0.5

• Subseries 2 : 2 rejections, 0 false positive. FDP 9
5 = 0
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• Subseries 3 : 1 rejections, 1 false positive. FDP 14
10 = 1

• Subseries 4 : 1 rejections, 0 false positive. FDP 19
15 = 0

If one assumes that the same probability distribution has generated the ob-
servations within each subseries, the estimated (local) FDR can be defined as
average of the successive FDP values for each subseries that is, FDR4

1 = 0.375.
Let us notice that the notation emphasizes that this FDR value is the average
over subseries of respective length m = 4. If one reproduces the same reason-
ing for the full time series, it comes: 6 rejections, two false positives, so that
FDP 16

1 = 1/3 = 0.333. This example highlights that the FDP of the full time
series is not equal to that of smaller subseries. This phenomenon gives some
intuition on possible reasons why applying the classical BH-procedure on local
windows of length m (subseries) does control the FDR criterion for the individ-
ual subseries, but does not yield the desired global FDR control for the full time
series. This intuition is confirmed by the boxplots of Figure 6, where BHα has
been applied on subseries of length m = 100. The left boxplot shows that BHα

Figure 6: Comparison of the calculation of the FDR computed locally on a sub-
series and the FDR computed globally on the whole time series with Benjamini-
Hochberg procedure applied on a subseries. This result is obtained by cut-
ting a series of cardinality 1000 into 10 subseries of cardinality 100. Then the
Benjamini-Hochberg procedure is applied on each subseries.

provides the desired control at level α = 10% for each individual subseries of
length m. However the right boxplot clearly departs from α, meaning that the
actual FDR value for the full times series of length 1 000 is strongly larger than
α (more than 20% on average) leading to more false positives at the level of the
full time series. The boxplots represent the quantile of FDP over 100 repetitions.
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4.2. How mFDR can help in controlling the FDR of the full time
series

4.2.1. Mixture model and time series

In this section one assumes that the time series is generated from a mixture
process between a reference distribution P0 and an alternative distribution P1.
The anomaly positions are supposed to be independent and generated by a
Bernoulli distribution. This is a common assumption usually in the literature
[28, 56] for simplification purposes.

Definition 4 (Time series process with anomalies). Let π ∈ [0, 1] be the anomaly
proportion and P0 and P1 be two probability distributions on the observation
domain X . P0 is the reference distribution and P1 denotes the alternative dis-
tribution. The generation process of a time series containing anomalies (At)t≥0
is given, for every t ≥ 0, by

• At ∼ B(π) (Bernoulli distribution)

• if At = 0, then Xt ∼ P0.

• if At = 1, then Xt ∼ P1.

Moreover given the above scheme, (Xt)t≥0 is a random process with independent
and identically distributed random variables Xt ∼ (1 − π)P0 + πP1.

This definition details the way anomalies are generated. In particular it as-
sumes that anomalies are independent from each other. Let us mention that this
does not prevent us from observing a sequence of successive anomalies along the
time series. However this scheme substantially differs from the case analyzed by
[20] where specific patterns with successive anomalies are looked for.

4.2.2. Preliminary discussion: Disjoint and Overlapping subseries

In the context of online anomaly detection, the main focus in what follows is
put on two situations where the data-driven thresholds (ε̂t)t≥0 can be defined
from a set of m empirical p-values: (i) the disjoint case where disjoint subseries
of length m are successively considered, and (ii) the overlapping case where the
subseries (of length m) successively considered share m−1 common observations
at each step.

Let us start with a subseries of length m where each observation is summa-
rized by its corresponding empirical p-value, and let us assume that there exists
a function fm : [0, 1]m → [0, 1] that is mapping a set of m empirical p-values
onto a real-valued random variable. This random variable corresponds to the
data-driven threshold that is applied to the subseries of length m to detect po-
tential anomalies. This function fm is called the local threshold function since
it outputs a threshold which applies to a subseries of length m.
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Given the above notations, the threshold sequences ε̂d = (ε̂d,t)t and ε̂o =
(ε̂o,t)t can be defined as follows.

• Disjoint subseries: ε̂d : t 7→ ε̂d,t is given by

∀k ≥ 0, ∀t ∈ Jkm + 1, (k + 1)mK, ε̂d,t = fm(p̂km+1, . . . , p̂(k+1)m)
(4.1)

• Overlapping subseries: ε̂o : t 7→ ε̂o,t is given by

∀t ≥ m, ε̂o,t = fm(p̂t−m+1, . . . , p̂t). (4.2)

Figure 7 illustrates these two situations. In Figure 7a, the full time series is split
into small disjoint subseries of length m. fm is applied to each such subseries and
the threshold is the same for all observations within a given subseries. Figure 7b
displays the situation where overlapping subseries are successively considered.
Because two successive subseries differ from each other by two observations, the
thresholds are different at each time step unlike the disjoint case. Furthermore

p̂1, . . . , p̂(k−2)m+1, . . . , p̂(k−1)m, p̂(k−1)m+1, . . . , p̂km

fmfm

ε̂d,1, . . . , ε̂d,(k−2)m+1, . . . , ε̂d,(k−1)m, ε̂d,(k−1)m+1, . . . , ε̂d,km

(a) Illustration of disjoint windows.

p̂1, . . . , p̂t−2m, . . . , p̂t−m−1, p̂t−m, p̂t−m+1, . . . , p̂t−1, p̂t

fmfmfm

ε̂o,1, . . . , ε̂o,t−2m, . . . , ε̂o,t−m−1, ε̂o,t−m, ε̂o,t−m+1 . . . , ε̂o,t−1, ε̂o,t

(b) Illustration of Overlapping sliding windows.

Figure 7: Comparison of disjoint window and overlapping window for the thresh-
old function.

the sequences ε̂d and ε̂o do not enjoy the same dependence properties. Figure 7a
illustrates that all thresholds ε̂d,(k−1)m+1, . . . , ε̂d,km are computed by applying
fm to the same subseries p̂(k−1)m+1, . . . , p̂km. Therefore only thresholds com-
puted from different subseries are independent, while all thresholds from the
same subseries are equal. In other words, ε̂d,t1 and ε̂d,t2 are independent if and
only if t1 and t2 belong to different subseries that is, ⌊t1/m⌋ ≠ ⌊t2/m⌋, where ⌊·⌋
denotes the integer part. By contrast Figure 7b shows that the variables ε̂o,t and
ε̂o,t−1 are dependent because they share m − 1 common observations. But all of
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them are still different and, for each t, ε̂o,t is independent from ε̂o,t−m−1. This
can be reformulated as ε̂o,t1 , ε̂o,t2 are independent if and only if |t1 − t2| > m.

In the present online anomaly detection context, considering the overlapping
case sounds more convenient since the detection threshold can be updated at
each time step (as soon as a new observation has been given), which makes
the anomaly detector more versatile. However for technical reasons, next Sec-
tion 4.2.3 still focuses disjoint subseries as a means to introduce important no-
tions without introducing too many technicalities, while Section 4.2.4 extends
the previous results to the more realistic case of overlapping subseries.

4.2.3. FDR control with disjoint subseries

As illustrated in Section 4.1, controlling FDR on each subseries of length m
(locally) is not equivalent to controlling FDR (globally) on the full time series.
However in online anomaly detection, a decision has to be made at each time
step regarding the potential anomalous status of each new observation. (This is
a typical instance of a local decision since at step t, the decision making process
ignores what will be observed at the next step.) This requires a criterion to be
optimized locally (on subseries) in such a way that the resulting global FDR
value (the one of the full time series) can be proved to be controlled at the
desired level α.

This requirement for a local criterion justifies the introduction of the modified
FDR criterion, denoted by mFDR [63, 18], which is defined as follows.

Definition 5 (mFDR). With the previous notations, the mFDR expression of
the subseries from t − m + 1 to t is given by

mFDRt
t−m+1(ε̂, p̂) =

E

[∑
u∈H0,t−m+1≤u≤t 1[p̂u ≤ ε̂u]

]
E

[∑t
u=t−m+1 1[p̂u ≤ ε̂u]

] ,

where ε̂ = (ε̂u)t−m+1≤u≤t denotes a sequence of thresholds, p̂ is a sequence of
empirical p-values evaluated at each observation of the subseries from t − m + 1
to t.

Mathematically the difference between the mFDR and the FDR is that the
expectation is no longer on the ratio but independently on the numerator and
the denominator. The main interest for mFDR is clarified by Theorem 3, which
establishes its connection to FDR. To be more specific, the control of the latter
at the α level provides a global control of the FDR at the same level under
simple conditions.

Theorem 3 (Global FDR control with disjoint subseries). Assume that ε̂d :
t 7→ ε̂d,t is given by ε̂d,t = fm(p̂km+1, . . . , p̂(k+1)m), for any t ∈ Jkm+1, (k+1)mK
(k ≥ 0) and any integer m ≥ 1 (see Eq. (4.1)). Let us also assume that the p-
value random process p̂ = (p̂t)t≥1 follows the scheme detailed in Definition 4.
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Then, the global FDR value of the full (infinite) time series is equal to the local
mFDR value of the any subseries of length m from t = km + 1, k ∈ N

∗. More
precisely,

FDR∞
1 (ε̂d, p̂) = mFDR

(k+1)m
km+1 (ε̂d, p̂) = mFDR

(k+1)m
km+1 (ε̂d, p̂).

Since the full time series is assumed to be infinite, Theorem 3 is an asymptotic
result. It gives rise to a strategy for controlling the (asymptotic) FDR criterion
at level α by means of successive local controls of mFDR on small subseries
of length m. According to the asymptotic nature of Theorem 3, there is no
particular constraint on the integer m. However when dealing within time series
of a finite length T , the Theorem 3 proof suggests that choosing an m “not too
large” would be better since then, k = T/m would take large values making
the LLN applicable (see for instance Eq. (4.3)). Actually in the online anomaly
detection context, practitioners only have a limited freedom regarding the choice
of m. Therefore, for a given fixed m, the control of the FDR value of the full
time series given by Theorem 3 will be all the more accurate as T will be large.
Fortunately this is not a limitation in the online anomaly detection context. The
main limitation of Theorem 3 lies in the use of disjoint subseries, which sounds
somewhat restrictive (at least from a practical perspective). This limitation will
be overcome by next Theorem 4.

Proof of Theorem 3. Let k ≥ 1 denote an integer and T = mk. Then, the FDP
definition and the At variables introduced in Definition 4 justify that

FDP T
1 (ε̂d, p̂) = FP T

1 (ε̂d, p̂)
RT

1 (ε̂d, p̂)
=
∑T

t=1 1[p̂t < ε̂d,t](1 − At)∑T
t=1 1[p̂t < ε̂d,t]

,

where RT
1 (ε̂d, p̂) and FP T

1 (ε̂d, p̂) respectively denote the number of rejections
(resp. false positives) at the threshold ε̂d for the subseries p̂.

Using the partitioning into k subseries of length m, its first comes that
FP T

1 (ε̂d, p̂) =
∑k

i=1 FP
(i+1)m
im−1 (ε̂d, p̂). It is also noticeable that the k random

variables {FP
(i+1)m
im−1 (ε̂d, p̂)}1≤i≤k are independent and identically distributed

since the thresholds ε̂d,i
remain unchanged within each subseries, they are iden-

tically distributed from one block to another, and the empirical p-values from
different blocks are independent and identically distributed as well. Therefore
the random variables (FP

(i+1)m
im−1 (ε̂d, p̂))1≤i≤k are independent and identically

distributed, which implies (Law of Large Numbers theorem) that, almost surely,

lim
k

1
k

k∑
i=1

FP
(i+1)m
im−1 (ε̂d, p̂) = E[FP m

1 (ε̂d, p̂)], (4.3)

where the expectation is taken over all sources of randomness. (Here it is im-
plicitly assumed that T can go to +∞.) Repeating the argument forRT

1 (ε̂d, p̂),
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it also comes that

E[Rm
1 (ε̂d, p̂)] = lim

k

1
k

k∑
i=1

R
(i+1)m
im−1 (ε̂d, p̂), a.s..

The conclusion then results from noticing that

mFDRm
1 (ε̂d, p̂) = E[FP m

1 (ε̂d, p̂)]
E[Rm

1 (ε̂d, p̂)] = lim
k

∑k
i=1 FP

(i+1)m
im−1 (ε̂d, p̂)∑k

i=1 R
(i+1)m
im−1 (ε̂d, p̂)

= lim
T

FDP T
1 (ε̂d, p̂).

4.2.4. FDR control with overlapping windows

Unlike previous Theorem 3, following Theorem 4 establishes a similar control
of the global FDR criterion on the full time series by means of successive local
controls of the mFDR criterion on subseries that are allowed to overlap each
other. This is closer to the practical situation arising in online anomaly detection
where one new observations is collected at each time step, inducing a shift by
one of the set of observations for which a decision has to be made.

Theorem 4 (Global FDR control with overlapping subseries). Assume that
ε̂o : t 7→ εo,t is given by ε̂o,t = fm(p̂t−m+1, . . . , p̂t), for any t ≥ 1, with fm :
[0, 1]m → [0, 1] permutation invariant (see Eq. (4.1)). Let us also assume that the
p-value random process p̂ = (p̂t)t≥1 follows the scheme detailed in Definition 4
and there exists n such that |t1−t2| > n implies that p̂t1 and p̂t2 are independent.
Then, the global FDR value of the full (infinite) time series is equal to the local
mFDR value of the any subseries of length m computed at time t ∈ N

∗. More
precisely

FDR∞
1 (ε̂o, p̂) = mFDRt

t−m+1(ε̂o, p̂) = mFDRm
1 (ε̂o, p̂)

Theorem 4 gives a similar result to the one of Theorem 3 but in a more
realistic framework corresponding to the real time anomaly detection context.
In particular the main improvement lies in that a threshold can be recomputed
at each time step from a (shifted) subseries of length m. An important conse-
quence is that the desired control for the FDR of the full (infinite) time series
at level α can be achieved provided one can control the successive mFDR of
all (shifted) subseries of length m at level α. This point is not obvious at all
and constitutes the main concern of Section 4.3 where a new multiple testing
procedure is designed to yield the desired control of the mFDR criterion. The
main limitation of Theorem 4 is the requirement that fm has to be permutation
invariant. Let us emphasize that this property holds true with the BH-procedure
for instance. Let us also mention that the empirical p-values for instance com-
puted as p̂t = p̂-value(Xt, {Xt−n, . . . , Xt−1}) actually satisfy the requirements
of Theorem 4 regarding the independence and the stationarity.
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Proof of Theorem 4. Let us start with the FDP expression for a time series of
length T .

FDP T
t=1 =

∑T
t=1 1[p̂t < ε̂o,t](1 − At)∑T

t=1 1[p̂t < ε̂o,t]

=
1
T

∑T
t=1 1[p̂t < fm(p̂t

t−m+1)](1 − At)
1
T

∑T
t=1 1[p̂t < fm(p̂t

t−m+1)]
,

where fm(p̂j
i ) = fm(p̂i, . . . , p̂j), for i < j. Since the decision process (1[p̂t <

ε̂o,t])t and the false positives process (1[p̂t < ε̂o,t]At)t are not independent.

Therefore it is not possible to use the Law of Large Numbers as in the proof of
Theorem 3. The alternative strategy consists first in splitting the numerator and
denominator into several disjoint subseries corresponding to independent and
identically distributed processes. Then partitioning the times series of length
T = T ′(n + m) into T ′ subseries, each of length n + m, it results that

1
T

T∑
t=1

1[p̂t < fm(p̂t
t−m+1)](1 − At)

= 1
n + m

n+m∑
k=1

 1
T ′

T ′−1∑
t=0

1[p̂t(n+m)+k < fm(p̂t(n+m)+k
t(n+m)+k−m+1)](1 − At(n+m)+k)

 .

(4.4)

Interestingly for each k from 1 to m+n, the summands within the brackets do all
belong to different subseries, which makes the sum over t a sum of independent
and identically distributed random variables. It results that, for each 1 ≤ k ≤
n + m, the average within the brackets is converging to its expectation by the
LLN theorem.

Since the limit of a (finite) sum is equal to the sum of the limits, the average
in Eq. (4.4) is converging and

lim
T →∞

1
T

T∑
t=1

1[p̂t < ε̂o,t](1 − At) =
m∑

k=1
E [1[p̂k < ε̂o,k](1 − Ak)] a.s.

= mE [1[p̂m < ε̂o,m](1 − Am)] a.s..

Then after applying the same reasoning on the denominator, it gives:

FDP ∞
1 (ε̂o, p̂) = E [1[p̂m < ε̂o,m](1 − Am)]

E [1[p̂m < ε̂o,m]]

What remains to show is to proof that:

E [1[p̂m < ε̂o,m](1 − Am)]
E [1[p̂m < ε̂o,m]] = mFDRm

1 (ε̂o, p̂)
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This result comes from the stationarity of p̂ and the permutation invariance
of fm. These properties imply that all p-values inside a subseries have the same
probability to be rejected.

∀t ∈ J1, mK, E[1[p̂t < fm(p̂m
1 )](1 − At)] = E[1[p̂m < fm(p̂m

1 )](1 − Am)] (4.5)

Which imply

E[
m∑

t=1
1[p̂t < fm(p̂m

1 )](1 − At)] = mE[1[p̂m < fm(p̂m
1 )](1 − Am)] (4.6)

Using the same argument for the denominator, is gives:

E [1[p̂m < ε̂o,m](1 − Am)]
E [1[p̂m < ε̂o,m]] = mE [1[p̂m < ε̂o,m](1 − Am)]

mE [1[p̂m < ε̂o,m]] (4.7)

=
E[
∑m

t=1 1[p̂t < fm(p̂m
1 )](1 − At)]

E[
∑m

t=1 1[p̂t < fm(p̂m
1 )]]

(4.8)

= mFDRm
1 (ε̂o, p̂) (4.9)

4.3. Modified BH-procedure and mFDR control

As shown in Section 4.2, controlling the FDR value of the full time series is
possible. The strategy then consists in first controlling the mFDR criterion of
all successive subseries of length m along the full time series at level α. The main
challenge addressed in the present section is to design a new multiple testing
procedure that controls the local mFDR criterion at a prescribed level α.

In Section 4.3.1, it is proved that applying the classical BH-procedure on a
time series of length m does not yield the control of mFDR at level α. However
the proof of this result gives rise to a strategy for modifying the classical BH-
procedure (Section 4.3.3) in a such a way that applying the so-called modified
BH-procedure provides the desired mFDR control at level α.

4.3.1. mFDR control with the BH-procedure

Next Proposition 3 establishes the actual mFDR level achieved by the BH-
procedure.

Proposition 3. Let (Xi)m
1 satisfy the requirements detailed by Definition 4. Let

(p1, . . . , pm) be the true p-values corresponding to a subseries of length m that
is, for any 1 ≤ i ≤ m, pi = PX∼P0(X ≥ Xi) ∈ [0, 1]. Then for every α ∈ [0, 1],
applying BHα on the p-values (pi)1≤i≤m leads to

mFDRm
1 (p) = αm0

m

ERm
1,α(1)

ERm
1,α

,
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where Rm
1,α(1) = |BHα(0, p2, .., pm)| and Rm

1,α = |BHα(p1, p2, .., pm)|, with |S|
denoting the cardinality of the set S.

If the ratio ER(1)m(1)/ER(1)m were known, it could be possible to control
of the mFDR criterion at level α by simply applying the BH-procedure with a
preliminary level α′ = m

m0

ER1,α

ERα
α. Unfortunately at this stage, this ratio is not

known and the latter strategy cannot be straightforwardly applied. Deriving
such a modified BH-procedure is the purpose of the next sections. Let us also
recall that in the anomaly detection context, m0 is unknown but expected to be
close to m since only a few anomalies are usually expected. Therefore the main
challenge remains to compute ER(1)m(1)/ER(1)m.

Proof of Proposition 3. The mFDR formula is given by

mFDRm
1 (p) =

E[FP m
1,α(p)]

E[Rm
1,α(p)] .

Let us compute the numerator E[FP m
1 (p)] value after applying the BHα.

For simplification purposes, let R = Rm
1,α(p) (respectively FP m

1 (p) = FP m
1,α(p))

denote the number of rejections (resp. of false positives) resulting from BHα.
Introducing Di = 1[pi ≤ R

m α], it appears that

FP m
1 (p) =

m∑
i=1

(1 − Ai)Di.

Now focusing on Di and using R(i), the (random) number of rejections output
by BHα when the pi is replaced by 0, it comes that

Di =
m∑

k=1
1[pi ≤ k

m
α]1[R = k] =

m∑
k=1

1[pi ≤ k

m
α]1[R(i) = k],

since, on the event {R = k}, pi is already rejected that is, pi ≤ k
m α. Taking the

conditional expectation given p except pi on both sides, it results

E[Di|p\pi] =
m∑

k=1
P[pi ≤ k

m
α]1[R(i) = k] = α

m

m∑
k=1

k1[R(i) = k]

since the true p-value pi follows a uniform distribution on [0, 1]. Now integrating
over all remaining p-values yields that

E[Di] = α

m

m∑
k=1

kP[R(i) = k] = α

m
E[R(i)].
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Since Ai and Di are independent random variables, it results that

E[FP m
1 (p)] =

m∑
i=1

E[(1 − Ai)E[Di | Ai]] =
m∑

i=1
E[(1 − Ai)E[Di]]

= α

m
E[R(1)]

m∑
i=1

E[1 − Ai]

= α
m0

m
E[R(1)],

where the last-but-one equality stems from the fact that all random variables
R(i) are identically distributed.

4.3.2. Evaluating the ratio of rejection numbers

Previous Section 4.3.1 raises the importance of the ratio ERm
1,α(1)/ERm

1,α of re-
jection numbers. The present section aims at deriving a numeric approximation
to this ratio. In a first step, a first result details the value of the denominator. In
a second step, an approximation to the numerator is derived based on a heuristic
argument and also empirically justified on simulation experiments.

Calculating the expected number of rejections When mFDR is as-
sumed to equal α, the expected number of rejections can be made explicit.

Proposition 4. With the previous notation, let (X1, . . . , Xm) be given by Def-
inition 4, where π denotes the unknown proportion of anomalies, and assume
that mFDRm

1 = α and FNRm
1 = β ∈ [0, 1]. Then

E[Rm
1,α] = mπ(1 − β)

1 − α
. (4.10)

The proof is postponed to Appendix A.5. For instance, Eq. (4.10) establishes
that the expected number of rejection output by BHα increases with π, the
unknown proportion of anomalies along the signal. This makes sens since the
more anomalies, the more expected rejections. The expected number of rejection
is also increasing with α: the larger α, the less restrictive the threshold, and the
more rejections should be made. However the number of rejection decreases with
the FNR value β. As β increases, the proportion of false negatives grows meaning
that fewer alarms are raised, which results in a smaller number of rejections.

Heuristic arguments In what follows, the assumption is made that anoma-
lies are easy to detect, meaning that the FNRm

1 value β is negligible compared
to 1. In this context, Proposition 4 would yield that

E[Rm
1,α] ≈ mπ

1 − α
. (Power)
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An another assumption is also made about the relationship between E[Rm
1,α]

and E[Rm
1,α(i)]. This assumption is based on a heuristic argument supported by

the results of numerical experiments as reported in Table 3. In what follows, it
is assumed that

E[Rm
1,α(i)] = E[Rm

1,α] + 1. (Heuristic)

No mathematical proof of this statement is given in the present paper. However,
Table 3 displays numerical values which empirically support this approximation,
whereas further analyzing the connection between these quantities should be
necessary.

BHα 0.05 0.1 0.2
E[Rm

1,α] 2.14 2.32 2.78
E[Rm

1,α(i)] 3.18 3.44 3.99
Table 3

Numerical evaluations for different values of α (103 repetitions)

Let us emphasize that Table 3 has been obtained with Gaussian data (gen-
erated similarly to those detailed in Section 3.4). For all the three considered
values of α, one observes that E[R(1)] remains close to (but also slightly larger
than) E[R] + 1.

From now on and in all what follows, (Heuristic) is assumed to hold true. In
particular, (Heuristic) gives rise to a strategy for computing the ratio E[R(1)]

E[R] .
So all ingredient to build a procedure that control the mFDR are given.

4.3.3. Modified BH

From previous Sections 4.3.1 and 4.3.2, it is now possible to suggest and analyze
the new modified BH-procedure (mBH in the sequel).

Definition 6 (Modified BH-procedure (mBH)). Let m be an integer and α ∈
[0, 1]. Let us introduce the level α′ = α(1 + 1−α

mπ )−1, where π ∈ [0, 1] denotes
the unknown proportion of anomalies (see Definition 4. Let us further assume
(Power) and (Heuristic) hold true. Then the modified BH-procedure, denoted
by mBHα, is given for all true p-values (p1, . . . , pm) ∈ [0, 1]m by,

mBHα(p1, . . . , pm) = BHα′(p1, . . . , pm).

The related mBHα threshold at level α is defined as

εmBHα
= εBHα′ ,

when computed with true p-values, and ε̂mBHα
= ε̂BHα′ when used with empir-

ical p-values.

The above definition defines the mBHα in terms of the BH-procedure by
simply changing the level of control α′. This new level value depends on the
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unknown proposition π of anomalies. Since in realistic anomaly detection sce-
narios observations are not labeled, [57] provides guidelines on how π could be
estimated. From Proposition 4, it also appears that α′ = α(1 + 1−α

mπ(1−β) )−1

should arise as the ideal threshold. However since β is unknown, (Power) leads
to the approximation suggested within the above definition.

Corollary 5 (Control of the FDR using mBH). Under the same notations and
assumptions as Theorem 4. Let m and ℓ be two integers and assuming (Power)
and (Heuristic) hold, let n and α′ be defined by

α′ = α

1 + 1−α
mπ

and n = ℓm/α′ − 1.

the next two results hold true.

1. If the FDR can be controlled at level α′ on subseries of size m, using BHα′ :
FDRm

1 (ε̂BHα′ , p̂) = (1 − π)α′, then the FDR of the whole time series can
be controlled at the level α using mBHα

FDR∞
1 (ε̂mBHα

, p̂) = (1 − π)α (4.11)

2. If FDRm
1 (ε̂BHα′ , p̂) ≤ (1 − π)α′ . Then, the FDR of the whole time series

can be controlled at the level α

FDR∞
1 (ε̂mBHα

, p̂) ≤ (1 − π)α (4.12)

Proof of Corallary 5. All conditions being satisfied Theorem 4 gives that:

FDR∞
1 (ε̂mBHα , p̂) = mFDRm

1 (ε̂mBHα , p̂) (4.13)

By definition of mBHα in Definition 6 and with Proposition 3:

mFDRm
1 (ε̂mBHα , p̂) = mFDRm

1 (ε̂BHα′ , p̂)

= E[R(1)]
E[R] FDRm

1 (ε̂BHα′ , p̂)

Under the assumptions Heuristic and Power, it gives:

E[R(1)]
E[R] = 1 + 1 − α

mπ

mFDRm
1 (ε̂mBHα , p̂) = (1 + 1 − α

mπ
)FDRm

1 (ε̂BHα′ , p̂)

From hypothesis FDRm
1 (ε̂BHα′ , p̂) = (1 − π)α′. Replacing the value of α′ with

its expression it gives:

mFDRm
1 (εmBHα

) = (1 + 1 − α

mπ
)(1 − π)(1 + 1 − α

mπ
)−1α = (1 − π)α
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Plugin this result into Eq. 4.13 this gives desired result.

FDR∞
1 (ε̂mBHα , p̂) = (1 − π)α

The next result shows how mBHα can be applied to reach a global FDR
control for the full time series at the desired level. It applies Corollary 5 by
specifying different ways to estimate p-values on the time series.

Theorem 5 (Global FDR control using mBHα). Let (Xt) be a mixture process
introduced in Definition 4, with π denoting the anomaly proportion. Let α ∈ [0, 1]
be the desired FDR level for the full time series. For m and ℓ two integers and
assuming (Power) and (Heuristic) hold, let n and α′ be defined by

α′ = α

1 + 1−α
mπ

and n = ℓm/α′ − 1.

If (p̂t) are given following one of the schemes

1. p̂t = 1 − PX∼P0(a(X) > a(Xt))

2. p̂t = p̂-value(Xt, {Zt,1, . . . , Zt,n}) with Zt,i ∼ P0

then,

FDR∞
1 (ε̂mBHα

, p̂) = (1 − π)α.

Otherwise, if (p̂t) are given by

4. p̂t = p̂-value(Xt, {(1 − At−n+1)Xt−n+1 + At−n+1Zt,1, . . . , (1 − At)Xt +
AtZt,n}) with Zt,i ∼ P0 ,

then,

FDR∞
1 (ε̂mBHα , p̂) ≤ (1 − π)α.

The main merit of Theorem 5 is to establish the actual level of control for
the global FDR of the full time series depending on the type of empirical p-
value used in the anomaly detection process. This level of control depends on
the unknown proportion π of anomalies. Therefore if π is close to 0 (only a
few anomalies are expected), then the FDR control is close to α. However, since
alpha’ is close to 0 when pi is close to 0, an estimation of π (or expert knowledge)
is required to detect anomalies. Some guidelines are provided in [57]. The last
type of empirical p-values is (almost) the one which is used in practice in the
present work. More precisely Section 5.2.3 describes empirical p-values based on
a “Sliding Calibration Set”.

Proof of Theorem 5. The Corollary 5 gives the two properties that the p-values
families has to verify to control the FDR of the time series:
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• The p-values are stationary and independent when time distance is larger
than n.

• The FDR is controlled at level α′ on subseries of size m: FDR(ε̂BHα′

1 , p̂) =
(1 − π)α′

In the following, these properties are verified for the different p-values.

1. The true p-value family is i.i.d., because the time series mixture is i.i.d.
Also the Theorem 1 gives the control for subseries. Using Corollary 5 the
FDR of the whole time series is controlled at level (1 − π)α.

2. This p-value family is i.i.d., because the time series mixture is i.i.d. and
the calibration sets are also i.i.d. Using the Theorem 1, it gives the FDR
control on subseries. With Corollary 5 the FDR of the whole time series
is controlled at level (1 − π)α.

3. This p-value family is not i.i.d. However, because the calibration are build
using a sliding window of size n, two p-values pt1 and pt2 are independent
when |t1 − t2| > m. The calibration sets of the p-values overlapped, Then
Corollary 4 ensures the upper bound of the FDR for subseries of size m.
With Corollary 5 the FDR of the whole time series is upper bounded
controlled at level (1 − π)α.

4.4. Empirical results

In this section, the abilities to get local control of the mFDR and the global
control of the FDR, using mBH are assessed empirically. Corollary 5 and Theo-
rem 5 give theoretical results about the control of the mFDR for subseries under
the assumptions Power and Heuristic. However, these assumptions are hard
to ensure in practice. In Section 4.4.1, the assessment is done on simulated data
where the level of atypicity of the anomalies varies from one sample to another.
Different scenarios are tested to verify if the mFDR control hold. Theorem 3
and Theorem 4 give FDR control over the full time series. In Section 4.4.2, the
abilities of thresholds computed on disjoint and overlapping subseries to control
the mFDR using are compared. Theorem 3 and Theorem 4 give asymptotic FDR
control over the full time series. But there is no result about the speed of con-
vergence, which is necessary when used on finite time series. In Section 4.4.3,
the FDR for the full time series is calculated across different situations, as a
function of time series size. It is possible to figure out when the entire series
reaches control of the FDR.

4.4.1. Control of the mFDR on disjoint subseries

Experiment description From Corollary 5 the mBHα controls the mFDRm
1

only if the Power assumption is satisfied. Since the power of the anomaly de-
tector depends on how easy it is to detect anomalies, the level of atypicity δ is
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introduced. To quantifies the atypicity of a data point Xt, the true p-value is
computed as pt = PX∼P0(X > Xt), and the atypicity level is defined as the in-
verse of the p-value: δt = 1/pt. The atypicity level is preferred over the p-values
because it is easier to show on the x-axis of the chart, when the p-value is small.
To evaluate the effect of power, for each sample all anomalies have their level of
atypicity lower bounded a given parameter δ. Therefore, it is possible to observe
the effect of a variation in the level of atypicity on the mFDRm

1 , FDRm
1 and

FNRm
1 .

For a given scenario—meaning a proportion of anomalies π, a level of atypicity
δ, and a desired level of mFDR noted α—the actual mFDR, FDR, and FNR
are estimated. These quantities are estimated using K = 50 samples of m data
points. To control the estimation error made when estimating on a finite number
of samples, each estimation is repeated B = 100 times. The estimation proceeds
as follows:

1. With 1 ≤ b ≤ B, and 1 ≤ k ≤ K, m data point are generated.

• m0 normal data pb,k,1, . . . , pb,k,m0 are generated according the refer-
ence law U([0, 1]).

• m1 abnormal data pb,k,m0+1, . . . , pb,k,m are generated using the alter-
native law U([0, 1/δ]), with δ the level of atypicity of the anomalies.

2. Then, for each sample, the thresholds are estimated with BH and mBH
procedures:

• ε̂b,k,BH = BHα(pb,k,1, . . . , pb,k,m),

• ε̂b,k,mBH = mBHα(pb,k,1, . . . , pb,k,m).

3. The number of rejections, false positives and false negatives are computed
on each sample and according each threshold. Using M ∈ {mBH, BH}:

• Rb,k,M =
∑m

i=1 1[pb,k,i ≤ ε̂b,k,M ],

• FPb,k,M =
∑m0

i=1 1[pb,k,i ≤ ε̂b,k,M ],

• FNb,k,M =
∑m

i=m0+1 1[pb,k,i > ε̂b,k,M ].

4. The FDR, mFDR and FNR are estimated by averaging results over the
K samples:

• FDRb,M = 1
K

∑K
k=1

F Pb,k,m

Rb,k,m
,

• mFDRb,M =
∑K

k=1
F Pb,k,m∑K

k=1
Rb,k,m

,

• FNRb,M = 1
K

∑K
k=1

F Nb,k,m

m1
.

These steps are then repeated over the different scenarios.
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Results and Analysis The results are shown in Figure 8 by varying δ, α
and m1. In Figure 8, the level of atypicity δ in represented in the abscissa.
The ordinate represents the estimated mFDR (in Figure 8a or 8c) or FNR (in
Figure 8b or 8d). Different colors are used to distinguish between BH and mBH
procedures.

For a low level of atypicity δ, the FNR and the mFDR are high because
the anomalies are difficult to detect. By increasing δ, the FNR and the mFDR
decrease. As shown in Figure 8b, with values of δ around 100, the FNR is equal
to 0 which can also generate a constant mFDR as shown in Figure 8a. For
the mBH-procedure, the mFDR is constant and equal to α. This is consistent
with Theorem 4, which guarantees the control at level α when all anomalies are
detected.

Figure 8d shows the totality of the anomalies detected for δ = 2000. The same
result in figure 8b with δ = 100. This is explained by the different parameters
of the experiment. The easier the anomalies are detected, faster the FNR = 0
is reached for a small δ and therefore the easier it is to guarantee mFDR = α.

(a) mFDR, α = 0.2, π = 0.07 (b) FNR, α = 0.2, π = 0.07

(c) mFDR, α = 0.1, π = 0.01 (d) FNR, α = 0.1, π = 0.01

Figure 8: mFDR and FNR as a function of level of atypicity across different
scenarios

Conclusion In order to control the mFDR at the desired level α using mBH,
the FNR has to be equal to 0. The capacity of mBH to control the mFDR
depends of the difficulty of the problem. When abnormality proportion and level
of atypicity are lower, the power of mBH decreases and the mFDR is harder to
control. The results of this experiment gives an idea of the atypicity level that



E. Krönert et al./FDR control for Online Anomaly Detection 42

the detector can find.

4.4.2. Disjoint subseries vs overlapping subseries

Experiment Description Theorems 3 and 4 theoretically prove the control
of the FDR over the full time series throw control of the mFDR over disjoint
subseries or overlapping subseries. According Corollary 5, the procedure mBHα

allows the control of the mFDR over subseries under assumption Heuristic and
Power that are hard to verify. Empirical results from Section 4.4.1 show that
control of mFDR for the disjoint subseries can be obtained for scenarios where
the level of atypicity δ is high enough. It still unknown whether these results
hold true in cases where the subseries overlap In this section FDR control throw
disjoint and overlapping subseries are compared.

For each scenario, the quantities mFDRm
1 and FNRm

1 are estimated two
times, using disjoint subseries and using overlapping subseries. All subseries are
extracted from the same time series of size T = 104. The distribution of these
estimations is obtained by repeating the experiment across B = 100 time series.
Thus, the two estimations of mFDRm

1 and FNRm
1 quantities can be compared.

The experimental design is described as follows:

1. With b in J1, BK and t in J1, T K, the time series is generated from a mixture
model:

• Ab,t ∼ Ber(π)

• If Ab,t = 0, pb,t ∼ U([0, 1])

• Otherwise: pb,t ∼ U([0, 1/δ])

2. The thresholds of mBH are estimated on each subseries pb,k,t+1, . . . , pb,k,t+m0+m1 :

• ε̂b,t = mBHα(pb,k,t+1, . . . , pb,k,t+m0+m1).

3. The numbers of rejections, false positives and false negatives are calcu-
lated, according the different cases.

(a) In the disjoint subseries case, the quantities are computed using only
thresholds on the form ε̂b,km over disjoint subseries
For 1 ≤ b ≤ L and 1 ≤ k ≤ K = T/m:

• Rb,k,d =
∑(k+1)m

t=km+1 1[pb,k,t ≤ ε̂b,km],

• FPb,k,d =
∑(k+1)m

t=km+1 1[pb,k,t ≤ ε̂b,km](1 − At),

• FNb,k,d =
∑(k+1)m

t=km+1 1[pb,k,t > ε̂b,km]At.

The mFDR and FNR are estimated:

• mFDRb,d = 1
K

∑K
k=1 FPb,k,m,d

1
K

∑K
k=1 Rb,k,m,d,

• FNRb,d = 1
K

∑K
k=1

F Nb,k,m,d

m1
.
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(b) In the overlapping subseries case, the quantities are computed using
the thresholds from all overlapping subseries ε̂b,t:
For 1 ≤ b ≤ L and 1 ≤ k ≤ K = T/m:

• Rb,k,o =
∑(k+1)m

t=km+1 1[pb,t−m+1,t,o ≤ ε̂b,t],

• FPb,k,o =
∑(k+1)m

t=km+1 1[pb,t−m+1,t ≤ ε̂b,t](1 − At),

• FNb,k,o =
∑(k+1)m

t=km+1 1[pb,t−m+1,t > ε̂b,t]At.

Notice the difference with disjoint windows case, all p-values of a
subseries are compared to different thresholds and not to the same
ε̂b,km.

The mFDR and FNR are estimated:

• mFDRb,o = 1
K

∑K
k=1 FPb,k,m,o

1
K

∑K
k=1 Rb,k,m,o,

• FNRb,o = 1
K

∑K
k=1

F Nb,k,m,o

m1
.

Different scenarios are generated by varying the proportion of anomalies
π and the atypicity level δ.

Results and analysis As shown in Figure 9, disjoint and overlapping sub-
series control give similar results in mFDR and FNR for considered cases. In-
deed, the curves are indistinguishable and decrease at the same rate.

(a) mFDR, α = 0.1, π = 0.01 (b) FNR, α = 0.1, π = 0.01

Figure 9: Comparison of mFDR and FNR control with disjoint and overlapping
windows method.

Conclusion The FDR control quality are similar for both strategies, over-
lapping windows and disjoint windows. This imply that performances of the
anomaly detector to not decrease by using overlapping windows instead of dis-
joint windows. This is a practical result that allows to do real time detection
without having to wait to complete disjoint windows.
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4.4.3. Convergence of false discovery rate control

This section studies the convergence rate of the FDR over the full time series
using mBHα.

Experiment Description The theoretical results obtained in Theorem 4
only guarantee an asymptotic control of the FDR on the whole time series.
In practice, it is more useful to have a control of the FDR at any time, i.e.
on subseries of finite size. The question is empirically studied by observing the
speed of convergence of the false discovery rate towards the level α. The FDR
of the full time series is calculated across different scenarios, as a function of
time series size. In order to get the distribution of the FDR, the experiment
is repeated on B = 100 time series. The maximal time series size explored is
T = 104.

1. For 1 ≤ b ≤ B and for 1 ≤ t ≤ T :

• Ab,t ∼ Ber(π)

• If Ab,t = 0, pb,t ∼ U([0, 1])

• Otherwise: pb,t ∼ U([0, 1/δ])

2. The thresholds are estimated with mBHα:

ε̂b,t,α = ε̂mBHα(pb,t−m+1, . . . , pb,t)

3. The proportion of false discovery (FDP) on the partial time series are
calculated:

FDPb,t,α =
∑t

u=1(1 − Ab,t)1[pb,t ≤ ε̂b,t,α]∑t
u=1 1[pb,t ≤ ε̂b,t,α]

Different scenarios are generated by varying the proportion of anomalies π
and the atypicity level δ.

Results and analysis In Figure 10, the false discovery proportion is rep-
resented in the ordinate according to the size of the time series given in the
abscissa. The different levels of α used to compute mBH threshold are exper-
imented with the results of the median FDP and its 95% band is shown in
different colors. Different scenarios are represented by varying the proportion of
anomalies between the sub figures.

It can be observed that the convergence is quite fast from a size of 2000 data
points, since for a α of 0.05, is has 95% chance to have a false positive rate
between 0.04 and 0.06, on Figure 10. Thus, the control of the false positive rate,
can be ensured with a high probability, for a series of one data point per minute
recorded over a few days, .
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(a) δ = 1000, π = 0.02 (b) δ = 1000, π = 0.01

Figure 10: FDR over the full time series as a function of the time series size.

Conclusion This ensures that the control at level is reached not only for
infinite time series but also for finite time series which allows our model to be
used in practice.

5. Empirical simulation against competitor

The control of the FDR with p-values estimated empirically has been studied
at Section 3. Theorem 2 ensure the control of the FDRm

1 when the p-values
are estimated on calibration set having particular cardinality value. Theorems 3
and 4 ensure the control of the FDR of the full time series throw control of
the mFDRm

1 of the subseries. Corollary 5 enables to deduce that the mBHα

procedure can be apply to control the FDR of the full time series under the
Heuristic and Power assumptions. Even though these assumptions are hard
to ensure theoretically, the experiment at Section 4.4.1 shows that the mFDRm

1
is controlled for tested scenario, provided that anomalies are sufficiently atypical.
Experiment from Section 4.4.3 shows that the control of the FDR is possible
even the time series is not infinite as required by Theorem 4.

These different results provide the conditions for building an anomaly de-
tector that controls the FDR of the time series through control of the mFDR
on the subseries and the p-empirical value. Our anomaly detector is evaluated
under different scenarios by varying the generated anomalies and the targeted
FDR. To understand the source of the difficulties that the anomaly detector
may encounter, different sequences of p-values with oracle information are in-
troduced. Our anomaly detector is compared against Levels based On Recent
Discovery (LORD) which is a online multiple testing procedure, introduced in
[30] to control the FDR.
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5.1. Data

The synthetic data are generated from Gaussian distribution. With the use of
the empirical p-value estimator there are no need to evaluate on other data
distribution. Only anomaly proportion and the distribution shift associated to
anomalies impact the performances of the anomaly detector. Data are generated
accordingly with Definition 4 with Gaussian reference distribution and anomaly
spike like in Section 3.4.1. The strength of the distribution shift noted by ∆
takes value in {3σ, 3.5σ, 4σ} and the abnormality proportion noted π is equal to
0.01. Each generated time series contain T = 104 data points. Each experiment
is repeated over 100 time series.

For t in J1, T K:

• At ∼ B(π)

• Xt =
{

N (0, σ2) if At = 0
∆σ else

The value of ∆ represents the atypicity score of the anomalies. Anomalies
with higher ∆ are easier to detect. In this experiment, the standard deviation
σ is set to 1.

5.2. Threshold and p-value estimators description

5.2.1. Our proposal mBH on overlapping subseries

Using the p-value with the empirical estimator, the anomalies are detected by us-
ing mBH as the threshold estimator on overlapping subseries in the Algorithm 1.
For each time t, the threshold is computed as: ε̂mBHα,t = fm(p̂t−m, . . . , p̂t),
where fm is the mBH-procedure. To ensure FDR control according to Theo-
rem 1, the cardinality of the calibration set to be equal to n = m

α − 1. In this
experiment m is equal to 100 and α takes values 0.1 and 0.2 depending the
tested scenario. So the calibration set takes values 999 or 1999.

5.2.2. LORD

LORD introduced in [30] is based on alpha-investing rules to define a threshold
on p-values. For each time t the threshold is computed from according to the
alpha-investing rules, depending on previous decision made by the algorithm.
For more precision refer to the original article [30]. The empirical p-value speci-
fied in Definition 2.4 does not respect this property while the conformal p-value,
defined in Equation 2.3.1 respects this property. Using conformal p-values to
apply LORD algorithm leads to a weak power detecting anomalies. The issue is
that p̃ ≥ 1

n+1 is always verified and the threshold sequence ε̂t decreases quickly
when no rejection are made. No anomaly can be detected. For these reasons, the
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empirical p-value introduced in Equation 2.4 is used while applying LORD and
mBH. In this experiment LORD3 from [30] is used with the same parameters
as in the original paper.

5.2.3. p-value estimation

Different sequences of p-values are used to understand the limitations of our
anomaly detector. The true p-values are used to evaluate the case where the only
limitation comes from the multiple testing procedure. One can thus understand
how the estimation of the p-values affects the detection of anomalies. One way
to estimate p-values in practice is to use the same calibration set for all p-values.
This is referred as the fixed calibration set. However, the p-values may be biased
in that particular calibration set. In practice, the usual way to implement the
estimated p-values is to use a sliding calibration set. To evaluate the p-value
of a data point Xt, n preceding data points are used as a calibration set. To
a bias in the estimation, the points detected as abnormal cannot be part of
the calibration set. However, the calibration set can be biased by undetected
anomalies. To evaluate this impact, the sliding calibration set-⋆ is introduced,
where the knowledge oracle of the labels is used to construct the calibration set
from the previous data points.

The different p-value sequences are computed as follows:

• Oracle: The true p-value is used instead of the estimated one.

∀t ∈ J1, T K, p̂t = Φ(Xt)

• Fixed calibration set (Fixed Cal.): The p-value is estimated using the
same calibration set {Zi, i ∈ [1, n]} for all observations.

∀t ∈ J1, T K, p̂t = 1
n

n∑
i=1

1[Zi > Xt]

• Sliding Calibration set-⋆ (Sliding Cal.-⋆): The p-value is estimated
using a calibration that is a sliding windows containing the n previous
true normal data.

∀t ∈ J1, T K, p̂t = 1
n

n∑
i=1

1[Xh(t,i) > Xt]

With h the function that select observation that respect H0. For each t
and i, h(t, i) gives the i-th observation lower than t and that respect H0
hypothesis.

• Sliding Calibration set (Sliding Cal.): The calibration set is a sliding
windows containing the n previous estimated normal data.

∀t ∈ J1, T K, p̂t = 1
n

n∑
i=1

1[Xĥ(t,i) > Xt]
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With ĥ the function that estimates the function h. For each t and i, ĥ(t, i)
give the i-th observation lower than t and dĥ(t,i) = 0.

5.3. Performance metrics

The anomaly detector are evaluated using their ability to control the FDR and
minimize the FNR of the full time series. Therefore, the two applied metrics are
the FDP and the FNP computed as:

FDP =
∑T

t=1 1[p̂t < ε̂t](1 − At)∑T
t=1 1[p̂t < ε̂t]

and

FNP =
∑T

t=1 1[p̂t < ε̂t](1 − At)∑T
t=1 At

where ε̂t is estimated using mBH or LORD and p̂t is estimated using one of the
estimator defined in Section 5.2.3.

5.4. Results

The box plots shown in Figures 15-18 represent the FDP and FNP distribu-
tion for 1000 repetitions. Inside each sub figure (a, b, c, d, e,..), the box plot
distributions are displayed according to:

1. the multiple testing method mBH or LORD,

2. the p-value estimation model set to Oracle PV, Fixed Cal., Sliding Cal.-⋆
or Sliding Cal.

3. and the distribution shift between the normal data and anomalies, noted
∆, varying from 4σ to 3σ.

Table 4 gives a summary using FDR and FNR estimations. It enables eas-
ily the comparison between these values coming from the different strategies
combining:

1. the multiple testing method mBH or LORD,

2. the choice of the level α varying from 0.1 to 0.2,

3. the p-value estimation model set to Oracle PV, Fixed Cal., Sliding Cal.-⋆
or Sliding Cal.

4. and the distribution shift between the normal data and anomalies, varying
from 4σ to 3σ.
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FDR, α = 0.1 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.101 0.113 0.281
mBH with Fixed Cal. 0.100 0.109 0.348
mBH with Sliding Cal.-⋆ 0.100 0.113 0.256
mBH with Sliding Cal. 0.335 0.222 0.346
LORD with Oracle PV 0.106 0.115 0.367
LORD with Fixed Cal. 0.111 0.277 0.736
LORD with Sliding Cal.-⋆ 0.070 0.190 0.841
LORD with Sliding Cal. 0.075 0.098 0.627

(a) FDR, α = 0.1
FNR, α = 0.1 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.020 0.151 0.793
mBH with Fixed Cal. 0.026 0.135 0.669
mBH with Sliding Cal.-⋆ 0.019 0.140 0.669
mBH with Sliding Cal. 0.040 0.217 0.694
LORD with Oracle PV 0.033 0.260 0.905
LORD with Fixed Cal. 0.070 0.340 0.896
LORD with Sliding Cal.-⋆ 0.781 0.845 0.978
LORD with Sliding Cal. 0.052 0.327 0.907

(b) FNR, α = 0.1
FDR, α = 0.2 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.200 0.208 0.277
mBH with Fixed Cal. 0.206 0.211 0.301
mBH with Sliding Cal.-⋆ 0.210 0.219 0.283
mBH with Sliding Cal. 0.833 0.815 0.761
LORD with Oracle PV 0.211 0.216 0.290
LORD with Fixed Cal. 0.210 0.263 0.665
LORD with Sliding Cal.-⋆ 0.061 0.149 0.625
LORD with Sliding Cal. 0.117 0.133 0.321

(c) FDR, α = 0.2
FNR, α = 0.2 ∆ = 4σ ∆ = 3.5σ ∆ = 3σ
mBH with Oracle PV 0.009 0.062 0.395
mBH with Fixed Cal. 0.014 0.045 0.355
mBH with Sliding Cal.-⋆ 0.008 0.059 0.339
mBH with Sliding Cal. 0.003 0.018 0.101
LORD with Oracle PV 0.016 0.117 0.610
LORD with Fixed Cal. 0.04 0.144 0.689
LORD with Sliding Cal.-⋆ 0.805 0.835 0.941
LORD with Sliding Cal. 0.026 0.168 0.692

(d) FNR, α = 0.2

Table 4
Comparison of mBH versus LORD for online anomaly detection in Gaussian white noise

with different abnormality levels.
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5.5. Analysis

5.5.1. Effect of the strength of the distribution shift ∆

According the assumption Power from Theorem 5, mBHα enables control of
the FDR at level α if all anomalies are detected.
To test this assertion, the different columns of the Table 4a, are compared. In
the row “mBH with Oracle PV”, with ∆ = 4σ the FDR is estimated at 0.101
which is close to the desired level α = 0.1. While, when ∆ = 3σ the FDR level
is estimated at 0.281 which is almost three times the desired level α. The FNR
results in Table 4b needs to be taken into consideration. When ∆ = 4σ, the
FNR is close to 0, while when ∆ = 3σ the FNR is equal to 0.793. Similar results
are obtained with other test configurations in Table 4c and Table 4d. The FDR
control at the desired level need the FNR to be close to 0.

5.5.2. Effect of p-value estimation

To understand how the p-value estimation can prevent the control of the FDR,
the first four rows in Table 4a are compared. In the column “4σ”, the FDR
values for the configurations “Oracle PV”, “Fixed Cal.” and “Sliding Cal.-⋆”
are very close to the desired level α = 0.1. This control is enabled by The-
orem 5, since the p-values verify all hypotheses, in particular all data in the
calibration sets are generated according to the reference distribution. However,
in the case of “Sliding Cal.”, the FDR increases at a value of 0.335. For the
same configurations, the FDR remains low, between 0.019 and 0.040 as shown
at Table 4b. The increase of FDR when using “Sliding Cal.” instead of “Sliding
Cal.-⋆” is a consequence of calibration set contamination. Indeed, according to
the procedure used to build the calibration sets, described in Section 5.2.3, all
detected anomalies are removed from calibration sets used in the estimation of
next p-values. When an observation is wrongly detected as an anomaly, this
data point cannot be part of the calibration set at future steps of the online de-
tection. Instead, it is replaced by an other data point having statistically a lower
atypicity score. Indeed false positives have high atypicity score to be (wrongly)
detected as anomalies. As a result, the calibration set contains data points with
lower scores than if it had been generated under P0. It leads to underestimate
the p-values and to increase the number of false positives. This illustrates the
major drawback of mBH: it is highly sensitive to the non robustness of the p-
value estimator. Figure 15a shows that using fixed calibration instead of sliding
calibration-⋆ gives a larger variance on the FDP while the FDR is the same.
Using a single calibration set for the entire time series means that the FDP is
highly dependent on the start of the time series. By modifying the calibration
set at each time step, the statistical fluctuations in the FDP are smoothed over
the course of the time series analysis.
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5.5.3. Comparison with LORD

In this section, the results found using mBH and the ones using LORD are com-
pared. As known from the literature, LORD controls the FDR of super-uniform
p-values. In this experiment, the question is in the capacity of LORD method
to control the FDR of empirical p-values that have no theoretical guaranties.
It can be noticed in Figure 4a that LORD is able to ensure the control of the
FDR for all calibration set definitions when anomalies are easier to detect as
for ∆ = 4σ or ∆ = 3.5σ. In particular, unlike mBH, LORD is able to control
the FDR in the case of the sliding calibration set. However, mBH method has
a lower FNR compared to the LORD method, as shown in 4a and 4b. For ex-
ample, Table 4b shows that the FNR is equal to 0.019 with mBH while it is
equal to 0.781 with LORD, in the case using Sliding Calibration set-⋆ on data
having ∆ = 3σ. Nevertheless, with the Sliding Calibration set case, the LORD
method has quite the same FNR but with lower FDR (0.335 against 0.075). The
contamination issue of mBH offsets the superior performance observed in the
Sliding Calibration set-⋆.

6. Conclusion

In this article, an online anomaly detector that aims to have a better control of
the FDR at a given level α has been proposed. The research has been developed
to tackle two issues:

• the empirical p-values: it ensures conditions on the calibration cardinality
to ensure FDR control when using Benjamini-Hochberg.

• and the online detection: it ensures a global control of the FDR through
local control of the mFDR of subseries, using a modified version of the
BH-procedure.

The results of our research is the assessment of our proposal from the the-
oretical point of view and from empirical experiments. Our method has been
compared with a method from the state of the art. It shows the strong capabil-
ity for ensuring control of the FDR even in the case of empirical p-values. The
major drawback and improvement path of our method is it relies on non-robust
p-value estimation.
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Appendix A: Proofs

A.1. Comparison of p-values estimators

The control of the FDR is not achievable using classical multiple testing [6,
49] since the p-value estimator, shown in Definition 2, is not super-uniform.
Conformal p-value estimator p̃, shown in Equation 2.3.1, verifies the super-
uniform property. However, this estimator p̃ ≥ 1

m+1 has lower power because
zero anomalies are detected with thresholds below 1

m+1 .

Figure 11 displays the comparison between estimated p-values and conformal
p-values using the BH-procedure. As shown in Figure 11a, the conformal p-
values ensure an upper bound on the FDR at level m0

m α, while the estimated
p-values ensure only a lower bound at the same level. Moreover, perfect control
are reached for n = 1000 and n = 2000 with conformal p-values while the
control is reached for n = 999 and n = 1999 with estimated p-values. As shown
in Figure 11b, the FNR for conformal p-values estimator is always larger than
the one for estimated p-values. However for the n points that control the FDR,
the FNR values are close.

To conclude, the choice between conformal p-values and estimated p-values
depends on the calibration set size. Indeed, for calibration set n = 1000 the
performances are similar. But for other calibration set sizes as n = 1500 the
FDR control are similar but the FNR is better for estimated p-values.

(a) FDR (b) FNR

Figure 11: Comparison between p-value estimators using Benjamini-Hochberg
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A.2. PRDS property for p-values having overlapping calibration set

The following construction is used to describe a family of p-values with overlap-
ping calibration set. Let Z the vector that combine all calibration set, the Zi are
i.i.d. with marginal probability P0. The set of the n indices defining the elements
of the calibration set related to p̂i in Z is noted Di. The calibration related to
X1 is noted ZD1 = (Zi1 , . . . , Zin

). For all i in J1, mK: p̂i = p-value(Xi, ZDi
).

To proof that p-values with overlapping calibration set are PRDS as described
in Definition 1, the methodology used in [4] to be extended in the case of over-
lapping calibration set. For i in J1, mK the calibration set associated to Xi is
noted ZDi

. The law of total probabilities gives:

P [p̂m
1 ∈ A|p̂i = u] =

∫
P [p̂m

1 ∈ A|p̂i = u|ZDi
= z]P [ZDi

= z|]dz

= EZDi
|p̂i=uP [p̂m

1 ∈ A|p̂i = u|ZDi
= z]

If these two lemma are suppose to be true, the PRDS property is verified.

Lemma 5.1. For non-decreasing set A and vectors z, z′ such that z ⪰ z′, then

P [p̂m
1 ∈ A|ZDi

= z] ≥ P [p̂m
1 ∈ A|ZDi

= z′] (A.1)

Lemma 5.2. For u ≥ u′, if i belongs to the set of inliers, the exists ZDi,1 ∼
ZDi |p̂i = u and ZDi,2 ∼ ZDi |p̂i = u′ such that P[ZDi,1] ⪰ P[ZDi,2]

Indeed, take i ∈ J1, mK and u ≥ u′ and define ZDi,1 and ZDi,2 as in the
statement of Lemma 5.2.

P[p̂m
1 ∈ A|pi = u] = EZDi,1 [P[p̂m

1 ∈ A|ZDi
= ZDi,1]] (Lemma 5.2)

≥ EZDi,2 [P[p̂m
1 ∈ A|ZDi

= ZDi,2]] (Lemma 5.1)
≥ P[p̂m

1 ∈ A|pi = u′] (Lemma 5.2)

It shows that, when u ≥ u′ then P[p̂m
1 ∈ A|pi = u] ≥ P[p̂m

1 ∈ A|pi = u′], which
means P[p̂m

1 ∈ A|pi = u] is increasing in u. The PRDS property is satisfied. To
complete the proof, the introduced lemmas are proven.

Proof of Lemma 5.1. Let be i in J1, mK and vectors z, z′ and z vectors such
that z ⪰ z′. The vectors z, z′ are used to define the calibration set related to
the p-values p̂i and z is used to define elements of calibrations sets that are not
in the calibration set of p̂i. By conditioning on the calibration sets defined by
(z, z) and (z′, z) it gives:

P

[
p̂m

1 ∈ A|ZDi = z, ZDi
= z
]

≥ P

[
p̂m

1 ∈ A|ZDi
= z′, ZDi

= z
]

(A.2)
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This result comes from the decomposition the following decomposition, for
all j in J1, mK

p̂j = 1
n

∑
k∈Dj

1[a(Zk) ≥ a(Xj)]

= 1
n

 ∑
k∈Dj∩Di

1[a(Zk) ≥ a(Xj)] +
∑

k∈Dj\Di

1[a(Zk) ≥ a(Xj)]


The conclusion comes from ZDi ⪰ Z ′

Di
which implies ZDi∩Dj ⪰ Z ′

Di∩Dj
.

Since ZDj\Di
⊥ ZDi

, Eq. A.2 can be integrated over ZDi
to give:

P [p̂m
1 ∈ A|ZDi

= z] ≥ P [p̂m
1 ∈ A|ZDi

= z′] (A.3)

Proof of Lemma 5.2. Let S′
i,(1) ≤ Si,(2) ≤ . . . ≤ Si,(n) the order statistics of

(a(ZDi,1), . . . , a(ZDi,n)). Let S′
i,(1) ≤ S′

i,(2) ≤ . . . ≤ S′
i,(n+1) the order statistics

of (a(ZDi,1), . . . , a(ZDi,n), a(Xi)). And Ri the rank of a(Xi) among these.{
(S(1), . . . , S(n))|Ri = k, S′

i,(1), . . . , S′
i,(n+1)

}
= (S′

(1), . . . , S′
(k−1), S′

(k+1), . . . , S′
(n+1))

(A.4)
Using that Ri is independent of S′

i,(1), . . . , S′
i,(n+1):

{
(S(1), . . . , S(n))|Ri = k

}
= (S′

(1), . . . , S′
(k−1), S′

(k+1), . . . , S′
(n+1)) (A.5)

The right-hand side is not increasing with k and p̂i = Ri−1
n

A.3. Proof of Theorem 1

Proof of Theorem 1. Let R be a random variable describing the number of re-
jections made by BHα that is, R =

∑m
i=1 Di, where Di = 1 if hypothesis H0,i

is rejected. Let also FP be the number of false positives made by BHα. Then,
FP =

∑m
i=1 AiDi =

∑m0
i=1 Di, where Ai is a random variable equal to 1 if

hypothesis H0,i is true and 0 otherwise. Furthermore

FDP = FP

R
=

m0∑
i=1

1[pi ≤ αR
m ]

R
(since Di = 1[pi ≤ αR

m ])

=
m∑

k=1

m0∑
i=1

1[pi ≤ αk
m ]1[R = k]

k
. (A.6)
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Let us now introduce the random variables R(i) that are the number of re-
jections generated by BH when pi is replaced by the value 0 that is, R(i) =
BHα(p1, .., pi−1, 0, pi+1, . . . , pm). It results that

1[pi ≤ αk

m
]1[R = k] = 1[pi ≤ αk

m
]1[R(i) = k],

since, on the event {pi ≤ αk
m }, pi is rejected and therefore R = R(i). Let us also

notice that the independence between the p-values is already used at this stage
since modifying the value of pi does not affect that of the others.

By combining the previous argument and the independence between R(i) and
the other p-values, the expectation on both sides yields

FDP =
m∑

k=1

m0∑
i=1

1[pi ≤ αk
m ]1[R(i) = k]

k

⇒ FDR = E[FDP ] =
m∑

k=1

m0∑
i=1

P[pi ≤ αR
m ]P[R(i) = k]

k

=
m∑

k=1

m0∑
i=1

αk
m P[R(i) = k]

k

= m0α

m
,

where the last equality results from the fact that the true p-values follow a
uniform distribution on [0, 1]. The result finally follows from noticing that for
each 1 ≤ i ≤ m0,

∑m
k=1 P[R(i) = k], since R(i) ≥ 1 by definition.

A.4. Proof of Corollary 1

Proof of Corollary 1. To get a deeper understanding of the FDR expression
obtained in Theorem 2, qn,k the fractional part of αkn

m is introduced:

qn,k = αkn

m
−
⌊

αkn

m

⌋
When plugged into the FDR expression, it gives:

FDR = m0

m∑
k=1

αkn
m +1−qn,k

n+1
k

P(R(1) = k)

FDR = m0α

m

n

n + 1 + m0

n + 1

m∑
k=1

1 − qn,k

k
P(R(1) = k) (A.7)

In order to get lower and upper bounds of the FDR, the value of qn,k should
be expressed as a function of α, k, n and m.
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For the next part of the proof, it is useful to express the relation between qn,k

and qn+1,k. It gives the effect of increasing the cardinality of the calibration by
one. Using the definition of the fractional part:

qn+1,k − qn,k = αk(n + 1)
m

−
⌊

αk(n + 1)
m

⌋
− αkn

m
+
⌊

αkn

m

⌋
qn+1,k − qn,k = αk

m
−
⌊

αk(n + 1)
m

⌋
+
⌊

αkn

m

⌋

Which can be expressed as a congruence relation:

qn+1,k − qn,k ≡ αk

m
(mod 1) (A.8)

Two cases are studied:

1. Particular case: there exists an integer 1 ≤ ℓ such that ℓm
α is an integer.

the notation nℓ = ℓm
α is introduced. Since: αknℓ

m = αkℓm/α
m = kℓ is an

integer, then the fractional part is null:

qnℓ,k = 0

If the calibration set cardinality n is equal to n = nℓ − 1 = ℓm
α − 1. Then,

the congruence relation in Eq. A.8 gives:

qnℓ−1,k ≡ qnl,k − αk/m (mod 1)
qnℓ−1,k ≡ 0 − αk/m (mod 1)

Using the fact that fractional part of a number belongs to [0, 1[, the only
possible value to qnℓ−1,k is:

qnℓ−1,k = 1 − αk/m

Plugging the value of qnℓ−1,k into Eq. A.7, it gives:

FDR = m0αn

m(n + 1) + m0

n + 1

m∑
k=1

αk

km
P(R(1) = k)

Simplifying by k and using that
∑m

k=1 P(R(i) = k) = 1, the result is
obtained:

FDR = m0αn

m(n + 1) + m0α

(n + 1)m

FDR = m0α

m
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2. General case: With α ∈]0, 1], for each ℓ the notation nℓ =
⌈

ℓm
α

⌉
is intro-

duced. Notice that this definition is consistent with the particular case.
The ceiling function definition gives:⌈

ℓm

α

⌉
− 1 <

ℓm

α
≤
⌈

ℓm

α

⌉

Multiplying by αk on each side and the nℓ notation:

αk(nℓ − 1)
m

< kℓ ≤ αk(nℓ)
m

It implies that ⌊ αk(nℓ−1)
m ⌋ < ⌊ αk(nℓ)

m ⌋. Also, Eq. A.8 is expressed as qnℓ,k −
qnℓ−1,k ≡ αk

m (mod 1):

1 − αk

m
≤ qnℓ−1,k < 1 (A.9)

Indeed, the fractional part of a number as to be larger than 1 − αk/m so
that adding αk/m increase the integer part.

By plugin the bounds of qnℓ−1,k into Eq. A.7, it can gives the bounds of
the FDR. At first, to compute the upper bound of the FDR the lower
bound of qnℓ−1,k is used:

FDR ≤ m0(nℓ − 1)α
mnℓ

+ m0

n + 1

m∑
k=1

αk

km
P(R(1) = k)

With the same calculations as for the “Particular case”, it gives:

FDR ≤ m0α

m

Similarly, the lower bound of the FDR can be obtained using the qn,k

upper bound from Eq. A.9 plugged into Eq. A.7:

m0(nℓ − 1)α
mnℓ

+ m0

n + 1

m∑
k=1

(1 − 1)
k

P(R1 = k) < FDR

m0(nℓ − 1)α
mnℓ

< FDR
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A.5. Proof of Proposition 4

Proof of Proposition 4. By definition mFDRm
1 = E[F P m

1 ]
ERm

1
, and Rm

1 = FP m
1 +

TP m
1 . With hypothesis the mFDR is equal to α, this gives:

α = E[FP m
1 ]

ERm
1

α = E[FP m
1 ]

E[FP m
1 + TP m

1 ]
α(E[FP m

1 ] + E[TP m
1 ]) = E[FP m

1 ]
(α − 1)E[FP m

1 ] = −αE[TP m
1 ]

E[FP m
1 ] = α

1 − α
E[TP m

1 ]

Then, the expectation of true positives is expressed using the proportion of false
negatives β, the proportion of anomaly π in the m observations, Ai the random
variable equal to 1 if the observation Xi is an anomaly and Di the random
variable equal to 1 if the observation Xi is detected as anomaly :

E[TP m
1 ] =

m∑
i=1

P[Ai = 1 and Di = 1]

=
m∑

i=1
P[Ai = 1]P[Di = 1|Ai = 1]

= mπ(1 − β)

Therefore, the E[FP m
1 ] can be expressed as:

E[FP m
1 ] = αmπ(1 − β)

1 − α

So the E[Rm
1 ] is expressed as follows:

E[Rm
1 ] = αmπ(1 − β)

1 − α
+ mπ(1 − β)

= mπ(1 − β)
1 − α
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Appendix B: Figures

B.1. Effect of the number detections by BH on the intermediate
drops for the FDR control in Section 3.4

(a) m1 = 1 (b) m1 = 1

(c) m1 = 2 (d) m1 = 2

(e) m1 = 3 (f) m1 = 3

(g) m1 = 4 (h) m1 = 4

Figure 12: Effect of the number detections by BH on the intermediate drops for
the FDR control
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B.2. Figures related to experiment of Section 4.4.1

(a) mFDR, α = 0.1, π =
0.07

(b) FDR, α = 0.1, π =
0.07

(c) FNR, α = 0.1, π =
0.07

(d) mFDR, α = 0.05, π =
0.07

(e) FDR, α = 0.05, π =
0.07

(f) FNR, α = 0.05, π =
0.07

(g) mFDR, α = 0.2, π =
0.07

(h) FDR, α = 0.2, π =
0.07

(i) FNR, α = 0.2, π =
0.07

(j) mFDR, α = 0.1, π =
0.01

(k) FDR, α = 0.1, π =
0.01

(l) FNR, α = 0.1, π =
0.01

Figure 13: Effect of the atypicity level on the mFDR, FDR and FNR, according
to different multiple testing procedures.
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B.3. Figures related to experiment of Section 4.4.1

(a) mFDR, α = 0.1, π =
0.01

(b) mFDR, α = 0.1, π =
0.02

(c) mFDR, α = 0.2, π =
0.02

(d) FNR, α = 0.1, π =
0.01

(e) FNR, α = 0.1, π =
0.02

(f) FNR, α = 0.2, π =
0.02

Figure 14: Effect of atypicity level on mFDR and FNR, depending on whether
detection is on disjoint or overlapping subseries
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B.4. Figures related to the experiment of Section 5.4

(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 15: Comparison of the FDPs acquired from using different multiple test-
ing procedures, mBH or LORD, and from the way the p-values are calculated,
in the case α = 0.1.
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(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 16: Comparison of the FNPs acquired from using different multiple test-
ing procedures, mBH or LORD, and from the way the p-values are calculated,
in the case α = 0.1.
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(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 17: Comparison of the FDPs acquired from using different multiple test-
ing procedures, mBH or LORD, and from the way the p-values are calculated,
in the case α = 0.2
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(a) mBH, 4−sigma (b) LORD, 4−sigma

(c) mBH, 3.5−sigma (d) LORD, 3.5−sigma

(e) mBH, 3−sigma (f) LORD, 3−sigma

Figure 18: Comparison of the FNPs acquired from using different multiple test-
ing procedures, mBH or LORD, and from the way the p-values are calculated,
in the case α = 0.2.
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