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Abstract

We prove the existence of weak solutions for a class of second order traffic models with
relaxation, without requiring the sub-characteristic stability condition to hold. Therefore,
large oscillations may arise from small perturbations of equilibria, capturing the formation
of stop-and-go waves observed in reality. An analysis of the corresponding travelling waves
completes the study.
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1 Introduction

Macroscopic traffic flow models have been used since several decades [20, 24] to describe the
spatio-temporal evolution of aggregated quantities, like vehicle density and average speed. In
particular, second order models [2, 22, 28, 29], which consist in the mass conservation equation
coupled with a momentum balance equation accounting for the speed dynamics, have been
developed to describe specific traffic characteristics that cannot be captured by scalar models,
such as scattered fundamental diagrams and the appearance and persistence of stop-and-go
waves. Indeed, traffic equilibria are generally unstable [4, 27], and small perturbances in
drivers’ behaviour can generate so called “phantom” jams with no apparent cause. The same
behaviour can be observed at a macroscopic scale considering relaxation source terms that
violate the usual stability conditions [14, 26].

In this paper, we study a Generic Second Order Model (GSOM) [18] with relaxation,
which extends the well-known Aw-Rascle-Zhang system [2, 29], allowing for more general
speed formulation. In the literature, hyperbolic systems of balance laws with relaxation
source terms are usually studied under a stability condition ensuring well-posedness and
convergence results as the relaxation parameter tends to zero [7, 8]. We recall that the
stability condition is related to the dissipativity of the evolution equation obtained by a first
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order expansion around equilibria, as observed in [7]. Under this hypothesis, one can recover
uniform compactness estimates, which ensure convergence to the equilibrium equation, see
e.g. [17, 19, 16, 25] for traffic flow applications.

Aiming at capturing the traffic flow instabilities observed in reality, here we drop the
stability assumption, and we study the model properties for a fixed positive relaxation pa-
rameter. In particular, we provide a global existence proof for weak solutions based on
wave-front tracking approximations and an analysis of travelling waves for the system and
its Chapman-Enskog expansion. Our results are general enough to hold for a class of traffic
flow models, without too specific assumptions, and they show that these models are able to
capture the formation and persistence of stop-and-go waves. This paves the way to the design
of control strategies to dampen traffic oscillations in a macroscopic framework, in the spirit
of [15].

The presentation is organized as follows. We introduce the GSOM system with relaxation
in Section 2 and we describe the corresponding Riemann problem in Section 3. Section 4
provides the compactness estimates on the sequence of approximate solutions, which are used
to pass to the limit providing the existence of weak solutions in Section 5. Travelling waves
are studied in Sections 6 and 7.

2 Model description

We consider the system
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = ρ
V (ρ)− v

τ
,

x ∈ R, t > 0, (2.1)

defined on an invariant domain of the form

Ω :=
{
U = (ρ, w) ∈ R2 : ρ ∈ [0, R(wmax)], w ∈ [wmin, wmax]

}
, (2.2)

for some 0 < wmin ≤ wmax < +∞. Above, the average speed of vehicles is a function of the
density ρ = ρ(t, x) and of a Lagrangian vehicle property w = w(t, x), namely v = V(ρ, w) for
some speed function V : Ω → R≥0 satisfying [13]:

V(ρ, w) ≥ 0, V(0, w) = w, (2.3a)

2Vρ(ρ, w) + ρVρρ(ρ, w) < 0 for w > 0, (2.3b)

Vw(ρ, w) > 0, (2.3c)

∀w > 0 ∃ R(w) > 0 : V(R(w), w) = 0. (2.3d)

As in [13], we observe that (2.3b) implies that Q(ρ, w) := ρV(ρ, w) is strictly concave and
Vρ(ρ, w) < 0 for w > 0, if V is a C2 function in ρ. We also remark that in (2.3d) we can have
R(w) = R̄ for all w > 0.
Moreover, we assume the equilibrium speed V : R+ → R+ is a non-increasing function
(V ′(ρ) ≤ 0) such that V (ρ) = 0 for ρ ≥ ρmax > 0.

Notice that, setting V(ρ, w) = w − p(ρ) for a suitable “pressure” function p, system (2.1)
corresponds to the Aw-Rascle-Zhang (ARZ) model [2, 29]. We also remark that, taking w = w̄
constant, we recover the classical Lighthill-Whitham-Richards (LWR) model [20, 24].
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Under the above hypotheses, system (2.1) is strictly hyperbolic for ρ > 0, with eigenvalues

λ1(ρ, w) = V(ρ, w) + ρVρ(ρ, w), λ2(ρ, w) = V(ρ, w), (2.4)

and corresponding eigenvectors

r1(ρ, w) =

(
−1
0

)
, r2(ρ, w) =

(
Vw(ρ, w)
−Vρ(ρ, w)

)
, (2.5)

with the first characteristic field being genuinely non-linear and the second linearly degenerate.
The associated Riemann invariants [11, Chapter 7.3] are

z1(ρ, w) = V(ρ, w), z2(ρ, w) = w.

Since Vρ(ρ, w) < 0 and V(0, w) = w, the range of v = V(ρ, w) is given by v ∈ [0, w] for
any w ∈ [wmin, wmax]. Therefore, the inverse function ρ = R(v, w) is uniquely defined in the
invariant domain

W :=
{
W = (v, w) ∈ R2 : 0 ≤ v ≤ w,w ∈ [wmin, wmax]

}
. (2.6)

We remark that, in the (v, w) coordinates, the curves ρ = R(v, w) = const are parallel to the
first bisector [23, Section 5]. Indeed, we get:

R(v, w) = const =⇒ Rv +Rw = 0

V(R(v, w), w) = v =⇒ VρRv = 1 and VρRw + Vw = 0

Replacing Rv = 1/Vρ and Rw = −Vw/Vρ in the first relation, we get Vw = 1 on R(v, w) level
curves.

We recall that weak solutions of (2.1) corresponding to an initial datum U(0, x) = U0(x) =
(ρ0(x), w0(x)) ∈ L∞(R, E) are defined as

Definition 1. Let u0 = (ρ0, ρ0w0)
T ∈ L1(R;R2

+) and T > 0 be given. Then u = (ρ, ρw)T ∈
C0
(
[0, T ],L1(R;R2

+)
)
is a weak solution to the Cauchy problem for (2.1) if, for all φ ∈

C1
c

(
]−∞, T [×R;R

)
, it holds∫

R
u0(x)φ(0, x) dx+

∫ T

0

∫
R

[
u∂tφ+ F (u)∂xφ

]
(t, x) dxdt+

∫ T

0

∫
R
G(u)φ(t, x) dxdt = 0, (2.7)

where

F (u) =

[
ρv
ρwv

]
, G(u) =

 0

ρ
V (ρ)− v

τ

 .

For smooth solutions, system (2.1) is equivalent to:
∂tρ+ ∂x(ρv) = 0,

∂tv + λ1(ρ, w)∂xv =
V (ρ)− v

τ
,

x ∈ R, t > 0, (2.8)
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and 
∂tρ+ ∂x(ρv) = 0,

∂tw + λ2(ρ, w)∂xw =
V (ρ)− v

τ
,

x ∈ R, t > 0. (2.9)

We also recall that the sub-characteristic condition [7, 8] writes

Vρ(ρ, w) ≤ V ′(ρ) ≤ 0 for w s.t. V(ρ, w) = V (ρ), (2.10)

see e.g. Figure 1.
If (2.10) is satisfied, it is known [16] that (weak entropic) solutions to (2.1) converge to the
(weak entropic) solutions of

∂tρ+ ∂x(ρV (ρ)) = 0, x ∈ R, t > 0, (2.11)

for τ ↘ 0 or t → ∞ (using the change of variables t̃ = t/τ and x̃ = x/τ).

ρ

v

0 R

Vmax

V (ρ)

Vmin

ρ

ρv

0 R

ρV (ρ)

ρ

v

0 R

Vmax

V (ρ)
Vmin

ρ

ρv

0 R

ρV (ρ)

Figure 1: Speed-density (left) and flow-density (right) fundamental diagrams for the GSOM
model (2.1) corresponding to the choices (satisfying the sub-characteristic condition (2.10)):
Top: V(ρ, w) = w − αρ, with w ∈ [Vmin, Vmax] and V (ρ) = β(R− ρ) with α ≥ β > 0;
Bottom: V(ρ, w) = w(R− αρ), with w ∈ [Vmin, Vmax] and V (ρ) = β(R− ρ) with α ≥ β > 0.

The equilibrium curve V (ρ) = V (R(v, w)) is implicitly defined by

V (R(v, ϕ(v))) = v.

Differentiating w.r.to v we obtain

V ′(ρ)
(
Rv +Rwϕ

′(v)
)
= 1,

which gives

ϕ′(v) =
1

Rw

(
1

V ′(ρ)
−Rv

)
=

1

Vw

(
1− Vρ

V ′(ρ)

)
.
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Since Vw > 0, we get ϕ′(v) ≤ 0 if and only if Vρ ≤ V ′(ρ), see (2.10).

We are interested in investigating the behaviour of (2.1) when (2.10) is violated. Therefore,
we assume that there exists a point vcr, resp. wcr = ϕ(vcr), ρcr = R(vcr, wcr), such that
ϕ′(vcr) = 0, i.e.

Vρ(ρcr, wcr) = Vρ(ρcr, ϕ(vcr)) = V ′(ρcr). (2.12)

We will distinguish the two cases:

ϕ′(v) < 0 if v < vcr, ϕ′(v) > 0 if v > vcr, (2.13a)

and
ϕ′(v) > 0 if v < vcr, ϕ′(v) < 0 if v > vcr. (2.13b)

Moreover, we observe that, for v > vcr for case (2.13a), resp. v < vcr for case (2.13b),
ϕ′(v) < 1 if V ′(R(v, ϕ(v))) > Vρ(R(v, ϕ(v)), ϕ(v)) + V ′(R(v, ϕ(v)))Vw(R(v, ϕ(v)), ϕ(v)).
In case (2.13a), the equilibrium curve intersects the vacuum line v = w at v̂ = ŵ implicitly
defined by V(0, ŵ) = V (0), see Figure 2, left. We remark that in this case all invariant
domains must include vacuum states.
In case (2.13b), the equilibrium curve intersects the congestion line v = 0 at ŵ implicitly
defined by V(R(ŵ), ŵ) = 0 = V (ρmax), see Figure 2, right. We remark that in this case all
invariant domains must include congestion states.
We also define ρ̌, v̌ such that

v̌ = V(ρ̌, ŵ) = V (ρ̌). (2.14)

v

w

v̂

ŵ

vcr

w = ϕ(v)

0 wmaxv̌

wmax

wmin

wcr
E(0, ρ̌)

v

w

v̂

ŵ

vcr

w = ϕ(v)

0 wmax

wmax

wmin

wcr
E(ρ̌, R(ŵ)

Figure 2: Examples of non-monotone equilibrium curves w = ϕ(v) and minimal invariant
domains E (continuous red line) and general invariant domains (dashed red line): left, convex
case (2.13a); right, concave case (2.13b).

3 The Riemann problem

Let us consider (2.1) with initial data

(ρ, w)(0, x) =

{
UL = (ρL, wL) if x < 0,

UR = (ρR, wR) if x > 0,
(3.1)
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and set vL = V(ρL, wL), vR = V(ρR, wR).
We observe that, if the subcharacteristic condition (2.10) is satisfied, weak solutions

of (2.1), (3.1) tend to weak solutions of the Riemann problem
∂tρ+ ∂x(ρV (ρ)) = 0, x ∈ R, t > 0,

ρ(0, x) =

{
ρ̄L = if x < 0,

ρ̄R if x > 0,

as τ ↘ 0 (or t → ∞), where ρ̄L,R = R(v̄L,R, w̄L,R) are the projection of UL, UR on the
equilibrium curve implicitly defined by

v̄L,R = V
(
R(v̄L,R, v̄L,R + wL,R − vL,R)

)
,

w̄L,R = v̄L,R + wL,R − vL,R,

see Figure 3.

v

w

UL

UR

V (ρ)

0 wmaxwmin

wmax

wmin

ρ

ρv

0

UL

UR

R(wmax)R(wmin)

Figure 3: Illustration of the limit behaviour of the solutions to the Riemann prob-
lem (2.1), (3.1) under the subcharacteristic condition (2.10).

3.1 The homogeneous Riemann problem

We recall here the detailed construction of weak (entropy) solutions of problem{
∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρwv) = 0,
x ∈ R, t > 0, (3.2)

with initial conditions (3.1).
In general, the left state UL is connected to UM = (ρM , wM ) by a first family wave

(rarefaction or shock), i.e. z2(ρL, wL) = wL = wM = z2(ρM , wM ), and UM is connected to UR

by a contact-discontinuity with z1(ρM , wM ) = vM = V(ρM , wM ) = vR = z1(ρR, wR). Thus,
the intermediate state UM is identified by the system of equations

wM = wL,

vM = vR,

ρM = R(vR, wL).
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If wL ≤ vR, we set ρM = 0, meaning that UM corresponds to the vacuum.
The propagation speed σ of a shock wave between two states U− and U+ is given by the

Rankine-Hugoniot condition

σ(U−, U+) =
ρ+v+ − ρ−v−

ρ+ − ρ−
. (3.3)

In this work, we will rely on the following definition of solutions of (2.1), (3.1), see also [12].
Since the presence of vacuum states prevents uniqueness even if an entropy condition is
enforced, we refer to [1] for an alternative construction.

Definition 2. For any UL, UR ∈ Ω, the Riemann solver

RS : Ω× Ω → C0
(
]0,+∞[ ;L1

loc(R; Ω)
)
, (UL, UR) 7→ RS(UL, UR)

is defined as follows:

1. If (vR, wR) ∈ W and vL ≥ vR, then

RS(UL, UR)(t, x) =


UL if x < σ(UL, UM )t,

UM if σ(UL, UM )t < x < vRt,

UR if x > vRt,

with σ defined in (3.3).

2. If (vL, wL) ∈ W \ {v = w}, and vL ≤ vR < wL, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(ρM , wM )t,

UM if λ1(ρM , wM )t < x < vRt,

UR if x > vRt,

with Û = (ρ, wL) solving λ1(ρ, wL) =
x

t
.

3. If (vL, wL) ∈ W \ {v = w} and wL ≤ vR, then

RS(UL, UR)(t, x) =


UL if x < λ1(ρL, wL)t,

Û if λ1(ρL, wL)t < x < λ1(0, wL)t,

UM if λ1(0, wL)t < x < vRt,

UR if x > vRt,

with Û = (ρ, wL) solving λ1(ρ, wL) =
x

t
and UM = (0, wL).

4. If vL = wL and vR = wR, then

RS(UL, UR)(t, x) =

{
UL if x < 0,

UR if x > 0.
(3.4)
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3.2 The relaxation Riemann problem

We now turn to the solution of the relaxation step, consisting of the system of ODEs
∂tρ = 0,

∂tv =
V (ρ)− v

τ
= ∂tw,

x ∈ R, t > 0, (3.5)

with Riemann-like initial datum (3.1), whose solutions are given by{
ρ(t, x) = ρ(0, x),

v(t, x) = V (ρ(0, x)) +
(
v(0, x)− V (ρ(0, x))

)
e−t/τ ,

x ∈ R, t > 0. (3.6)

Invariant domains for this step must include segments parallel to the line v = w joining any
point of the domain with the equilibrium curve.

From the above analysis, we easily see that the invariant domains for the relaxed Riemann
problem (2.1), (3.1) must have edges parallel to the Riemann invariant level curves and contain
properly a portion of the equilibrium curve, see Figure 2 and definitions (4.1), (4.2) below.

4 Wave-front tracking approximations

The construction of wave-front tracking (WFT) approximate solutions is based on a two
step process, that successively solves the homogeneous system (3.2) for a piece-wise constant
initial datum, and then integrates the source term contained in the ODE (3.5), see [16] and
references therein.

To define the invariant domains, we need to distinguish the two cases illustrated in Fig-
ure 2, namely the case in which the equilibrium curve w = ϕ(v) is a convex function and the
case in which it is concave.
Under the hypothesis (2.13a), invariant domains take the form

E = E[0, ρ̄] =
{
U = (ρ, w) : ρ ∈ [0, ρ̄],V(ρ, w) ∈ [v̄, vM ], w ∈ [wm, w̄]

}
, (4.1)

with ρ̄ ≥ ρ̌, vM ≥ v̂, wm ≤ wcr and v̄ = V(ρ̄, w̄) = V (ρ̄), where ρ̌, v̂ and wcr are chosen as
in (2.12), (2.14).
Under the hypothesis (2.13b), invariant domains take the form

E = E[ρ̄, R(ŵ)] =
{
U = (ρ, w) : ρ ∈ [ρ̄, R(wM )],V(ρ, w) ∈ [0, v̄], w ∈ [w̄, wM ]

}
, (4.2)

with ρ̄ ≤ ρ̌, wM ≥ wcr and v̄ = V(ρ̄, w̄) = V (ρ̄), where ρ̌ and wcr are chosen as in (2.12),
(2.14).

Let us consider initial data U0 = (ρ0, w0) : R → E such that TV(w0) + TV(V(ρ0, w0)) <
+∞. For any T > 0, we consider a sequence of time-steps ∆tν > 0, ν ∈ N such that ∆tν → 0
and we partition the interval [0, T [ in intervals of the form [n∆tν , (n + 1)∆tν [, n ∈ N. We
denote with Uν(t, x) = (ρν , wν)(t, x), t ∈ [0, T ], x ∈ R, the sequence of WFT approximate
solutions of (2.1) constructed as detailed below:
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1. Define a sequence of piece-wise constant functions Uν
0 = (ρν0 , w

ν
0) ∈ E satisfying

TV(V(ρν0 , wν
0)) ≤ TV(V(ρ0, w0)) ,

∥∥V(ρν0 , wν
0)− V(ρ0, w0)

∥∥
L∞ ≤ 1

ν
,
∥∥ρν0 − ρ0

∥∥
L1 ≤ 1

ν
,

TV(wν
0) ≤ TV(w0) ,

∥∥wν
0 − w0

∥∥
L∞ ≤ 1

ν
,
∥∥wν

0 − w0

∥∥
L1 ≤ 1

ν
,

and, for each ν ∈ N, the piece-wise constant function Uν
0 has a finite number of discon-

tinuities.

2. Solve the homogeneous system (3.2) corresponding to the Riemann problems arising at
discontinuities for t ∈ [0,∆tν [ using the WFT method and name Uν(t, .), t ∈ [0,∆tν [,
the corresponding piece-wise constant function [3].

3. At t = ∆tν , we define

ρν(∆tν , ·) = ρν(∆tν−, ·) ,

wν(∆tν , ·) = wν(∆tν−, ·) + ∆tν

τ

[
V (ρν(∆tν , ·))− V(Uν(∆tν−, ·))

]
.

Note that ρ is conserved during this second step, while w (and v = V(ρ, w)) is updated
according to (3.5).
Observe that we also have

V(Uν(∆tν , ·)) = V(Uν(∆tν−, ·)) + ∆tν

τ

[
V (ρν(∆tν , ·))− V(Uν(∆tν−, ·))

]
, (4.3)

see (3.5).

4. Treat Uν(∆tν , .) as a new piece-wise constant initial condition and repeat the previous
steps 2–3 to define the solution Uν(t, .) for each t ∈ [0, T ], for any T > 0 fixed.

4.1 L∞ estimates

Proposition 1. For ∆tν ≤ τ/max
{
1, ∥Vw∥∞

}
, the set E is an invariant domain for the

proposed WFT scheme.

Proof. Let us assume U0(x) ∈ E for all x ∈ R. System (3.2) being of Temple class, Step 2
above clearly preserves the inequalities on the Riemann invariants w,V(ρ, w).
Concerning the relaxation Step 3., if v− ≥ V (ρ) we have that

V (ρ) =

(
1− ∆t

τ

)
V (ρ) +

∆t

τ
V (ρ) ≤

(
1− ∆t

τ

)
v− +

∆t

τ
V (ρ) = v+ ≤ v−,

where we used (4.3) and the hypothesis ∆t ≤ τ . Hence, v+ ∈ [v̄, vM ] (resp. v+ ∈ [0, v̄]).
On the other hand

w+ = w− +
∆t

τ

(
V (ρ)− v−

)
≤ w−

and, developing

V(ρ, w−) = V(ρ, ϕ(V (ρ))) + Vw(ρ, w̃)
(
w− − ϕ(V (ρ))

)
= V (ρ) + Vw(ρ, w̃)

(
w− − ϕ(V (ρ))

)

9



for some w̃,

w+ = w− − ∆t

τ
V(ρ, w−) +

∆t

τ
V (ρ)

= w−

(
1− ∆t

τ
Vw(ρ, w̃)

)
+

∆t

τ
Vw(ρ, w̃)ϕ(V (ρ)) ≥ ϕ(V (ρ)),

where we used ∆t ≤ τ/∥Vw∥∞. Therefore, w+ ∈ [wm, w̄] (resp. w+ ∈ [w̄, wM ]).
The case v− < V (ρ) is treated analogously.

4.2 BV estimates

Proposition 2. Let us assume there exists c > 0 such that Vρ(ρ, w) ≤ −c for all (ρ, w) ∈ E.
For any t > 0, the total variation of the Riemann invariants

TV(W (Uν(t, ·))) := TV(wν(t, ·)) + TV(V(Uν(t, ·)))

of the WFT approximate solution satisfies the uniform bound

TV(W (Uν(t, ·))) ≤ TV(W (U0)) e
Kt/τ , (4.4)

where K :=
2

c

∥∥V ′∥∥
∞max

{
1, ∥Vw∥∞

}
. In particular, when τ ↘ 0, the estimate (4.4) blows

up.

Proof. Notice that, when we solve the homogeneous system (3.2), the total variation of both
Riemann invariants is non-increasing in time since we are dealing with a Temple-class system.
We thus focus on the evolution of the total variation at step 3, corresponding to (3.5).
We recall that, at tn = n∆tν and dropping the index ν for simplicity,

ρ(tn+, x) = ρ(tn−, x),

v(tn+, x) = v(tn−, x) +
∆t

τ
(V (ρ)− v)(tn−, x),

w(tn+, x) = w(tn−, x) +
∆t

τ
(V (ρ)− v)(tn−, x).

Therefore, at each jump in the approximate solution, we have

|v+r − v+l | =
∣∣∣∣v−r − v−l +

∆t

τ

(
V (ρr)− V (ρl)

)
− ∆t

τ
(v−r − v−l )

∣∣∣∣
=

∣∣∣∣∣
(
1− ∆t

τ

)
(v−r − v−l ) +

∆t

τ

(
V (ρr)− V (ρl)

)∣∣∣∣∣
≤
(
1− ∆t

τ

) ∣∣∣v−r − v−l

∣∣∣+ ∆t

τ

∥∥V ′∥∥
∞ |ρr − ρl| .

From the relation ρ = R(v, w), we get

|ρr − ρl| ≤ ∥Rv∥∞
∣∣∣v−r − v−l

∣∣∣+ ∥Rw∥∞
∣∣∣w−

r − w−
l

∣∣∣
≤ 1

c

∣∣∣v−r − v−l

∣∣∣+ ∥Vw∥∞
c

∣∣∣w−
r − w−

l

∣∣∣
10



by the relations Rv = 1/Vρ and Rw = −Vw/Vρ. Hence

|v+r − v+l | ≤

1 +
∆t

τ

(∥∥V ′∥∥
∞

c
− 1

)∣∣∣v−r − v−l

∣∣∣+ ∆t

τ

∥∥V ′∥∥
∞∥Vw∥∞
c

∣∣∣w−
r − w−

l

∣∣∣. (4.5)

Similar estimates lead to

|w+
r − w+

l | ≤
∆t

τ

(∥∥V ′∥∥
∞

c
+ 1

)∣∣∣v−r − v−l

∣∣∣+(1 + ∆t

τ

∥∥V ′∥∥
∞∥Vw∥∞
c

)∣∣∣w−
r − w−

l

∣∣∣. (4.6)

Summing (4.5) and (4.6), we obtain

TV(W (U(tn+, ·))) ≤
(
1 +K

∆t

τ

)
TV(W (U(tn−, ·))

with

K :=
2

c
max

{∥∥V ′∥∥
∞,
∥∥V ′∥∥

∞∥Vw∥∞
}
,

which gives (4.4).

4.3 L1 Lipschitz continuity in time

To get the BV estimates in space and time, following [6], see also [16, Lemma 2.3], we need
the next result.

Proposition 3. Under the same assumption as in Proposition 2, let us assume TV(W (U0)) =
M < +∞. Then there exist a constant CM > 0 independent of τ and a constant Lτ > 0, such
that, ∀ a < b and ∀ 0 ≤ s < t, the WFT approximate solutions satisfy∫ b

a
|ρν(t, x)− ρν(s, x)| ≤ CMeKt/τ (t− s), (4.7)∫ b

a
|wν(t, x)− wν(s, x)| ≤

(
CMeKt/τ + Lτ

)
(t− s+∆t). (4.8)

In particular, both estimates above blow up as τ ↘ 0.

Proof. Let s and t ∈ R such that 0 ≤ s < t. If there are no time-steps between s and t, (4.7)
and (4.8) are true for any Lτ ≥ 0, as a direct application of Temple-class system properties,
see [16]. We suppose now that there are N + 1 time-steps between s and t:

s ≤ k∆t ≤ (k + 1)∆t ≤ · · · ≤ (N + k)∆t ≤ t,

so that N∆t ≤ t− s.
Let a < b given and x ∈ ]a, b[. We can then estimate∣∣ρν(t, x)− ρν(s, x)

∣∣
=

∣∣∣∣∣∣ρν(t, x)− ρν((N + k)∆t, x) +

k+N−1∑
i=k

[ρν((i+ 1)∆t, x)− ρν(i∆t, x)] + ρν(k∆t, x)− ρν(s, x)

∣∣∣∣∣∣
11



≤
∣∣ρν(t, x)− ρν((N + k)∆t, x)

∣∣+ k+N−1∑
i=k

∣∣ρν((i+ 1)∆t, x)− ρν(i∆t, x)
∣∣+ ∣∣ρν(k∆t, x)− ρν(s, x)

∣∣.
Since ρν does not change through the splitting process, we can apply the previous property
between two consecutive time-steps to obtain∫ b

a

∣∣ρν(t, x)− ρν(s, x)
∣∣dx

≤ CMeKt/τ

t− (N + k)∆t+
N+k−1∑
i=k

(
(i+ 1)∆t− i∆t

)
+ k∆t− s


= CMeKt/τ

[
t− (N + k)∆t+ (N + k)∆t− k∆t+ k∆t− s

]
= CMeKt/τ (t− s).

Concerning wν , which is modified at each splitting step, we have to consider an additional
term:

N+k∑
i=k

∫ b

a

∣∣wν(i∆t+, x)− wν(i∆t−, x)
∣∣dx =

∆t

τ

N+k∑
i=k

∫ b

a

∣∣(V (ρν)− vν)(i∆t−, x)
∣∣dx

≤ ∆t

τ
(N + 1)(b− a) sup

Uν∈E

∣∣V (ρν)− vν
∣∣

≤ Lτ (t− s+∆t),

with Lτ =
b− a

τ
supUν∈E

∣∣V (ρν)− vν
∣∣. Summing to the other terms, we get (4.8).

5 Existence of weak solutions

The uniform bounds derived in Section 4 allow to apply Helly’s Theorem to state the existence
of a subsequence of WFT approximate solutions, still denoted by {W ν}ν , converging in L1

loc

to a function W . It now remains to prove that u = u(W ) is a weak solution of (2.1).

Theorem 1. Let U0 : R → E with TV(W (U0)) < +∞ and let W be the limit function of
the sequence {W ν}ν of WFT approximate solutions as ν → ∞. Then u = u(W ) is a weak
solution of (2.1) with initial data u0 = u(W (U0)) in the sense of Definition 1.

Proof. Let T > 0 be a given finite time horizon and consider φ ∈ C1
c

(
]−∞, T [×R;R

)
. We

define Nν so that T = Nν∆tν + βν , βν ∈ [0,∆tν [. Following [10], we observe that∫ (k+1)∆tν

k∆tν

∫
R

[
u(W ν)∂tφ+ F (u(W ν))∂xφ

]
(t, x) dxdt

=

∫
R
φ((k + 1)∆tν , x)u(W ν((k + 1)∆tν−, x)) dx−

∫
R
φ(k∆tν , x)u(W ν(k∆tν+, x)) dx,

since uν := u(W ν) are weak solutions of the homogeneous system (3.2) in each interval
]k∆t, (k + 1)∆t[×R by construction. Therefore, remembering that ρν(k∆t+) = ρν(k∆t−),
we get ∫ T

0

∫
R

[
u(W ν)∂tφ+ F (u(W ν))∂xφ

]
(t, x) dxdt

12



=

Nν−1∑
k=0

∫ (k+1)∆tν

k∆tν
+

∫ T

Nν∆tν

∫
R

[
u(W ν)∂tφ+ F (u(W ν))∂xφ

]
(t, x) dxdt

=

Nν−1∑
k=0

∫
R
φ((k + 1)∆tν , x)u(W ν((k + 1)∆tν−, x)) dx

−
Nν∑
k=0

∫
R
φ(k∆tν , x)

[
u(W ν(k∆tν−, x)) + ∆tG(u(W ν(k∆tν−, x)))

]
dx

= −
Nν∑
k=0

∆t

∫
R
φ(k∆tν , x)G(u(W ν(k∆tν−, x))) dx−

∫
R
φ(0, x)u(W ν

0 (x)) dx

Passing to the limit as ν → +∞ in the above equality, by Lebesgue dominated convergence
theorem we obtain∫ T

0

∫
R

[
u(W )∂tφ+ F (u(W ))∂xφ

]
(t, x) dxdt

= −
∫ T

0

∫
R
φ(t, x)G(u(W (t, x))) dx−

∫
R
φ(0, x)u(W0(x)) dx ,

which concludes the proof.

Remark 1. In the present setting, the violation of the subcharacteristic condition (2.10)
contradicts the existence of an entropy, entropy-flux pairs for system (2.1), i.e. functions
η, q : R2

+ → R such that

∇ηT (z)DF (z) = ∇T q(z),

∇ηT (z)G(z) ≤ 0,

for z ∈ R2
+. We refer to [7, Theorem 2.1] for details.

6 Traveling wave analysis

In this section, we aim at investigating the behaviour of travelling waves for system (2.1)
violating the stability condition (2.10). We refer to [14, 26, 21] for a similar analysis conducted
on other models.

We look for traveling wave solutions of (2.8) of the form (ρ(ξ), v(ξ)), where ξ = (x−σt)/τ :

− σρ′ + (ρv)′ = 0, (6.1a)

− σv′ + λ1(ρ, w)v
′ = V (ρ)− v. (6.1b)

Integrating (6.1a), we get

ρv = σρ+m =⇒ ρ =
m

v − σ
=

m

V(ρ, w)− σ
⇐⇒ V(ρ, w) = σ +

m

ρ
.

for some m ∈ R. From (6.1b), we then get

v′ =
V (ρ)− v

λ1(ρ, w)− σ
=

(v − σ)(V − v)

(v − σ)2 +mVρ
or ρ′ =

ρ

σ − v

V (ρ)− v

λ1(ρ, w)− σ
. (6.2)

13



Note that, if (2.10) holds, then the denominator λ1(ρ, w) − σ ̸= 0, otherwise there exists a
sonic point vσ such that

vσ − σ = ±
√

−mVρ =⇒ vσ = σ ±
√
−mVρ.

Since Vρ ≤ 0, we need to take m > 0. We regularize (6.2) requiring vσ = V (m/(vσ − σ)).
In a periodic setting, two states (ρ±, v±) will be connected alternatively by a jump dis-

continuity satisfying the Rankine-Hugoniot condition

σ =
ρ+v+ − ρ−v−

ρ+ − ρ−
, (6.3)

and a solution of (6.2). We recall that entropy admissible jump discontinuities must satisfy
v− ≥ v+. In particular, if v− > v+ (shock) we must have w− = w+. Therefore, for the solution
of (6.2) going from v+ to v−, we must have v′ ≥ 0. Besides, we have m = ρ±(v± − σ) ≥ 0
since v± ≥ σ. This confirms the existence of a sonic point vσ. (Note that in the case of a
contact discontinuity, it holds v− = v+ = σ and therefore v′ = 0).

Let us analyze (6.2) better. We can rewrite the denominator as

(v − σ)2 − (
√

−mVρ)
2 =

(
(v − σ)−

√
−mVρ

)(
(v − σ) +

√
−mVρ

)
.

Since v > σ, the denominator has a unique zero of multiplicity one at

vσ = σ +
√

−mVρ.

Solution of (6.2) being increasing along ξ, we have

v+ < σ +
√
−mVρ =⇒ (v+ − sσ)2 − (

√
−mVρ)

2 < 0,

v− > σ +
√
−mVρ =⇒ (v− − σ)2 − (

√
−mVρ)

2 > 0.

Therefore, to have v′ ≥ 0 in (6.2), the numerator must satisfy

V (ρ) ≤ v = V(ρ, w±) for ρσ ≤ ρ ≤ ρ+,

V (ρ) ≥ v = V(ρ, w±) for ρ− ≤ ρ ≤ ρσ.

In particular, V (ρσ) = vσ = σ +
m

ρσ
. See Figure 4.

To summarize, the recipe to construct a periodic wave oscillating between states (ρ±, v±)
(refereed to as “jamiton” in [14, 26]) is the following:

1. For a prescribed downstream state (ρ+, v+) such that v+ = V(ρ+, w+) > V (ρ+) compute
ρσ implicitly defined by V (ρσ) = V(ρσ, w+) = vσ. Then, from the identities

v+ = σ +
m

ρ+
,

vσ = σ +
m

ρσ
,

we recover 
m =

ρσρ+
ρ+ − ρσ

(vσ − v+),

σ = v+
ρ+

ρ+ − ρσ
+ vσ

ρσ
ρσ − ρ+

.
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ρ

v

ρσ ρ+ρ−0

V(ρ, w±)

V (ρ)

ρ

ρv

ρσ ρ+ρ−0

ρV (ρ)

ρV(ρ, w±)

Figure 4: Speed-density (left) and flow-density (right) representations of the curves involved
in the construction of the traveling wave profiles, where we set V(ρ, w) = w − ρ, V (ρ) =
Vmax

(
1− exp(C(1−R/ρ))

)
.

2. Determine the upstream state (ρ−, v−), with v− = V(ρ−, w+) using the Rankine-
Hugoniot condition (6.3).

3. Integrate (6.2) from v(0) = v+ to v(π) = v−. The density is then given by

ρ(ξ) =
m

v(ξ)− σ
.

The period of the travelling wave is given by π.

4. The total number of vehicles involved is then given by

N =

∫ π

0
ρ(ξ) dξ.

See Figure 5.

ξ

ρ

π0

ρ−

ρ+

ξ

v

π0

v+

v−

Figure 5: Density and speed profiles of the jamiton solution of (6.1).

7 Chapman-Enskog expansion

Another classical way of investigating the stability of equilibria of relaxation systems is to
perform a formal expansion with respect to the relaxation parameter, see e.g. [5, 7, 9].

We consider the equations in (ρ, v) coordinates (2.8), which we recall here

∂tρ+ ∂x(ρv) = 0, (7.1a)
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∂tv + λ1(ρ, w)∂xv =
V (ρ)− v

τ
. (7.1b)

Assuming smooth solutions, from (7.1b) we recover:

v = V (ρ)− τ
(
∂tv + λ1(ρ, w)∂xv

)
= V (ρ)− τ

(
V ′(ρ)∂tρ+ λ1(ρ, w)∂xv

)
.

Substituting (7.1a), i.e. ∂tρ = −∂x(ρv) = −∂x(ρV (ρ)) +O(τ) and ∂xv = ∂xV (ρ) +O(τ), we
get

v = V (ρ)− τ
(
λ1(ρ, w)∂xV (ρ)− V ′(ρ)∂x(ρV (ρ))

)
+O(τ2).

Replacing this last expression in (7.1a) and truncating to the first order we get

∂tρ+ ∂x(ρV (ρ)) = τ∂x

(
ρV ′(ρ)

(
λ1(ρ, w)− (ρV (ρ))′

)
∂xρ
)
. (7.2)

Since V ′(ρ) ≤ 0, the diffusive equation (7.2) is stable if and only if λ1(ρ, w) ≤ (ρV (ρ))′,
i.e. (2.10) holds.

Alternatively, the formal Chapman-Enskog expansion in v =
∑∞

k=0 τ
kvk leads to:

∂tρ+
∞∑
k=0

τk∂x(ρvk) = 0,

∞∑
k=0

τk∂tvk + λ1(ρ, w)

∞∑
k=0

τk∂xvk =
V (ρ)

τ
−

∞∑
k=0

τk−1vk.

The second identity yields

v0 = V (ρ),

∂tv0 + λ1(ρ, w)∂xv0 = −v1,

∂tvk + λ1(ρ, w)∂xvk = −vk+1.

Replacing in the first identity we get

∂tρ+ ∂x(ρV (ρ)) = ∂tρ+ ∂x(ρv0)

= −
∞∑
k=1

τk∂x(ρvk)

=

∞∑
k=0

τk+1∂x

(
ρ
(
∂tvk + λ1(ρ, w)∂xvk

))
,

which, to the first order k = 0, is

∂tρ+ ∂x(ρV (ρ)) = τ∂x

(
ρ
(
∂tv0 + λ1(ρ, w)∂xv0

))
= τ∂x

(
ρV ′(ρ)

(
∂tρ+ λ1(ρ, w)∂xρ

))
= τ∂x

(
ρV ′(ρ)

(
λ1(ρ, w)− (ρV (ρ))′

)
∂xρ
)

(7.3)

as in (7.2).
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Considering travelling wave solutions of (7.2) of the form ρ(t, x) = ρ(ξ), where ξ =
(x− σt)/τ , we get

−σρ′ + (ρV (ρ))′ =
(
ρV ′(ρ)

(
λ1(ρ, w)− (ρV (ρ))′

)
ρ′
)′

. (7.4)

By integration, we obtain

ρ′ =
ρ(V (ρ)− σ)−m

ρV ′(ρ)
(
λ1(ρ, w)− (ρV (ρ))′

) , (7.5)

which is coherent with (6.2) setting m = ρ(σ − v) and assuming σ ∼ (ρV (ρ))′, which gives
ρV ′(ρ) = σ − V (ρ) ∼ σ − v.
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