
HAL Id: hal-04321549
https://hal.science/hal-04321549v1

Submitted on 4 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MaxSAT resolution for regular propositional logic
Jordi Coll, Chu-Min Li, Felip Manyà, Elifnaz Yangin

To cite this version:
Jordi Coll, Chu-Min Li, Felip Manyà, Elifnaz Yangin. MaxSAT resolution for regular propositional
logic. International Journal of Approximate Reasoning, 2023, 162, �10.1016/j.ijar.2023.109010�. �hal-
04321549�

https://hal.science/hal-04321549v1
https://hal.archives-ouvertes.fr


International Journal of Approximate Reasoning 162 (2023) 109010
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

MaxSAT resolution for regular propositional logic

Jordi Coll a, Chu-Min Li b,c, Felip Manyà a,∗, Elifnaz Yangin a,∗
a Artificial Intelligence Research Institute (IIIA, CSIC), Bellaterra, Spain
b MIS, Université de Picardie Jules Verne, Amiens, France
c Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 March 2023
Received in revised form 10 July 2023
Accepted 3 August 2023
Available online 9 August 2023

Keywords:
Multiple-valued logic
Maximum satisfiability
Signed CNF formulas
Regular CNF formulas
Resolution
Variable elimination

Proof systems for SAT are unsound for MaxSAT because they preserve satisfiability but 
fail to preserve the minimum number of unsatisfied clauses. Consequently, there has 
been a need to define cost-preserving resolution-style proof systems for MaxSAT. In this 
paper, we present the first MaxSAT resolution proof system specifically defined for regular 
propositional clausal forms and prove its soundness and completeness. The defined proof 
system provides an exact approach to solving Regular MaxSAT and Weighted Regular 
MaxSAT with variable elimination algorithms.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).

1. Introduction

Signed propositional logic is a logical formalism for knowledge representation that lies in the intersection of the areas 
of constraint programming, many-valued logics and annotated logic programming. Signed conjunctive normal forms (signed 
CNF formulas) can be seen as classical conjunctive normal forms equipped with a generalized notion of literal, called signed 
literal. A signed literal is an expression of the form S : x, where x is a propositional variable and S , its sign, is a subset of a 
domain N .

An important and well-investigated subclass of signed CNF formulas are regular CNF formulas: If N is equipped with an 
order ≤, a sign is regular if it is either of the form { j ∈ N | j ≥ i} or { j ∈ N | j ≤ i} for some i ∈ N . Regular CNF formulas are 
the signed CNF formulas whose literals have regular signs. Regular CNF formulas, and by extension signed CNF formulas, 
can be used to encode Boolean CNF formulas: If N = {0, 1}, a positive Boolean literal x is encoded as x ≥ 1, and a negative 
literal ¬x is encoded as x ≤ 0. As in the Boolean case, the problem of determining the satisfiability of signed and regular 
CNF formulas is NP-complete [12,33].

However, regular CNF formulas offer distinct advantages over signed CNF formulas, including the distinction between 
positive and negative literals or the possibility of dealing with infinite domains.

The informal meaning of a signed literal S : x is “x is constrained to the values of S”. Thus, signed CNF formulas provide 
a suitable knowledge representation language for constraint programming, which has already been shown to be competitive 
when solving combinatorial problems with signed encodings [13,14]. From a problem solving perspective, the main advan-
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tage is that the powerful and high-performing technology developed by the satisfiability testing community can be easily
adapted to signed and regular CNF formulas. Compared to Boolean satisfiability testing, where problem-specific multiple-
valued variables need to be encoded employing a set of Boolean variables, the domain information becomes explicit in a 
signed literal and can be exploited, for instance, to define domain-dependent variable selection heuristics [5,6].

When N is considered as a truth value set, signed and regular logics provide a framework for automated reasoning 
in multiple-valued logics [21,22]. The satisfiability problem (SAT) of any finitely-valued propositional logic, as well as of 
certain infinitely-valued logics, is polynomially reducible to the satisfiability problem of signed CNF formulas (Signed SAT) 
and regular CNF formulas (Regular SAT) [12].

We obtain annotated logic programming when we consider regular Horn CNF formulas and N is a lattice [25]. Annotated 
logic programming is an appropriate logical formalism to manage locally inconsistent, incomplete and uncertain databases.

In the area of satisfiability testing, one of the problems that has attracted more interest in recent years is the Maximum 
Satisfiability problem (MaxSAT) [9,28]. Whereas SAT is the problem of deciding if there exists a truth assignment for a given 
CNF formula that evaluates the formula to true, MaxSAT is the problem of finding a truth assignment that minimizes the 
number of unsatisfied clauses in a CNF formula.

In practice, SAT is used as a generic problem solving formalism for decision problems and MaxSAT for optimization 
problems. The development of highly competitive MaxSAT solvers (e.g. [9,32]) has enabled the application of MaxSAT to 
solve challenging optimization problems in various domains such as bioinformatics [35], circuit design and debugging [36], 
combinatorial testing [8], diagnosis [19], planning [38], scheduling [15] and team formation [34].

This paper specifically focuses on the MaxSAT problem for Regular CNF formulas. Our aim is to define a complete 
resolution-style proof system for Regular MaxSAT. Our work is motivated by the fact that the logic machinery defined for 
Regular SAT is not valid for Regular MaxSAT. The inference rules for Regular SAT are unsound in Regular MaxSAT because 
they preserve satisfiability but fail to preserve the minimum number of unsatisfied clauses between the premises and the 
conclusions.

In the Boolean case, new complete resolution and tableau-style proof systems for Boolean MaxSAT have had to be defined 
(see e.g. [18,20,26,31]). Presently, restrictions of Boolean MaxSAT resolution are routinely used in branch-and-bound MaxSAT 
solvers such as ahmaxsat [1] and MaxSatz [29,30]. Furthermore, Boolean MaxSAT resolution has been extended to signed 
CNF formulas [3]. The defined signed MaxSAT resolution rules are complete and provide a logical framework for weighted 
constraint satisfaction problems (WCSP), where some restrictions of the rules enforce existing local consistency properties 
for WCSPs [3,4]. Nevertheless, the restriction to Regular CNF formulas has not been investigated so far. This paper aims to 
bridge this gap.

It is widely known that there exists no polynomial-size resolution proof of the pigeon hole principle (PHP) [23]. Never-
theless, there exist polynomial-size MaxSAT resolution proofs of PHP if PHP is encoded as a MaxSAT instance using the dual 
rail encoding [24]. Indeed, the combination of the dual rail encoding and MaxSAT resolution is a stronger proof system than 
either general resolution or conflict-driven clause learning [16]. More recently, it has been shown that MaxSAT resolution, 
when combined with certain rules, also produces polynomial-size MaxSAT resolution proofs of PHP. For example, MaxSAT 
resolution with the split rule (replace clause c with x ∨ c and x ∨ c) produces polynomial-size proofs of PHP, and this does 
not happen if MaxSAT resolution is replaced with resolution [17,27]. These results suggest that MaxSAT resolution could be 
a key component in the development of faster and more robust SAT and MaxSAT solvers based on stronger proof systems. In 
particular, the use of bounded variable elimination, using MaxSAT resolution, as a preprocessing and inprocessing technique 
in SAT and MaxSAT solvers could significantly enhance the performance of these solvers in the Boolean and many-valued 
scenarios.

We believe that studying Regular MaxSAT resolution is worthwhile due to the utilization of regular signs. Apart from 
enabling to deal with infinite truth value sets, regular signs contribute to produce simpler and more efficient variable elim-
ination algorithms for Regular MaxSAT. Thanks to the notion of polarity and the structure of regular signs, Regular MaxSAT 
resolution proofs are simpler than Signed MaxSAT resolution proofs because the inference rules exploit such features. Addi-
tionally, detecting intersections among signs does not require intricate operations; simple comparisons of numbers suffice. 
Regular signs also simplify the data structures as they can be represented by recording the lowest and greatest values of 
the sign.

Regular CNF formulas are also significant because they are the language behind the so-called order encoding [7,37], 
which has demonstrated to be more efficient than other encodings to model, for example, cardinality constraints.

The main contributions of this paper can be summarized as follows:

• Definition of the first resolution-style proof system for Regular MaxSAT and the corresponding proofs of soundness and 
completeness.

• Description of an exact variable elimination algorithm for Regular MaxSAT that incorporates a notion of saturation that 
exploits the structure of regular signs.

• Extension of the proposed proof system to handle CNF formulas with weighted clauses, resulting in a sound and com-
plete proof system for Weighted Regular MaxSAT.

The paper is organized as follows. Section 2 defines the logic of signed and regular CNF formulas, as well as the Signed 
and Regular MaxSAT problems. Section 3 defines a resolution-style proof system for regular MaxSAT and proves its sound-
2
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ness and completeness. Section 4 describes an exact variable elimination algorithm for Regular MaxSAT. Section 5 extends 
the proposed proof system to Weighted Regular MaxSAT. Finally, Section 6 presents some concluding remarks.

2. Syntax and semantics of signed and regular CNF formulas

We assume that a denumerable set of propositional variables is given. To form signed literals, the propositional variables 
are adorned with a sign that consists of a finite set of truth values.

Definition 1. A truth value set is a non-empty, finite set N = {i1, i2, . . . , in} where n ∈N . The cardinality of N is denoted 
by |N|. We assume that a total order ≤ is associated with N .

Definition 2. A sign is a set S ⊆ N of truth values. A signed literal is an expression of the form S : x, where S is a sign and x
is a propositional variable. The complement of a signed literal S : x, denoted by S : x, is (N \ S) : x.

Definition 3. A signed clause is a finite set of signed literals. A signed clause containing exactly one literal is called a signed 
unit clause, and a signed clause containing exactly two literals is called a signed binary clause. The empty signed clause is 
denoted by �. A signed clause c′ subsumes a signed clause c iff, for every literal S ′ : x ∈ c′ , there is a literal S : x ∈ c such that 
S ′ ⊆ S . A clause c is a tautology iff there is a variable x in c such that 

⋃
S:x∈c S = N . A signed CNF formula is a finite multiset 

of signed clauses.

The clauses of a signed CNF formula are implicitly conjunctively connected and the literals in a signed clause are implic-
itly disjunctively connected. We often use S1 : x1 ∨ · · · ∨ Sk : xk to represent a signed clause of the form {S1 : x1, . . . , Sk : xk}.

Example 1. Let N = {1, 2, 3}. The signed CNF formula

{{1,3} : x1, {2} : x1 ∨ {2,3} : x2, {1,2} : x2 ∨ {1,3} : x3}
contains a unit signed clause and two binary signed clauses.

Definition 4. A weighted signed clause is a pair (c, w), where c is a signed clause and w , its weight, is a positive number. 
A weighted signed CNF formula is a finite multiset of weighted signed clauses.

Example 2. Let N = {1,2,3}. The formula

{({1,3} : x1,8), ({2} : x1 ∨ {2,3} : x2,3), ({1,2} : x2 ∨ {1,3} : x3,5)}
is an example of weighted signed CNF formulas.

Note that weighted signed CNF formulas can contain multiple occurrences of the same signed clause, either with identical 
or different weights. However, it is possible to unfold a weighted signed clause into several occurrences of the clause with 
smaller weights, and vice versa. For example, consider a signed clause c. The following three weighted signed CNF formulas 
are equivalent: {(c, 3)}, {(c, 2), (c, 1)}, {(c, 1), (c, 1), (c, 1)}. In particular, by unfolding all weighted clauses into clauses of 
weight 1, we obtain an unweighted signed CNF formula.

Definition 5. Given a total order associated with N , for each element i of the truth value set N , let ≥ i denote the sign 
{ j ∈ N | j ≥ i}, and let ≤ i denote the sign { j ∈ N | j ≤ i}. A sign S is regular if it is identical to ≥ i or ≤ i for some i ∈ N .

Note that we assume that N is totally ordered. Regular CNF formulas also include the case where N is partially or-
dered [10,11]. In the sequel, we always consider total orders because are the ones that have been used so far in satisfiability 
testing and constraint programming, which is our area of expertise. For the same reason, we exclusively consider finite truth 
value sets.

Definition 6. A literal S : x is a regular literal if its sign S is regular. A regular literal has positive polarity if its sign is of the 
form ≥ i and has negative polarity if its sign is of the form ≤ i. A signed clause (a signed CNF formula) is a regular clause (a 
regular CNF formula) if all its literals are regular.

Example 3. Let the truth value set N = {1,2,3,4} be ordered with the standard order on natural numbers. Then, the signs 
≤2 = {1,2} and ≥3 = {3,4} are regular; and ≤ 2 = ≥3 = {3,4} and ≥ 3 = ≤2 = {1,2} are its complements, respectively. The 
signed CNF formula
3
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{{2,3,4} : x1, {1,2} : x1 ∨ {1,2,3} : x2, {4} : x2 ∨ {3,4} : x3}
is a regular CNF formula, which is represented with regular signs as follows:

{≥2 : x1,≤ 2 : x1 ∨ ≤3 : x2,≥4 : x2 ∨ ≥3 : x3}.

Next, we define the semantics of signed CNF formulas, and then the Signed MaxSAT problem. The semantics definition 
of regular CNF formulas is that of signed CNF formulas when their signs are regular.

Definition 7. An assignment is a mapping that assigns to every propositional variable an element of the truth value set. An 
assignment I satisfies a signed (regular) literal S : p iff I(p) ∈ S . It satisfies a signed (regular) clause c iff it satisfies at least 
one of the literals in c, and it satisfies a signed (regular) CNF formula C iff it satisfies all the clauses in C . A signed CNF 
formula is satisfiable iff it is satisfied by at least one assignment; otherwise, it is unsatisfiable. Signed (Regular) SAT for a 
signed (regular) CNF formula C is the problem of deciding if there is an assignment that satisfies C .

By definition, the empty signed clause is unsatisfiable and the empty signed CNF formula is satisfiable. Notice that S : x
can be interpreted as “x is constrained to the values in S” and that the semantics is classical above the literal level.

Definition 8. Given a multiset of signed (regular) clauses C , Signed (Regular) MaxSAT is the problem of finding an assign-
ment for C that minimizes the number of unsatisfied clauses in C . Given a multiset of weighted signed (regular) clauses C , 
Weighted Signed (Regular) MaxSAT is the problem of finding an assignment for C that minimizes the sum of weights of 
unsatisfied clauses in C .

3. Regular MaxSAT resolution

In this section, we define a resolution-style proof system for Regular MaxSAT and prove its soundness and completeness. 
Our calculus starts with a multiset of regular clauses C , and applies a set of inference rules that remove two clauses 
(premises) from C and introduce a number of new clauses (conclusions) to C .

We require all clauses to be in a normalized form before the application of a rule. Assuming that N = {1, . . . , |N|}, the 
normalization of a clause can be achieved through a set of simple transformations, which are applied when a clause is 
initially introduced or when it is derived as a new conclusion:

• Tautologies are removed from C . A regular clause is a tautology if it contains some regular literal of the form ≥1 : x or 
of the form ≤|N| : x, or if it contains two regular literals of the form ≤ i : x and ≥ j : x such that j ≤ i+1.

• Literals are always expressed without negation symbols, i.e. ≤ i : x is replaced with ≥ i+1 : x, and ≥ i : x is replaced with 
≤ i−1 : x. The special cases ≤|N| : x = ≥1 : x = {} : x are directly removed from the clause.

• If a clause contains multiple regular literals with positive polarity for a variable x, say ≥ i1 : x, . . . , ≥ ik : x, they are 
replaced with 

⋃k
j=1 ≥ i j : x, which also is a regular literal with positive polarity. Similarly, if it contains multiple regular 

literals with negative polarity for variable x, say ≤ i1 : x, . . . , ≤ ik′ : x, they are replaced with 
⋃k′

j=1 ≤ i j : x, which also is 
a regular literal with negative polarity.

These transformations are sound since they do not alter the set of satisfying assignments of a clause. They can be applied 
in O (nlog(n)) time in the size of the clause. The following inference rules assume that the premises are normalized and 
require the same normalization to be enforced on the conclusions.

Definition 9. The Regular MaxSAT resolution calculus is formed by the following inference rules:

Rule 1

cα : ≥ j : x ∨ A
cβ : ≤k : x ∨ B

c∩ : A ∨ B
c∪ : ≤k : x ∨ ≥ j : x ∨ A ∨ B
Cα : ≥ j : x ∨ A ∨ B
Cβ : ≤k : x ∨ A ∨ B

provided that k < j
and A ∨ B is not a tautology

Rule 2

cα : ≥ j : x ∨ A
cβ : ≤k : x ∨ ≥ l : x ∨ B

c∩ : ≥ l : x ∨ A ∨ B
c∪ : ≤k : x ∨ ≥ j : x ∨ A ∨ B
Cα : ≥ j : x ∨ A ∨ B
Cβ : ≤k : x ∨ ≥ l : x ∨ A ∨ B

provided that k < j < l
and A ∨ B is not a tautology
4
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Fig. 1. Rule 1 in clausal form.

Rule 3

cα : ≤ i : x ∨ ≥ j : x ∨ A
cβ : ≤k : x ∨ B

c∩ : ≤ i : x ∨ A ∨ B
c∪ : ≤k : x ∨ ≥ j : x ∨ A ∨ B
Cα : ≤ i : x ∨ ≥ j : x ∨ A ∨ B
Cβ : ≤k : x ∨ A ∨ B

provided that i < k < j
and A ∨ B is not a tautology

Rule 4

cα : ≤ i : x ∨ ≥ j : x ∨ A
cβ : ≤k : x ∨ ≥ l : x ∨ B

c∩ : ≤ i : x ∨ ≥ l : x ∨ A ∨ B
c∪ : ≤k : x ∨ ≥ j : x ∨ A ∨ B
Cα : ≤ i : x ∨ ≥ j : x ∨ A ∨ B
Cβ : ≤k : x ∨ ≥ l : x ∨ A ∨ B

provided that i < k < j < l
and A ∨ B is not a tautology

where A = a1 ∨ · · · ∨ as and B = b1 ∨ · · · ∨ bt are disjunctions of regular literals not containing variable x. The rules replace 
the premises with the clauses in the conclusion and we say that they resolve the premises on variable x. The tautologies 
concluded by the rule are omitted. Note that the literals of the two last conclusions are a superset of the literals of one of 
the premises.

Note that A and B are not in clausal form in the rules. To build clausal forms preserving the number of unsatisfied 
clauses, we use A = {a1, a1 ∨ a2, · · · , a1 ∨ · · · ∨ as−1 ∨ as} and B = {b1, b1 ∨ b2, · · · , b1 ∨ · · · ∨ bt−1 ∨ bt}. Therefore, Cα and Cβ

are sets of clauses. Fig. 1 displays Rule 1 in clausal form.
Fig. 2 illustrates the application of Rules 1–4 to pairs of clauses that only contain variable x. Note that we establish an 

order between cα and cβ in Rule 4 to avoid defining symmetric cases. Specifically, cα is defined as the clause with the 
smallest negative literal. Similarly, from now on, when considering a pair of clauses cα and cβ that both contain positive 
and negative literals for the same variable x, we always assume that cα has the smallest negative literal. In case of a tie, cα

has the smallest (or equal) positive literal.

Example 4. If N = {1,2,3,4,5}, Rule 1 derives the multiset of regular clauses {�, ≤3 : x1 ∨ ≥5 : x1} from the multiset 
{≤3 : x1, ≥5 : x1}. Rule 2 derives the multiset of regular clauses {≥ 5 : x1 ∨ ≥4 : x2, ≤2 : x1 ∨ ≥4 : x1 ∨ ≥4 : x2} from the 
multiset {≥ 4 : x1 ∨ ≥4 : x2, ≤2 : x1 ∨ ≥5 : x1 ∨ ≥4 : x2}. Rule 4 derives the multiset of regular clauses {≤ 1 : x1 ∨ ≥5 : x1 ∨
≤2 : x2, ≤2 : x1 ∨≥4 : x1 ∨≤2 : x2, ≤2 : x1 ∨≥5 : x1 ∨≥3 : x2} from the multiset {≤ 1 : x1 ∨≥4 : x1 ∨≤2 : x2, ≤2 : x1 ∨≥5 : x1}.

Theorem 1. The regular MaxSAT resolution calculus is sound.

Proof. Given an assignment I , we prove that the number of unsatisfied clauses in the premises is the same as the number 
of unsatisfied clauses in the conclusion of the rule. We distinguish the following cases:

1. I unsatisfies the two premises: Since I(A) = I(B) = I(≤ i : x) = I(≥ j : x) = I(≤k : x) = I(≥ l : x) = f alse, I unsatisfies the 
first two conclusions. It satisfies the other conclusions because either A or B appear negated in them. This holds for 
the four rules.

2. I satisfies the two premises: this case holds since the conjunction of the premises implies each one of the conclusions. 
More precisely, for all the rules, I satisfies the two last conclusions because their literals are a superset of the literals 
of some premise. This also holds for the second conclusion of Rules 1–3. For the second conclusion of Rule 4 we have 
three cases: (i) I satisfies A or B: I satisfies the second conclusion because it contains A and B; (ii) I unsatisfies A
and B and satisfies ≥ j : x: I satisfies the second conclusion because it contains ≥ j : x; and (iii) I unsatisfies A and B
and satisfies ≤ i : x: Since i < l, I unsatisfies ≥ l : x and, since the second premise is satisfied, I satisfies ≤k : x. We now 
prove separately that I satisfies the first conclusion for each rule. For Rule 1, since k < j, I must satisfy A or B and, 
therefore, it satisfies the first conclusion. For Rule 2, we distinguish two cases: (i) I satisfies ≥ l : x: It satisfies the first 
5
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Fig. 2. Example of applications of Rule 1, Rule 2, Rule 3 and Rule 4 with clauses only containing variable x, with N = {1, . . . , 5}. The values of x that each 
clause allows are painted in blue. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

conclusion because it contains ≥ l : x; and (ii) I unsatisfies ≥ l : x: since k < j, I must satisfy A or B and, therefore, it 
satisfies the first conclusion. For Rule 3, we distinguish two cases: (i) I satisfies ≤ i : x: It satisfies the first conclusion 
because it contains ≤ i : x; and (ii) I unsatisfies ≤ i : x: since k < j, I must satisfy A or B and, therefore, it satisfies 
the first conclusion. For Rule 4, we distinguish two cases: (i) I satisfies ≤ i : x or ≥ l : x: It satisfies the first conclusion 
because it contains both literals; and (ii) I unsatisfies ≤ i : x and ≥ l : x: since k < j, I must satisfy A or B and, therefore, 
it satisfies the first conclusion.

3. I satisfies the first premise and unsatisfies the second premise: For Rules 1–2, the second and third conclusions are 
implied by the first premise. Then, we distinguish two cases: (i) I satisfies A: the first conclusion is satisfied because 
it contains A and the last conclusion is unsatisfied because we assumed that all its literals are unsatisfied; and (ii) I
unsatisfies A: the first conclusion is unsatisfied because we assumed that all its literals are unsatisfied and the last 
conclusion is satisfied because it contains A . For Rules 3–4, we distinguish two cases: (i) I satisfies A: the three first 
conclusions are satisfied because they contain A and the last conclusion is clearly unsatisfied; and (ii) I unsatisfies A: 
≤ i : x is unsatisfied because ≤k : x is unsatisfied and i < k and, therefore, ≥ j : x is satisfied. Thus, the first conclusion is 
unsatisfied and the rest are satisfied.

4. I unsatisfies the first premise and satisfies the second premise. For Rule 1 and Rule 3, the second and fourth conclusions 
are implied by the second premise. Then, we distinguish two cases: (i) I satisfies B: the first conclusion is satisfied 
because it contains B and the third conclusion is unsatisfied because we assumed that all its literals are unsatisfied; 
and (ii) I unsatisfies B: the first conclusion is unsatisfied because we assumed that all its literals are unsatisfied and the 
third conclusion is satisfied because it contains B . For Rule 2 and Rule 4, we distinguish two cases: (i) I satisfies B: the 
first, second and fourth conclusions are satisfied because they contain B and the third conclusion is clearly unsatisfied; 
and (ii) I unsatisfies B: ≥ l : x is unsatisfied because ≥ j : x is unsatisfied and j < l and, therefore, ≤k : x is satisfied. 
Thus, the first conclusion is unsatisfied and the rest are satisfied. �

Definition 10. A multiset of regular clauses C is saturated w.r.t. a variable x if, for every pair of regular clauses cα and cβ

containing x, none of the rules of the calculus (Rule 1, Rule 2, Rule 3 and Rule 4) can be applied.

Fig. 3 shows an example of a saturated multiset of regular clauses w.r.t. variable x.

Lemma 1. Let C = E ∪ D be a saturated multiset of regular clauses w.r.t. a variable x, let E be the subset of clauses of C not containing 
x, and let D be the subset of clauses of C containing x. Assume that E is satisfiable. Then, any partial assignment I that satisfies E and 
does not assign any value to x can be extended to an assignment that satisfies C .

Proof. We have to extend I so that I satisfies C . We partition D into the multiset D ′ and D ′′ , where D ′ is not satisfied by 
I and D ′′ is satisfied by I . D ′ contains clauses of one of the following forms: ≤ i : x ∨ ≥ j : x ∨ A, ≤ i : x ∨ A, or ≥ j : x ∨ A. 
Since A is falsified in D ′ , we assume that D ′ contains clauses without A in the remainder of the proof. Now, we define the 
6
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Fig. 3. Example of saturated formula with clauses that only contain variable x, with N = {1, . . . , 12}. The values of x that each clause allows are painted in 
blue. The subsumed clauses are painted in light blue. The bottom row shows the intersection of the values allowed by the clauses.

set of values that x can take according to I , and show that it is never empty. If D ′ is empty, I can assign to x any value in 
N . From the set of unit clauses whose literal has negative polarity (i.e., of the form ≤ i : x), we only need to consider the 
clause with the smallest i because the other negative literals are subsumed. Similarly, from the set of unit clauses whose 
literal has positive polarity (i.e., of the form ≥ j : x), we only need to consider the clause with the greatest j. Therefore, the 
set of values that x can take is contained in the interval [a, b], where the most restrictive unit clauses are ≥a : x and ≤b : x. 
Note that a ≤ b, otherwise we could apply Rule 1. In case no unit clause ≥a : x exists (resp. no unit clause ≤b : x exists), a
is the lowest (resp. b is the greatest) value of N . Then, we consider three cases:

1. If no binary clause exists, I can assign to x any value in the set [a, b].
2. If there is exactly one binary clause of the form ≤ i : x ∨≥ j : x, then a ≤ i and b ≥ j by definition of saturation. Therefore, 

I can assign to x any value in the non-empty set [a, i] ∪ [ j, b].
3. If there is more than one binary clause, as the formula is saturated w.r.t. x, any two binary clauses in D ′ of the 

form cs = ≤ i : x ∨ ≥ j : x and ct = ≤k : x ∨ ≥ l : x satisfy one of the two following restrictions: (i) i ≤ k < l ≤ j or (ii) 
i < j ≤ k < l. As we do not have tautological clauses, it always holds that i < j and k < l. Restriction (i) implies that 
clause cs subsumes ct . From now on, we consider that all subsumed clauses are removed, and hence only restriction (ii) 
can hold between two binary clauses. Therefore, we can establish a total ordering c1 ≺ · · · ≺ cn on the binary clauses 
in D ′ such that, for any two clauses cs and cs+1 of the form ≤ i : x ∨ ≥ j : x ∨ A and ≤k : x ∨ ≥ l : x ∨ B , it holds 
that j ≤ k. By transitivity, this relation also happens between any two clauses cs and ct such that s < t . Note also that 
c1 = ≤ i : x ∨≥ j : x satisfies that a ≤ i; otherwise, we could apply Rule 2. Similarly, cn = ≤ i : x ∨≥ j : x satisfies that b ≥ j; 
otherwise, we could apply Rule 3. Let cs and cs+1 be any two consecutive clauses of the sequence. Clearly, these two 
clauses allow to assign to x a non-empty set of values. Specifically, x can take any value on the interval [ j, k] ⊂ [a, b]. 
Note also that any clause to the left of cs also admits the values in [ j, k], and the same happens with any clause to the 
right of cs+1. Therefore, letting clause cs be of the form ≤ is : x ∨ ≥ js : x, the values that I can assign to x are:

[a, i1] ∪
⋃

1≤s≤n−1

[ js, is+1] ∪ [ jn,b]

Thus, if we extend I by assigning to x any value of the indicated non-empty set, I satisfies D ′ and C . �
In the proof, we made use of an abuse of notation. Whenever we write an interval [i, j], we are actually referring to the 

set [i, j] ∩ N . Note that the clauses in the example of Fig. 3 serve as an example of the set D ′ in the proof of Lemma 1.
Next, we proceed to prove the completeness of the Regular MaxSAT resolution calculus, as stated in Theorem 2. Before 

that, we introduce some necessary notation and auxiliary lemmas.

Definition 11. The scope of a clause c, denoted by scope(c), is the set of variables appearing in c. The scope of a multiset of 
clauses C is the set of variables appearing in C .
7
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Definition 12. Given a clause c and a set of variables X such that X ⊇ scope(c), score(c, X) denotes the set of assignments 
over X that unsatisfy c. Given a multiset of clauses C , score(C, X) denotes the sum of the scores of the clauses in C .

When clear from the context, such as when X corresponds to scope(C) given a CNF formula C , we write score(C).

Lemma 2. Let C be a multiset of regular clauses. The iterative application of Rules 1–4 for resolving on variable x always terminates 
regardless of the order of application; i.e., it reaches a state where no rule can be applied to any two clauses of C . Hence, the result is a 
multiset of regular clauses which is saturated w.r.t. x.

Proof. In order to unify the proof for the four rules we use signed literal notation and follow the proof in [2]. In par-
ticular, considering a truth value set N = {1, . . . , |N|}, a disjunction of regular literals ≤ i : x ∨ ≥ j : x can be denoted by 
{1, . . . , i, j, . . . , |N|}:x. The overall idea of the proof is that, given a formula C = F ∪ {cα, cβ} that is not saturated w.r.t. vari-
able x, the application of any of the Rules 1–4 over cα, cβ results in a formula C′ = F ∪ {c∩, c∪} ∪ Ca ∪ Cb that is closer to a 
saturation w.r.t. variable x. Let us partition the clauses of C into a sequence of |N| multisets B=B0, B1, . . . , B|N|−1, such that 
the multiset Bi contains all clauses from C of the form S:x ∨ A such that |S|=i. B0 is the multiset of clauses not containing 
variable x. If M=score(C), then score(Bi) ≤ M for i ∈ 0, . . . , |N|−1. Let us look at score(B0)score(B1) . . . score(B|N|−1) as a 
word of length |N| and base M+1, where score(B0) is the most significant digit. By Theorem 1, the preservation of the 
number of unsatisfied clauses guarantees that score(C)=score(C′), and therefore that no digit reaches a value greater than 
M after an application of a rule. However, we will show that the value of the |N|-digit word always increases when we 
apply any of the rules, which completes the proof since this word has a finite maximum value. When we apply one of 
Rules 1–4, we remove clauses cα=Sα :x ∨ A and cβ=Sβ :x ∨ B from their corresponding multisets B|Sα | , B|Sβ | . We also add 
a number of new clauses to some multisets of B, including clause c∩=S∩:x ∨ A ∨ B . By definition of the rules, S∩⊂Sα, Sβ

(see also Fig. 2), hence |S∩|<|Sα |, |Sβ | and also score(cα)>0. Therefore, c∩ will be inserted into a digit of B more significant 
than the digits of the removed clauses cα, cβ , thus increasing the value of the word. �
Theorem 2. For any multiset of regular clauses C , we have that

C � �, . . . ,�︸ ︷︷ ︸
m

,D

where D is a satisfiable multiset of regular clauses, m is the minimum number of unsatisfied clauses of C , and C � �, . . ., �, D denotes 
that the multiset of clauses {�, . . . , �, D} can be obtained from the multiset C by applying the Regular MaxSAT resolution rule a finite 
number of times.

Proof. Let x1, . . . , xn be any list of the variables occurring in C . We construct two sequences of multisets C0, . . . , Cn and 
D1, . . . , Dn so that C = C0; for i = 1, . . . , n, Ci ∪ Di is a saturation of Ci−1 w.r.t. xi ; and, for i = 1, . . . , n, Ci is the multiset of 
clauses not containing variables x1, . . . , xi and Di is the multiset of clauses containing variable xi . These sequences can be 
computed in a finite number of steps because Ci+1 contains one variable less than Ci , and by Lemma 2 the saturation of 
Ci can be computed in a finite number of steps. For i = 1, . . . , n, we saturate Ci−1 w.r.t. xi , and then partition the resulting 
multiset into a subset Di containing xi , and another subset Ci not containing xi . Since Cn contains no variables, it is either 
the empty multiset or it just contains a finite number of empty clauses {�, . . . , �}.

We will define a complete satisfying assignment for the multiset D = ⋃n
i=1 Di to prove that it is satisfiable. For i =

1, . . . , n, let di = Di ∪ · · · ∪ Dn and let dn+1 = ∅. Notice that di only contains the variables in {xi, . . . , xn}, di = Di ∪ di+1 and 
di is saturated w.r.t. xi because di+1 does not contain xi and Ci ∪ Di is saturated w.r.t. xi .

We now define a sequence of assignments I1, . . . , In+1, where In+1 is the empty assignment and, therefore, satisfies dn+1. 
Assignment Ii is defined from assignment Ii+1 as follows: Assume by induction hypothesis that Ii+1 satisfies di+1. Since di
is saturated w.r.t. xi and di = Di ∪ di+1, by Lemma 1, we can extend Ii+1 with a value of xi that satisfies di . Iterating, we 
have that I1 satisfies d1 = D = ⋃n

i=1 Di .
Since the soundness theorem ensures that the regular MaxSAT resolution rules preserve the number of unsatisfied clauses 

for every assignment, the number of empty clauses in Cn (|Cn| = m) is the minimum number of clauses of C that can be 
unsatisfied. In particular, assignment I1 falsifies exactly m clauses of C . �
4. An exact variable elimination algorithm for Regular MaxSAT

Algorithm 1 shows the pseudo-code of a variable elimination algorithm derived from the proof of Theorem 2: Given an 
input multiset of regular clauses C with n different variables, the algorithm returns the minimum number m of clauses of 
C that will be unsatisfied for any assignment, and a total optimal assignment I that falsifies exactly m clauses of C .

The variable elimination algorithm has the following functions:

• Function saturation(C, x) computes a saturation of C w.r.t. x. By Lemma 2, this can be implemented by systematically 
trying to apply Rules 1–4 to any pair of clauses containing x, until no application can be done.
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Algorithm 1: An exact variable elimination algorithm for MaxSAT.
Input: C: a multiset of regular clauses.
Output: (m, I): an assignment I that unsatisfies the minimum number of clauses (m).
C0 ← C;
for i ← 1 to n do

C ′ ← saturation(Ci−1, xi);
〈Ci , Di〉 ← partition(C ′, xi);

m ← |Cn|;
I ← ∅;
for i ← n downto 1 do

I ← I ∪ [xi �→ max_extension(xi , I, Di)];
return (m, I)

• Function partition(C, xi) partitions C into two multisets, Ci and Di so that Ci contains the regular clauses without 
occurrences of variable xi , and Di contains the regular clauses with occurrences of xi .

• Function max_extension(xi, I, Di) computes a truth assignment for xi as follows: if I satisfies all the clauses in Di , 
including the case in which Di = {}, then the function returns the greatest truth value. Otherwise, by Lemma 1, I
assigns to xi one value of the non-empty set [a, i1] ∪ ⋃

1≤s≤n−1[ js, is+1] ∪ [ jn, b].

The algorithm has two parts. In the first part, the algorithm successively saturates w.r.t. all the variables occurring in 
the input multiset. Once the current multiset is saturated w.r.t. a variable xi , it partitions the resulting multiset into two 
multisets: Ci and Di . The multiset Ci contains the clauses without occurrences of xi , and the multiset Di contains the 
clauses with occurrences of xi . The algorithm continues saturating Ci w.r.t. one of the remaining variables, and ignores Di . 
This process continues until all the variables are eliminated. At the end, Cn does not contain any variable, and the number 
of empty clauses in Cn is the returned minimum number of unsatisfied clauses. In the second part, the algorithm builds an 
optimal assignment as function max_extension(xi, I, Di) states.

Example 5. Let N = {1, 2, 3, 4, 5} and let C0 = {≤1 : x3, ≥3 : x1 ∨ ≥2 : x2, ≤1 : x1 ∨ ≥2 : x2, ≤2 : x2 ∨ ≥2 : x3, ≥1 : x2 ∨
≤4 : x3, ≥3 : x3}. Saturating C0 w.r.t. x1, we get C1 = {≤1 : x3, ≥2 : x2, ≤2 : x2 ∨ ≥2 : x3, ≥1 : x2 ∨ ≥4 : x3, ≥3 : x3} and 
D1 = {≤1 : x1 ∨ ≥3 : x1 ∨ ≥2 : x2}. Saturating C1 w.r.t. x2, we get C2 = {≤1 : x3, ≥3 : x3} and D2 = {≥2 : x2, ≤2 : x2 ∨
≥2 : x3, ≥1 : x2 ∨ ≥4 : x3}. Saturating C2 w.r.t. x3, we get C3 = {�} and D3 = {≤1 : x3 ∨ ≥3 : x3}. Hence, the minimum 
number of unsatisfied clauses is 1, and x3 �→ 5, x2 �→ 5, x1 �→ 5 is an optimal assignment.

5. Weighted Regular MaxSAT resolution

For ease of presentation, we have presented the inference rules for (unweighted) Regular MaxSAT. The weighted version 
of the inference rules of the proposed Regular MaxSAT proof systems are shown in Fig. 4. Conclusions with weight zero are 
omitted.

From a conceptual viewpoint, a clause with weight w is equivalent to having w copies of that clause. Thus, the appli-
cation of a weighted rule collapses min(u, w) applications of the unweighted rule. Since the premises can have different 
weights, we add again the premises with weights u − min(u, w) and w − min(u, w). One of such weights is zero, and the 
other allows to use the copies of the premise that have not been consumed in other inference steps. So, the results of 
soundness and completeness for the weighted case follow directly from the results in the unweighted case. Nevertheless, in 
practice, it is much more efficient to apply the weighted rules when we have weighted clauses.

6. Conclusions

We have defined the first resolution-style proof system for Regular MaxSAT and proved its soundness and completeness, 
described the first exact variable elimination for Regular MaxSAT that incorporates a notion of saturation that exploits the 
structure of regular signs, and extended the proposed proof system to solve Weighted Regular MaxSAT.

Finally, we want to point out several future research directions:

• A first extension of our work is to consider that the truth value set is infinite. In this case, we should consider four 
types of regular signs: ≥ i, > i, ≤ i or < i in order to deal with negations of regular literals.

• A second extension of our work is to associate a partial order with the truth value set instead of a total order. The 
existing works that use lattices as truth value sets are a good starting point for this research direction.

• A third extension is to study the advantages of regular encodings for representing combinatorial optimization problems.
• A fourth extension is to implement the proposed variable elimination algorithm for Regular MaxSAT and compare 

its performance with a Signed MaxSAT algorithm. Our intuition is that, for the same problem, Regular MaxSAT will 
generally be more efficient than Signed MaxSAT because it better exploits the structure of the CNF formula.
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Fig. 4. Proof system for Weighted Regular MaxSAT.
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