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Abstract

Sparse word embeddings models (SPINE,

SINr) are designed to embed words in inter-

pretable dimensions. An interpretable dimen-

sion is such that a human can interpret the se-

mantic (or syntactic) relations between words

active for a dimension. These models are use-

ful for critical downstream tasks in natural lan-

guage processing (e.g. medical or legal NLP),

and digital humanities applications. This work

extends interpretability at the vector level with

a more manageable number of activated dimen-

sions following recommendations from psy-

cholinguistics. Subsequently, one of the key

criteria to an interpretable model is sparsity: in

order to be interpretable, not every word should

be represented by all the features of the model,

especially if humans have to interpret these fea-

tures and their relations. This raises one ques-

tion: to which extent is sparsity sustainable

with regard to performance? We thus intro-

duce a sparsication procedure to evaluate its

impact on two interpretable methods (SPINE

and SINr) to tend towards sustainable vector

interpretability. We also introduce stability as a

new criterion to interpretability. Our stability

evaluations show little albeit non-zero variation

for SPINE and SINr embeddings. We then

show that increasing sparsity does not necessar-

ily interfere with performance. These results

are encouraging and pave the way towards in-

trinsically interpretable word vectors.

1 Introduction

Word embeddings models (Mikolov et al., 2013;

Pennington et al., 2014; Devlin et al., 2018) al-

lowed tremendous evolution in natural language

processing. However, they embed the lexicon in

dense representation spaces with opaque dimen-

sions. It is possible to obtain an understanding

of these models via probing (Rogers et al., 2021)

and embedding matrix analysis (Shin et al., 2018).

However such methods are subject to criticism

with regard to the interpretation that can actually

be drawn from them (Hewitt and Liang, 2019;

Ravichander et al., 2021; Elazar et al., 2021). This

a posteriori approach to understanding models’ de-

cisions corresponds to the explainability paradigm

in machine learning.

On the other hand, interpretability (Rudin, 2019)

is dened for word embedding models as the pos-

sibility to nd semantic (or syntactic) consistency

in the dimensions of the embedding space (Mur-

phy et al., 2012; Faruqui et al., 2015; Subrama-

nian et al., 2018; Prouteau et al., 2022). Models

such as SPINE (Subramanian et al., 2018) and

SINr (Prouteau et al., 2021) meet this requirement:

Table 1 illustrates the interpretability of the dimen-

sions resulting from such methods. These inher-

ently interpretable approaches to represent the lex-

icon are deemed preferable for high-stakes down-

stream use such as medical or legal NLP (Rudin,

2019). Interpretability also eases connection be-

tween word embeddings and linguistic models of

the lexicon, since consistent semantic dimensions

can be grasped as semantic features, which are

used in a variety of theoretical models (Jackendoff,

1983; Pottier, 1963; Rastier, 2009).

As far as we know, only the interpretability of

dimensions is considered in the literature and hu-

man evaluations such as the Word Intrusion Detec-

tion (Murphy et al., 2012) are targeted specically

towards this aspect. In this paper, we introduce

vector-level interpretability and dene it as the

capacity for a speaker to make sense of the set of

activated dimensions in a word vector. It is pos-

sible only if the set of dimensions to describe the

word is limited. The size of this set is bounded by

two different kinds of psychological experiments:

semantic features production (Garrard et al., 2001;

McRae et al., 2005) and features retention (Miller,

1956; Peterson and Peterson, 1959). This body of

literature comes to an agreement at roughly ten fea-



tures. We consider in this paper that this number

of features is a desirable horizon for vector-level

interpretability. Following this objective and to fur-

ther reduce the amount of information provided to

the speaker, we also consider binary word vectors

as in Faruqui et al. (2015). Moreover, this binary

approach is consistent with componential analysis

(Goodenough, 1956; Katz and Fodor, 1963).

Considering these criteria, and to tend towards

more interpretability, our work offers the following

contributions :

• Rene interpretability by introducing addi-

tional criteria: stability and increased sparse-

ness for vector-level interpretability.

• Evaluate the effects of increased word vector

sparseness and binarity on performance.

• Illustrate the effects of increasing vector

sparseness on the embedding space.

To this end, we introduce Section 2 the criteria

for interpretability and their different settings in the

literature. Section 3 introduces the models consid-

ered for our experiments. In Section 4, we detail

the experimental setup adopted to evaluate the im-

pact of sparsity as well as binarity on performance

and vector-level interpretability. In Section 5, we

demonstrate that the trade-off between sparsity and

interpretability is not as strong as one would think.

Finally, Section 6 illustrates the impact of sparsity

on word vectors and discusses its benets.

2 Related work

Interpretability : criteria andmodels. The sem-

inal article of (Murphy et al., 2012) paves the

way towards psycholinguistically plausible distri-

butional representations. The authors x the follow-

ing set of constraints on the representation space:

sparseness, positivity and performance. Sparseness

is justied by the difculty to cover a vast vocab-

ulary comprised of many different topics with a

small set of features. Thus, a large number of di-

mensions is needed, but only some of those are

activated for the description of each word. Posi-

tivity is motivated by the fact that storing null or

negative features for each item of the lexicon is

not cognitively efcient (Palmer, 1977; Lee and

Seung, 1999). The performance criterion is needed

since it is possible to produce interpretable repre-

sentations of the lexicon (e.g raw co-occurrence

matrices) with subpar performances on intrinsic

or extrinsic evaluations. This sparse interpretable

word model research is carried on with SPOWV

(Faruqui et al., 2015), SPINE (Subramanian et al.,

2018) and SINr (Prouteau et al., 2021). The rst

two models transform previously trained dense rep-

resentations into sparse word embeddings while

the latter builds a sparse embedding space from a

word co-occurrence matrix. The word intrusion

tests (Murphy et al., 2012; Senel et al., 2018; Sub-

ramanian et al., 2018; Prouteau et al., 2022) are

designed to assess the internal consistency of di-

mensions in the embedding space. As introduced

Section 1, we wish to allow interpretability at the

vector level which might benet from a smaller set

of activated components in word vectors.

Stability. Pierrejean (2020) demonstrate the non-

determinism of neural models’ training which lead

to variations in evaluation scores and word neigh-

borhoods. On the front of explicability, new deter-

ministic methods are emerging (Zafar and Khan,

2021). However, Rudin (2019) encourages to pri-

oritise interpretable approaches over explicable ap-

proaches, motivating this work.

From these observations and as stated Section 1,

we rene the criteria necessary to enable vector-

level interpretability by redening sparsity and

adding stability.

Binary embeddings. Prototypicality theory

(Rosch, 1975; Rosch et al., 1976) introduced the

paradigm of weighted features in psychology

and linguistics. However, feature-based analysis

preempted this theoretical framework with compo-

nential analysis. This approach based on binary

features was used by anthropological linguists

(Goodenough, 1956), in structuralist work (Pottier,

1963) and in cognitively informed generativist

frameworks (Katz and Fodor, 1963). Faruqui

et al. (2015) construct binary vectors using sparse

coding to sparsify dense word embeddings in

more dimensions than the original space—called

overcomplete vectors (SPOWV). The model is

then binarized simply by setting each non-zero

value to one. In computer science, another use to

binary models is to reduce the memory footprint

of word embeddings by replacing oats with bits

and also the compute needed to exploit these

representations. It is especially critical in low-

resource embedded systems—e.g mobile phones.

Tissier et al. (2019) and Navali et al. (2020)

introduce autoencoder approaches to binarize



Word2Vec SPINE SINr

insulin

scalar, tablespoon, vesicular, dystrophy

antiserum, falsiable, experimenter, internat

PBS, NC, arginine, IFN

glutathione, pancreas, gastroduodenal, vitamin

immunologically, hyperplasia, transgene, nociceptive

insulin, sulphasalazine, interferon, cholangitis

hypertriglyceridaemia, mellitus, porcine, insulin

aldosterone, aminotransferase, creatinine, glycated

ulcerative, sulphasalazine, colitis, sera

mint

scalar, tablespoon, vesicular, dystrophy

cube, geranium, Berowne, curiosities

polyunsaturated, misre, margarine, methile

spoonfuls, parsnips, kebabs, preheat

onion, basil, yogurt, coriander

dial, screams, vibration, spadefoot

tbsp, oregano, diced, dijon

Gibson, gigged, charvel, Ibanez

minted, minting, hoards, coinages

oxygen

scalar, tablespoon, vesicular, dystrophy

herbicides, menstrual, deprave, angiotensin

pou, tenascin, cytoplasm, platelet

glutathione, pancreas, gastroduodenal, vitamin

lipid, crypt, tris, calcium

monoxide, oxides, sulphuric, nitrogen

monoxide, dioxide, nitrous, oxides

supplemental, hypoxaemic, electrocardiographic, gastroscopy

diastolic, systolic, transfusion, transfusions

Table 1: Words with the highest values on the top three dimensions of ”insulin”, ”mint” and ”oxygen” in Word2Vec,

SPINE and SINr sparsied to 100 active dimensions per vector according to the protocol described Section 4.

dense representations. Both of these models

optimize for non-redundancy among dimensions

and conservation of semantic information. Once

vectors are binary, classical evaluation tasks such

as word similarity or analogy may be redened

with bitwise operations (Sokal and Michener,

1958; Tissier et al., 2019). These models achieve

competitive results to the baseline considering

their small footprint.

3 Interpretable word embeddings

SPINE and SPOWV achieve close results on intrin-

sic and downstream evaluations but SPINE scores

better in terms of interpretability (Subramanian

et al., 2018), we thus do not consider SPOWV in

the experiments that follow. Furthermore, SINr

performances and interpretability are on a par with

SPINE, we thus consider both SPINE and SINr

as our reference interpretable models.

SPINE. SPINE, rst introduced in Subrama-

nian et al. (2018) derives sparse word embeddings

from a previously trained dense model such as

Word2Vec (Mikolov et al., 2013) or GloVe (Pen-

nington et al., 2014). Architecturally, it is an au-

toencoder whose hidden layer is of higher dimen-

sion than the dense input—e.g sparsifying from

300 dense dimensions to 1000 sparse dimensions.

Three losses are implemented to enforce sparsity

and interpretability. The Reconstruction Loss pe-

nalizes the poor reconstruction of the input rep-

resentation from the output of the hidden layer,

the Average Sparsity Loss and the Partial Spar-

sity Loss enforce sparse representations by limiting

the number of active dimensions and skew vector

values towards 0 or 1. SPINE has multiple hyper-

parameters: the minimum sparseness, the number

of epochs and the vector output dimension.

SINr. Introduced in Prouteau et al. (2021), SINr

is a graph-based approach to word embeddings.

From a co-occurrence matrix extracted on a cor-

pus, SINr builds a weighted word co-occurrence

graph—words are represented by nodes and the

number of co-occurrences by edges. A community

detection algorithm, the Louvain method (Blondel

et al., 2008), then uncovers dense groups of co-

occurring words in the graph. SINr then leverages

the distribution of each node over this partition

to derive a sparse representation—not all words

co-occur with words from each community. The

representation is sparse by design, each component

of the embedding space is related to a community.

Community detection is an unsupervised process

admitting a single parameter allowing to potentially

control the number of communities detected.

4 Methodology

Models. Alongside the models presented Sec-

tion 3, Word2Vec is used as a baseline. We use

the Skip-gram with negative sampling (SGNS) ar-

chitecture and the parameters described in Levy

and Goldberg (2014). Word2Vec embeddings

have 300 dimensions with a context window of

5 words. Since SPINE’s number of dimensions is

adjustable when SINr’s is not—it is dependent on

the number of communities detected—we base the

number of dimensions of SPINE on SINr. Op-

timal performances for SINr are observed with

the hyperparameter controlling the number of com-

munities set to 50 resulting in 4460 dimensions

for OANC (Nancy et al., 2011) and 8454 for BNC

(Consortium, 2007) —the English corpora we use

in our experiments is presented at the end of the

next section. SPINE embeddings are trained from

the Word2Vec model previously presented. The

sparsity parameter of SPINE has little impact on

the sparsity of the output. Subsequently, after

several rounds of training, the model selected is

that which achieves the best performances on the

similarity task with a sparseness—95% after 1000

epochs—allowing further sparsication according

to our experimental setup described hereinafter.



Figure 1: Sparseness of SPINE and SINr according

to the maximum number of activated dimensions per

vector on OANC (top) and BNC (bottom). First data point

of each model is sparseness before sparsication.

Experimental framework. We introduce an ex-

perimental framework allowing to evaluate word

embedding interpretability. We rst consider a

performance-sparsity compromise. Our hypoth-

esis is that sparse vectors are both more inter-

pretable and psycholinguistically plausible. To

control sparseness, we introduce our sparsication

method: from each embedding model, we keep

only the k top strongest dimensions by value in

each vector—k is in range 250− 10. Components

not in the top k for the vector are set to zero. Fig-

ure 1 presents the sparseness of SPINE and SINr

with regard to the active dimensions threshold. In

the case of Word2Vec, we keep the top k dimen-

sions out of the absolute values from the vectors.

In our second setup, we study the impact of

switching to binary vectors. The binarization step

is straightforward, we simply replace all non-zero

values in each sparsied and unsparsied model by

1 as in Faruqui et al. (2015).

To evaluate the quality of the representations af-

ter sparsication and binarization, we use the word

similarity evaluation—the correlation between the

cosine similarity of words in our model and sim-

ilarity rated by humans. Selected datasets model

a variety of relations : MEN (Bruni et al., 2014),

WS353 (Agirre et al., 2009), SCWS (Huang et al.,

2012). To evaluate the stability of vectors produced

by SPINE and SINr, our second criterion to in-

terpretability, we learn 10 models and present the

averaged results.

As similarity datasets are mostly available in En-

glish, we use the British National Corpus (BNC)

(Consortium, 2007) and the text part of the Open

American National Corpus (OANC) (Nancy et al.,

MEN WS353 SCWS

BNC

Spearman σ Spearman σ Spearman σ

Word2Vec 0, 72 0, 002 0, 65 0, 005 0, 57 0, 002

SPINE 0, 65 0, 006 0, 57 0, 01 0, 60 0, 004

SINr 0, 66 0, 0006 0, 62 0, 002 0, 54 0, 001

MEN WS353 SCWS

OANC

Spearman σ Spearman σ Spearman σ

Word2Vec 0, 43 0, 002 0, 50 0, 005 0, 46 0, 003

SPINE 0, 36 0, 009 0, 43 0, 01 0, 39 0, 01

SINr 0, 39 0, 0008 0, 44 0, 002 0, 39 0, 002

Table 2: Stability results for the word similarity evaluation on BNC (top), and OANC (bottom). Average Pearson

correlation coefcient and standard deviation σ over 10 runs.



2011) to train our models. BNC contains 100 mil-

lion tokens and OANC 11 million. Both corpus are

composite in domain and genres. Those relatively

small corpora, considering the standards in natu-

ral language processing, are chosen because doc-

umented corpora allow for ner interpretations of

dimensions. Text preprocessing was performed us-

ing spaCy : tokenization with named-entity chunk-

ing, deletion of words shorter than three characters,

of punctuation and of numerical characters. The

minimum frequency for a type is set to 20. After

preprocessing, OANC contains 20,814 types and

roughly 4 million tokens, 58,687 types and 40 mil-

lion tokens for BNC.

5 Results

Stability. The rst property we consider with re-

gards to interpretability is the stability of the mod-

els trained. This experiment is twofold, it allows

to show whether methods are stable and also sets

reference values for the similarity evaluation prior

to sparsifying. Each model was run ten times on

the same data with the same hyperparameters.

As reported in Table 2, the three models achieve

scores in close ranges, with all models showing

some degree if variability, their standard deviation

being non-zero across ten runs. While Word2Vec

and SINr seem more stable than SPINE, the over-

all observed variability on the small samples of

the vocabulary present in the similarity datasets

hinders reproducibility and is a aw to the three

model’s interpretability.

Impact of sparsity on similarity. Results pre-

sented Figure 3 show the Pearson correlation scores

on the similarity evaluation with regard to the num-

ber of components activated. The similarity scores

are given with regard to the maximum number of

top values kept in each vector according to our

sparsication procedure. First, the three models

achieve comparable results to those reported Ta-

ble 2 up until 50 dimensions. More surprisingly,

sparsifying SINr embeddings seems to improve

performances. Sparsication may lter out noise

from the base SINr model. Subsequently, there is

not necessarily a trade-off between sparseness and

efciency. Furthermore, the fact that results remain

satisfactory on our Word2Vec control model de-

spite the sparsication is an unexpected behavior

and is interesting with regard to how the semantic

information is organized in its vectors.

In order to approach the sparsity objective of 10

dimensions presented Section 1, the experiment is

also conducted at this level. Although we observe

an overall drop in performance and especially for

Word2Vec, a signicant part of the semantic in-

formation is retained within these ten dimensions.

Indeed, they allow to solve at least partially the sim-

ilarity task. Even though the usefulness of this rep-

resentation for downstream tasks can be discussed,

it still allows to build interpretable word vectors

despite the drop in performance. The low number

of active dimensions render these models compat-

ible with theoretical models leveraging semantic

features, thus paving the way for new empirical

opportunities.

Impact of binarization on similarity. Results

presented Figure 3 follow the same display than

sparsity results except that all models are binarized.

Overall, we observe drops in performance across

all models but to drastically varying extents. While

SPINE and SINr lose some semantic information

compared to the sparsied weighted models, they

tend to retain performances of the same magnitude.

This is especially true for models trained on BNC,

considering that the models trained on OANC show

bigger drops in word similarity performance. On

the other hand, overall Word2Vec performances

crumble with binarized vectors. This result is to be

expected since Word2Vec is a dense model.

We can observe a common pattern across all

models, where performance of binarized embed-

dings increases with sparsication until 100 or 50

activated dimensions. Binarizing while maintain-

ing a lot of active dimensions attens the hierarchy

between components with strong values and others

with low activations, thus otherwise very weak ac-

tivations may gain weight in the vector as a result

of binarization. In this case, the sparsication may

remove noise from representations, by restoring a

hierarchy between the few strong dimensions, acti-

vated with a 1 value, and the others set to 0. This

denoising behavior resulting from sparsication

seems common to binarized models, and weighted

SINr.

6 Discussion

Our results show that there is not necessarily a

trade-off between interpretability and performance.

On the contrary, stability and increased sparseness

of interpretable models can even improve results.

At thresholds close to what is described in psy-

cholinguistics, performances may remain accept-



Figure 2: Word similarity performance (Pearson correlation) against maximum number of activated dimensions per

vector for Word2Vec (left), SPINE (middle) and SINr (right). Performances on OANC are reported in yellow,

and performances on BNC in blue.

Figure 3: Word similarity performance (Pearson correlation) on binary models against maximum number of

activated dimensions per vector for Word2Vec (left), SPINE (middle) and SINr (right). Performances on OANC

are reported in magenta, and performances on BNC in cyan.

able considering the number of dimensions acti-

vated. Interpretability is hard to visualize without

a set objective. In the discussion ensuing, we illus-

trate the interpretability of models through visual-

izations on selected items.

Interpretability of the dimension. Interpretabil-

ity of the dimensions can be assessed after con-

ducting a word intrusion evaluation with humans,

both SPINE and SINr’s dimension interpretabil-

ity have been previously evaluated without prior

sparsication (Subramanian et al., 2018; Prouteau

et al., 2022). The goal is to evaluate whether dimen-

sions are interpretable—words with highest values

on a dimension should be related. We present Ta-

ble 1 top dimensions for three words as a glimpse

into how interpretable dimensions of SPINE and

SINr are in comparison with Word2Vec. As in

previous evaluations, Word2Vec does not exhibit

dimensions with related terms. If we consider the

term ”insulin”, words on the rst three strongest

dimensions in the vectors are all related to medi-

cal conditions or biological functions. The word

”mint” presents interesting dimensions, for SPINE,

the rst two dimensions are related to food and

ingredients, the third one is less interpretable as

one has trouble linking ”spadefoot”, a frog specie

to ”dial”. SINr captures the polysemous nature

of the word ”mint” with top dimensions unrelated

with one another. The rst one is most probably

related to mint as an aromatic, meanwhile, the sec-



(a) SPINE

(b) SINr

(c) SPINE 100 active dimensions

(d) SINr 100 active dimensions

Figure 4: Shared dimensions across 50 most and least similar words to ”mint” in SPINE and SINr. The models

are trained on BNC both without sparsication, and with a threshold set to 100 dimensions on BNC. The top half of

each gure represents the most similar words and the bottom half the least similar words.

ond one as the adjective describing guitars in mint

condition, and the third one as a verb, to mint, in

the sense of producing and managing currency. The

same analysis can be drawn for the word ”oxygen”

where the use in the medical eld is represented

alongside chemical characteristics.

Interpretability of the vector. We evaluated in-

creasingly sparsied word embeddings with the

hypothesis that fewer features makes interpreting

words vectors themselves easier. Our evaluations

show that this gain in interpretability is not nec-

essarily at the cost of model performances, the

sparsication of representation can even increase

performances up to a certain sparseness level. The

following paragraphs aim to illustrate interpretabil-

ity at the word vector level.

We present Figure 4 the distribution of values in

the 50 most (top of each gure) and least similar

(bottom of each gure) words to ”mint” for SPINE

(a; c) and SINr (b; d) on BNC. Lines appearing

vertically across gures show shared dimensions

between vectors in the embedding space. The rst

two gures (a; b) represent the shared features in

the model prior to sparsication. SPINE presents

vertical lines spanning most similar and least simi-

lar vectors, the embeddings seemingly share a large

number of dimensions. SINr, on the other hand,

exhibits a clear distinction between most and least

similar words. One can clearly see shared dimen-

sions among close neighbors of SINr for the word

”mint”. These rst two distributions need to be com-

pared with the distributions observed after sparsify-

ing the vectors (c; d). At the 100 active dimensions

sparsity setup, SINr seems to display more shared

dimensions than SPINE for the word ”mint”. We

assume that the performance gain in the similarity

task observed for SINr Figure 2 is due to a process

of noise reduction induced by the sparsication of

the model.

The interesting results on similarity evaluation

showed by sparsied interpretable models seems

to indicate that the most important part of the se-

mantic information is stored in the few strongest

components of each vector. This observation al-

lows us to analyze these models through the lens

of our constrained version of interpretability di-



Figure 5: Word vectors on the set of top 5 shared di-

mensions for ”mint”, ”insulin” and ”oxygen” and their

respective closest neighbors for SPINE (top) and SINr

(bottom) on BNC.

rected towards the interpretation of word vectors.

A speaker might want to interpret word embed-

dings by composing the meaning of a word with

a limited subset of the features that describe it. In

this case, the stability of the models becomes an

increasingly important issue. Indeed, interpreting

dimensions amounts to nding a consistency to a

set of words that strongly interpret a dimension.

However, interpreting a word vector relies both on

this consistency and the strength of the activation of

each dimension for a given vector. Thereby, even

subtle variations in the representation across runs

may induce different interpretations.

Binary representations. Our last experiment

aims to quantify the benet of weighted features

over binary features. Considering results Figure

4, it appears that a signicant part of the semantic

information for sparse interpretable models is en-

coded in the mere activation of a dimension by a

vector. Binarity is a means of reducing time and

memory complexity of semantic models and is un-

doubtedly benecial in embedded applications with

low latency requirements or low resource hardware.

We observe with Figure 5 that a SINr weighted

model tends to have fewer and more strongly acti-

vated dimensions than a SPINE weighted model,

which makes the former more alike binarized repre-

sentations. This property facilitates the interpreta-

tion at the vector level: for example, dimensions 12

to 15 are strongly activated for ”mint” and ”thyme”,

and not at all for the other words, in the SINr repre-

sentation. Recognizing the similarity of ”mint” and

”thyme”, and their opposition to the other words, is

easier when there is a clear gap between a strong

activation and no activation of the dimension con-

sidered, like in a binarized vector.

Taking a step back, the comparison between

weighted and binarized vectors performances allow

us to pinpoint where the information is encoded.

A signicant part of the semantic information is

stored in the activation of a few dimensions for

each word vector, but the dimensions weights are

needed to reach the most competitive performances.

This assessment is coherent with the theoretical

paradigm shift mentioned Section 2. Furthermore,

it appears that, while binarizing embeddings rep-

resents a cost in performance, sparsifying them is

not necessarily a trade-off. In some cases, it might

even be benecial.

7 Conclusion

Previously, the interpretability of embedding

spaces focused mainly on dimension, this work re-

dened interpretability from the vector standpoint.

We state that stability of the models and sparsity are

necessary conditions to intepretability. Constrain-

ing on sparsity echoes psycholinguistic plausibility,

it is essential to nd semantic coherence within

dimension of the embedding space but also to de-

scribe a word with a limited set of these dimensions.

We hypothesize that vectors constrained following

this protocol are interpretable by a speaker, since it

becomes possible to manipulate this small number

of dimensions in working memory.

Interpretable word embedding models achieve

good results on the intrinsic word similarity evalua-

tion task even with higher sparseness levels. SINr

even benets from being sparsied. Furthermore,

we show through examples that dimensions remain

interpretable even on sparsied vectors and that,

indeed words that are close in the embedding space

are represented by a common set of dimensions.

Lastly, we show that real-valued vectors are a slight

improvement upon binary representation.

These results allow to reconsider the inter-

pretability performance for distributed represen-

tations. A following step would be to conceive

an evaluation framework to measure vector-level

interpretability, allowing us to investigate if and

how speakers would make sense of interpretable

word vectors. Such models also open up new per-

spectives in which theoretical models describing

the lexicon benet from semantic features of word

embeddings. In the eld of semantic drift detection,



it would also allow to easily characterize the drift

by keeping track of the few dimensions at stake.
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