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Abstract. This study investigates the impact of topography
on five snow cover fraction (SCF) parameterizations devel-
oped for global climate models (GCMs), including two novel
ones. The parameterization skill is first assessed with the
High Mountain Asia Snow Reanalysis (HMASR), and three
of them are implemented in the ORCHIDEE land surface
model (LSM) and tested in global land—atmosphere cou-
pled simulations. HMASR includes snow depth (SD) uncer-
tainties, which may be due to the elevation differences be-
tween in situ stations and HMASR grid cells. Nevertheless,
the SCF-SD relationship varies greatly between mountain-
ous and flat areas in HMASR, especially during the snow-
melting period. The new parameterizations that include a
dependency on the subgrid topography allow a significant
SCF bias reduction, reaching 5 % to 10 % on average in the
global simulations over mountainous areas, which in turn
leads to a reduction of the surface cold bias from — 1.8°C
to about —1°C in High Mountain Asia (HMA). Further-
more, the seasonal hysteresis between SCF and SD found in
HMASR is better captured in the parameterizations that split
the accumulation and the depletion curves or that include
a dependency on the snow density. The deep-learning SCF
parameterization is promising but exhibits more resolution-
dependent and region-dependent features. Persistent snow
cover biases remain in global land—atmosphere experiments.
This suggests that other model biases may be intertwined
with the snow biases and points out the need to continue
improving snow models and their calibration. Increasing the
model resolution does not consistently reduce the simulated
SCF biases, although biases get narrower around moun-
tain areas. This study highlights the complexity of calibrat-

ing SCF parameterizations since they affect various land-
atmosphere feedbacks. In summary, this research spots the
importance of considering topography in SCF parameteri-
zations and the challenges in accurately representing snow
cover in mountainous regions. It calls for further efforts to
improve the representation of subgrid-scale processes affect-
ing snowpack in climate models.

1 Introduction

Snow plays a key role in surface—atmosphere exchanges, in
particular through its impact on the surface albedo that drives
a large part of the surface energy balance. It is also a major
piece of the hydrological cycle, storing large quantities of
water, before its progressive transfer to the soil and streams
during melting. It covers up to 40 % of the Northern Hemi-
sphere (NH) land surface during the end of the winter (ap-
proximately 47 x 10° km?), and it covers most of the mid- to
high-latitude areas during cold periods (Robinson and Frei,
2000; Lemke et al., 2007). Climate change has driven de-
creasing snow cover trends in the NH over the last decades
(IPCC, 2019; Mudryk et al., 2020). Snow and glaciers are
water resources threatened by climate change, in particular
in High Mountain Asia (HMA), where they contribute to the
water supply for around 1.4 billion people living downstream
(e.g., Bookhagen and Burbank, 2010; Immerzeel et al., 2010;
Immerzeel and Bierkens, 2012; Yao et al., 2012; Rasul, 2014;
Scott et al., 2019; Wester et al., 2019). The development of
skillful snow models is therefore a crucial concern given the
physical and socio-environmental stakes that it involves.
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Snow models have been developed with varying degrees
of complexity depending on the intended application (e.g.,
Magnusson et al., 2015; Terzago et al., 2020). Land sur-
face models (LSMs) embedded in general circulation models
(GCMs) include snow schemes varying from simple single-
layer snow models to medium-complexity multi-layer ones
taking into account additional processes such as snow com-
paction, water percolation, and refreezing (e.g., Loth et al.,
1993; Lynch-Stieglitz, 1994; Sun et al., 1999; Dai et al.,,
2003; Yang and Niu, 2003; Xue et al., 2003; T. Wang et al.,
2013). Recent GCM snow schemes allow the snowpack evo-
lution to be described better. However, while much effort has
been devoted to the development of 1D vertical snow models,
less attention has been paid to the schemes required to esti-
mate the snow cover fraction (SCF). Nonetheless, the SCF
may have a dominant importance on snow variability in cer-
tain conditions (Jiang et al., 2020). Indeed, snow cover and
snow depth show a large subgrid-cell spatial variability in
both global and regional models, which can be attributed to
surface heterogeneities, including topography and land sur-
face types (e.g., bare soil versus forested areas that are as-
sociated with complex snow-canopy interactions), as well as
local meteorological conditions (Liston, 2004).

Historically, the first SCF parameterizations were based on
a linear increase of snow cover with respect to snow depth
(SD), or snow water equivalent (SWE), until they reached
100 % SCF for a given value of SD or SWE (e.g., Bonan,
1996; Sellers et al., 1996). Other authors introduced non-
linear relationships between SCF and SD (or SWE), with a
dependency on the ground roughness length (e.g., Dickin-
son et al., 1993; Marshall et al., 1994; Marshall and Oglesby,
1994; Yang et al., 1997). Some surface schemes include spe-
cific SCF parameterizations for distinct geographical areas
(e.g., Roesch et al., 2001; Liston, 2004).

Niu and Yang (2007) highlighted a seasonal variability of
the SCF-SD relationship that follows a hysteresis, with a
faster increase in SCF during the accumulation phase com-
pared to a slower decrease occurring during the melting
phase, leading to lower SCF at the end of the snow season
for a given SD within a grid cell. To approximate this effect,
Niu and Yang (2007) included a snow density dependency
in their SCF parameterization, allowing a representation of
the snow cover patchiness classically observed during the
melting phase. Following a different strategy, Swenson and
Lawrence (2012) split the accumulation and depletion curves
and highlight that SCF-SD relationships differ between flat
and mountainous areas. Indeed, the topography is expected
to influence the snow cover distribution due to the elevation
differences between valleys and summits or from the var-
ious slopes and aspects found in mountainous areas (e.g.,
Walland and Simmonds, 1996; Roesch et al., 2001; Swen-
son and Lawrence, 2012; Younas et al., 2017; Helbig et al.,
2021). Douville et al. (1995) introduced a SCF dependency
on the subgrid topography for the first time in the ISBA1 (In-
teraction between Soil, Biosphere, and Atmosphere) LSM,
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a scheme reused by Roesch et al. (2001) that has inspired
various SCF parameterizations adapted to mountainous areas
(e.g., Swenson and Lawrence, 2012; Li et al., 2019; Helbig
etal., 2021).

However, it is challenging to develop, calibrate, and eval-
uate SCF parameterizations over mountainous areas — which
represent over 30 % of land areas (Sayre et al., 2018; Korner
et al., 2021) — because of the lack of accurate snow datasets
over these areas (Dozier et al., 2016; Bormann et al., 2018).
To alleviate this lack of data, Liu et al. (2021b) produced
the High Mountain Asia Snow Reanalysis (HMASR) using
a method validated in the Sierra Nevada (Margulis et al.,
2016), in the Andes (Cortés and Margulis, 2017), and in the
western United States (Fang et al., 2022), consisting in as-
similating high-resolution SCF satellite images from MODIS
and Landsat to provide posterior estimates of snow-related
variables. Its high spatial resolution of 500 m allows us to ex-
plicitly resolve large-scale topography and quantify the im-
pact of subgrid topography on snow cover at a typical GCMs
grid cell size (~ 100km), which opens a unique opportu-
nity to assess the performance of SCF parameterizations over
HMA.

HMA is one of the most complex-topography areas of the
globe, reaching elevations higher than 8000 ma.s.l. It sur-
rounds the Tibetan Plateau (TP), which is the highest and the
most extended plateau on Earth (2.5 x 100 kmz) with an av-
erage elevation of 4000 m a.s.l. (Du and Qingsong, 2000). A
general “cold bias” has been pointed out over HMA in GCM
and regional climate model (RCM) simulations since the first
AMIP experiments (e.g., Mao and Robock, 1998; Su et al.,
2013; Gao et al., 2015; Salunke et al., 2019; Zhu and Yang,
2020; Cui et al., 2021; Lalande et al., 2021). This bias has
been attributed to many potential causes, including misrep-
resentation of the snow cover over mountainous areas (e.g.,
Mao and Robock, 1998; Chen et al., 2017; Xu et al., 2017;
Meng et al., 2018; Salunke et al., 2019; W. Wang et al., 2020;
Li et al., 2020; Miao et al., 2022). HMA is therefore an ideal
area to investigate the influence of topography in SCF param-
eterizations.

In this study, we aim to evaluate the skill of three SCF
parameterizations developed in GCMSs over mountainous ar-
eas, namely Roesch et al. (2001) (hereafter RO1), Niu and
Yang (2007) (hereafter NY07), and Swenson and Lawrence
(2012) (hereafter SL12). We also provide two additional SCF
parameterizations, a first one based on NYO7 that includes a
dependency on the subgrid topography (hereafter LA23) and
a second one based on a deep neural network (DNN). The
last one allows us to investigate a model development based
on machine learning, and more particularly on deep learn-
ing, an approach that has been shown an increasing interest
in Earth sciences (e.g., Krasnopolsky and Fox-Rabinovitz,
2006; Jiang et al., 2018; Kan et al., 2018; Lguensat et al.,
2018; Bolton and Zanna, 2019; Scher and Messori, 2019;
Watt-Meyer et al., 2021; Hou et al., 2021; Bolibar et al.,
2022; Balogh et al., 2022). HMASR is used to optimize and
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evaluate the SCF parameterizations over HMA. The NY07,
SL12, and LA23 parameterizations are then implemented in
the ORCHIDEE LSM and tested in global land—atmosphere
coupled simulations with LMDZ, the atmospheric compo-
nent of the IPSL GCM. The added value of the SCF parame-
terizations is investigated considering the worldwide moun-
tainous areas and considering the land—atmosphere feed-
backs induced by SCF changes.

Two main questions are approached in this study: (1) does
the subgrid topography need to be taken into account in SCF
parameterizations? (2) What is the benefit of using SCF pa-
rameterizations calibrated over HMA in GCM global ex-
periments? The following secondary questions are also ad-
dressed: (3) is it relevant to split the snow accumulation and
depletion curves as it is done in SL12? (4) Can machine
learning reproduce SCF parameterizations? (5) Does the cal-
ibration of SCF parameterizations depend on the spatial res-
olution? And, (6), what are the land—atmosphere feedbacks
induced by SCF changes in model experiments?

This article is organized as follows: data and methods are
described in Sect. 2. Section 3 presents a skill analysis of
HMASR based on in situ SD observations. The evaluation
and calibration of the SCF parameterizations with respect to
HMASR are described in Sect. 4. The global simulations are
evaluated in Sect. 5. The discussion and conclusion are pre-
sented in Sects. 6 and 7 respectively.

2 Data and methods
2.1 Observations
2.1.1 HMASR

The High Mountain Asia Snow Reanalysis (HMASR; Liu
et al., 2021b) dataset covers the joint Landsat—-MODIS era
between the water years 2000 and 2017. The water years
are defined from October of the previous year to Septem-
ber of the current year; i.e., the period of the reanalysis is
from 1 October 1999 to 30 September 2017. It provides daily
estimates of SCF, SWE, SD, and other snow-related vari-
ables, at 16 arcsec (~500m) spatial resolution over HMA
(27-45° N, 60-105° E). SWE estimates are derived by assim-
ilating SCF from Landsat and MODIS sensors using the re-
analysis framework of Margulis et al. (2019). Meteorological
forcing inputs are bias-corrected, downscaled to the model
grid, and finally used with an ensemble approach for estimat-
ing the uncertainty as described in Durand et al. (2008) and
Girotto et al. (2014). Ensemble mean values of SCF, SWE,
and SD are used in our study. HMASR has been developed
for seasonal snow only. Semi-permanent snow and ice are
therefore poorly described (Liu et al., 2021a) and excluded
from our analysis, a limitation discussed in Sect. 6. Although
HMASR has already been used in several studies (e.g., Liu
et al., 2021a; Gascoin, 2021; Liu et al., 2022), this snow
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reanalysis has not been yet validated. Hence, a comparison
with SD in situ observation is carried out in Sect. 3.

2.1.2 In situ snow depth stations

SDs in situ measurements are provided by the National Ti-
betan Plateau Data Center (TPDC; Li et al., 2021). A to-
tal of 102 meteorological stations are available, and most of
them were implemented from the 1950s to the 1970s. This
dataset is available for the period 1961-2013 but with some
missing values. The temporal resolution is daily, the spa-
tial coverage is the TP, and all the data were quality con-
trolled (National Meteorological Information Center et al.,
2018). Stations having less than 90 % data availability are
excluded from our study. The common period with HMASR
is used: from 1 October 1999 to 31 December 2013. Stations
with less than 1 mm of snow on average during the winter
(DJEMA) are not considered in our analyses. Following these
criteria, the 62 stations listed in Table Al are considered in
this study.

2.1.3 Global snow cover fraction validation

In order to evaluate global simulations (Sect. 5), we use
the snow cover products produced by the Snow project of
the ESA Climate Change Initiative program (Snow CCI)
based on the Advanced Very High-Resolution Radiometer
(AVHRR) and the Moderate-Resolution Imaging Spectrora-
diometer (MODIS) satellites. The snow cover fraction on
ground (SCFG) version 2.0 is used and indicates the area of
snow observed from space over land surfaces and in forested
areas corrected for the transmissivity of the forest canopy.
The global SCFG product is available at about 5km pixel
size during 1982-2018 for AVHRR (Naegeli et al., 2022),
and 1 km during 2000-2020 for MODIS (Nagler et al., 2022)
for all land areas, excluding Antarctica and Greenland ice
sheets. These products have the advantage of providing a
daily global fractional snow cover, but they include miss-
ing data during cloudy periods and polar nights and lack
of reliable information for surfaces including water bodies
and permanent snow and ice. A gap-filling technique is ap-
plied here to increase the temporal coverage of this dataset,
by linearly interpolating the available data during periods in-
cluding missing values that do not exceed 10 d. This method
increases the data availability from 49.7 % to 85.5 % for
AVHRR and from 50.2 % to 85.5 % on average over global
land areas (excluding water bodies and permanent snow and
ice areas). This method is shown to be a good compromise
between accuracy and computational efficiency (e.g., Gas-
coin et al., 2015). In a second step, the data are averaged
monthly and spatially aggregated at 0.5° and 1° resolution,
excluding water bodies and assuming 100 % snow cover over
permanent snow- and ice-covered areas.

The Cryosphere, 17, 5095-5130, 2023
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2.1.4 Near-surface air temperature

The Climatic Research Unit gridded Time Series (CRU TS)
version 4.00 is a 0.5° gridded dataset of the monthly tempera-
ture (excluding Antarctica) available from 1901 until present,
based on local weather stations and provided with an estima-
tion of the data quality (Harris et al., 2020). This dataset has
been widely used over HMA and TP (e.g., Gu et al., 2012;
Chen et al., 2017; Krishnan et al., 2019; Wang et al., 2021;
Yi et al., 2021) and shows satisfying skill in these regions
(e.g., X. Wang et al., 2013; Chen et al., 2017).

2.2 Snow cover fraction parameterizations

A large number of SCF parameterizations exist with varying
degrees of complexity. Here we focus on three parameteri-
zations developed for GCMs, with two additional ones set
up for an optimal description of snow cover in mountainous
areas (Sect. 1).

2.2.1 RO1 (Roesch et al., 2001)

Roesch et al. (2001) set up differentiated SCF parameter-
izations for three surface types across the globe: flat non-
forested areas, mountainous non-forested areas, and forested
areas. To investigate the snow cover dependency on the to-
pography, only the mountainous non-forested SCF parame-
terization is considered here (Eq. 1):

SCF = 0.95 - tanh (100 - SWE)

1000 - SWE
1000 - SWE + & +0.15 - 0po |

ey

where SCF is the snow cover fraction ranging between 0 and
1, SWE is the snow water equivalent (kg m~2 or mm), € is a
small constant to avoid division by zero (set to 1 x 1079), and
Otopo 18 the subgrid standard deviation of topography (m).

2.2.2 NY07 (Niu and Yang, 2007)

Niu and Yang (2007) updated the SCF hyperbolic tangent pa-
rameterization from Yang et al. (1997) by including the hys-
teresis observed in the SCF-SD relationship (see Sect. 1).
This phenomenon is approximated through the snow den-
sity in Eq. (2). When snow density is relatively small (fresh
snow), SCF increases quickly as a function of SD, whereas
it decreases more gradually when snow density takes higher
values due to snow compaction.

SD ) )
2.5. 20g (psnow/pnew)m '

SCF = tanh <

where SD is the snow depth (m), zog is the ground roughness
length (set to 0.01 m), psnow 1S the snow density scaled by the
fresh snow density ppew (set to S0kg m~3 in the ORCHIDEE
LSM), and m is a melting factor adjustable depending on
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the scale (set to 1 in ORCHIDEE). It is noteworthy that the
prognostic snow density (posnow) 1S the bulk density of the
snowpack rather than that of the surface layer to produce a
smoother SCF transition from accumulation to melting sea-
sons.

2.2.3 SL12 (Swenson and Lawrence, 2012)

Swenson and Lawrence (2012) consider two separate for-
mulas for the accumulation and the depletion SCF curves,
depending on whether there is a snowfall event or not. To
parameterize the increase in SCF due to a snowfall event,
precipitation is distributed randomly throughout a region
(the hypothesis of randomly distributed precipitation may
be questionable in mountain regions, where snowfall af-
fects preferentially high-elevation areas), with strong snow-
fall leading to high SCEF, following the formulas (Eqs. 3 and
4)

SCF;+1=1— (1 —s,41)(1 —SCF,), 3)
s =min(1, k- SWE), 4)

where s is the probability that a point within the pixel
is snow-covered after a single snowfall event, and k is a
scale factor. We have kept the value used by Swenson and
Lawrence (2012) of k = 0.1. To update SCF after a snowfall
event n + 1, it requires the current SCF and the new snowfall
amount; therefore the SCF must be saved at each model time
step.

For melting events, Swenson and Lawrence (2012) devel-
oped the following empirically derived expression that re-
lates SCF to the dimensionless SWE:

1 SWE Nmell
SCF=1-— [—acos (2— — 1>:| , ®))
v Emax
Noor 200 ©)
" max (10, oopo)
2-SWE
SWE ax = (7

cos [n(l — SCF)I/Nmel(] +1’

where Nper is a parameter that controls the shape of the
SCF and depends on the standard deviation of topography.
SWEax is updated after each accumulation event to keep
consistency with Eq. (5).!

2.2.4 LA23 (modified version of NY07)

We propose an updated SCF parameterization based on
NYO07 by adding a dependency to the subgrid topography,

INote that the formulation of SWEmax (Eq. 7) differs
from Eq. (11) in the Swenson and Lawrence (2012) paper.
Indeed, Eq. (11) in their paper is erroneous (Sean Swenson,
personal communication, 2020). The correct version imple-
mented in their model corresponds well to Eq. (7) of this paper
(https://github.com/ESCOMP/CTSM/blob/master/src/biogeophys/
SnowCoverFractionSwensonLawrence2012Mod.FOO#L.229,  last
access: 18 March 2022).
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as follows:

SD
SCF = tanh ®)

7 K
25. Z0g (Psnow ) + 18 Utopo ( Psnow )

where B and n are two dimensionless parameters related to
the standard deviation of topography (otopo) that will be op-
timized with HMASR (see Sect. 2.3). The advantage of this
parameterization over SL12 is to keep a single formula for
the accumulation and depletion curves while taking into ac-
count independently both the hysteresis effect observed by
Niu and Yang (2007) and the effect of the topography.

2.2.5 DNN (deep neural network)

The architecture used is a deep neural network (DNN) with
three hidden layers each composed of 16, 32, and 16 neurons
using the rectified linear unit (ReLU) activation function for
each neuron (Fig. 1). The input variables are the SD, SWE,
and standard deviation of topography which are each flat-
tened to a single vector through the time and spatial dimen-
sions. The output parameter is the SCF, which is constrained
between 0 to 1 with a sigmoid activation function. The to-
tal number of trainable parameters is 1153, corresponding to
the weights between each layer connection (input parame-
ters, hidden layers, and output layer) in addition to a bias for
each layer. Additional architectures were tested by adding or
removing some layers or neurons, and the best model is pre-
sented here. The objective here is not to find the best possi-
ble architecture but to assess the relevance of using this type
of algorithm to parameterize the SCF. No regularization is
added as it did not improve the results. More details on the
training method are presented in Sect. 2.3.

2.3 Calibration of the SCF parameterizations
2.3.1 Method

HMASR variables are spatially aggregated to 1° x 1° spatial
resolution (typical GCM resolution). Only the seasonal snow
is considered, and the permanent snow areas are masked (see
Sect. 2.1.1). The same procedure is used to compute the av-
erage and standard deviation of the topography (i.e., con-
sidering only the seasonal snow areas). The computation of
the standard deviation is based on the HMASR digital ele-
vation model (DEM) obtained from the Shuttle Radar To-
pography Mission (SRTM) with 1 arcsec resolution and the
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) Global Digital Elevation Model (GDEM,
version 2) product with 1 arcsec resolution for filling gaps
(Liu et al., 2021a). Grid cells containing more than 30 % per-
manent snow are excluded from the analyses. To assess the
resolution dependency of the SCF parameterizations’ cali-
bration, this procedure is repeated at the spatial resolution of
0.3° x 0.3°.

https://doi.org/10.5194/tc-17-5095-2023
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Figure 1. Schematic representation of the DNN SCF parameteriza-
tion. Additional bias nodes for the input and hidden layers are not
represented.

To calibrate the parameterization, we split HMASR into a
“training” period from 1 October 1999 to 30 September 2013
and a “validation” period from 1 October 2013 to 30 Septem-
ber 2017, which represent approximately 80 % and 20 % of
the whole dataset. Equation (9) shows the weighted mean
square error (WMSE) metric used for the minimization. The
weights (w;) were constructed by combining the area of each
grid cell (weighted by the cosine of the latitude) multiplied
by their fraction of seasonal snow (Fig. 2e and f). The op-
timization is performed over the training period considering
flattened arrays over the time and space dimensions.

n

1 — 2
S Zl w; (SCF; — SCFumasR.i) )
—1Wi =

wMSE =

where SCF is the estimated SCF, and SCFymAasr is the tar-
geted HMASR SCF.

Only the LA23 and DNN parameterizations are calibrated
here over HMA. The calibration of NY07, RO1, and SL12
is not presented in this study for two main reasons: (1) it is
not relevant to optimize some parameterizations (e.g., NY07)
because HMASR is not sufficiently representative of “flat”
areas, and (2) large deteriorations or no improvements are
displayed in global simulations (not shown). These points
will be further discussed in Sects. 4 and 6. Only topographic-
related parameters are optimized in LA23.

2.3.2 LA23 calibration

The calibration of the topographic parameters 8 and n used
in LA23 is performed over HMA using HMASR snow-
related variables and its standard deviation of topography.
HMASR SCF is used as a reference. The Nelder—-Mead opti-
mization method is employed (Gao and Han, 2012; Virtanen
et al., 2020b) using Eq. (9) for the minimization. The opti-
mization of these parameters on the training period leads to

The Cryosphere, 17, 5095-5130, 2023
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Figure 2. HMASR topography (a, b), standard deviation of topography (c, d), and weights (e, f) corresponding to the cosine of the latitude
multiplied by the fraction of grid cell with seasonal snow (excluding areas with more than 30 % of permanent snow), aggregated to 1° x 1°
(a, ¢, e) and 0.3° x 0.3° (b, d, f) spatial resolutions. The gray hatched areas correspond to the grid cells with more than 30 % of permanent
snow. The black boxes correspond to the following subregions: Tian Shan (TS), Hindu Kush—Karakoram (HK), Tibetan Plateau (TP), and

Himalayas (HM).

B=3x107% and n = 3, resulting in a wMSE of 0.008 for
both the training and validation periods (Table 1). As a re-
sult, a small weight is given to the topographic term over
flat areas and at the beginning of the snow season, while its
weight increases in a linear way with oypo and in a cubic
way with the snow density (giving much more weight to the
influence of topography at the end of the snow season). As
HMASR reanalysis is not sufficiently representative of flat
areas (see Fig. 2c and d), all other parameters are kept as in
NYO07: z0g = 0.01 m, ppew = S0kgm=3, and m = 1.

2.3.3 DNN training

For DNN, the Adam optimizer (Kingma and Ba, 2014)
is used with the default parameters from TensorFlow
Core v2.7.0 (https://www.tensorflow.org/versions/r2.7/api_
docs/python/tf/keras/optimizers/Adam, last access: 20 April
2022). The DNN is trained with the same loss function de-
fined above (Eq. 9) over 100 epochs (number of times the
algorithm repeats the optimization) with a batch size of 10
(number of training samples used at each iteration for the
stochastic gradient method). After 100 epochs, the gain be-
comes negligible. Inputs are normalized before training (sub-
tracting the mean of each observation and then dividing by
the standard deviation). The optimized weights lead to a
wMSE of 0.005 for both the training and validation periods
(Table 1).
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As the DNN is only trained in the HMA region, it is not
expected to provide good worldwide performances (in partic-
ular over flat areas). Therefore, it will not be used for global
simulation, and its good performance in HMA compared to
the other SCF parameterizations needs to be taken with cau-
tion, knowing that only topographic-related parameters were
optimized in LA23, and no further calibration was performed
for the other parameterizations in this region.

2.4 Models and simulations description
24.1 LMDZORG6A

The GCM configuration used in this study is LMD-
ZOR_v6.1.11 (revision 4914; hereafter LMDZOR6A) in-
cluding the LSM ORCHIDEE v2.0 (Cheruy et al., 2020)
coupled with the atmospheric component LMDZ6A (Hour-
din et al., 2020) of the IPSL GCM (Boucher et al., 2020)
that contributed to the sixth phase of the international Cou-
pled Model Intercomparison Project (CMIP6; Eyring et al.,
2016).

The snow scheme used in ORCHIDEE is presented in
T. Wang et al. (2013). It includes a three-layer scheme
of intermediate complexity based on Boone and Etchevers
(2001), accounting for snow settling, snow compaction, snow
aging, water percolation, and refreezing, and it shows good
skills over the NH (Cheruy et al., 2020). The surface albedo
is computed as the weighted mean of the snow-free and
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Table 1. Details of the optimizations performed in Sect. 2.3 and wMSE of the SCF parameterizations over the training and validation periods

respectively.
SCF Formula(s) Parameters used  Initial Optimized wMSE train
parameterization for optimization  guess parameter val period
; T000-SWE
RO1 SCF = 0.95-tanh (100 SWE) | 1p55:swi et 55 - - 0.017/0.019
_ SD _ _ _
NY07 SCF = tanh (2‘ e e ) 0.032/0.034
SL12 SCFaccuns1 =1 — (1 —s,41)(1 — SCFy), - - - 0.024/0.027
Ninelt
SCFgep1 =1 — [%acos (2 Sg\,\gix - 1)}
LA23 SCF = tanh SD . B.n 3x 10742 3%x1079,3 0.008/0.008
2.5:208 (528 )" -0 )
DNN - 1153 random weights  optimized weights  0.005/0.005
snow-covered surface albedo. Snow cover is computed with feedback, by modifying the « term as follows:
the NYO7 SCF parameterization (Eq. 2), with the ground
roughness length set to 0.01 m, the fresh snow density to
50kg m~3, and the melting factor to 1. Different albedo and o o—0.85
snow schemes are used for ice and lake areas, but these a= 5’ 1 —tanh 0.05 ’ Y

are not taken into account on continental surfaces in LMD-
ZORG6A (except over Antarctica and Greenland) and will not
be considered in this paper.

2.4.2 Atmospheric nudging

The evaluation of SCF parameterizations is usually per-
formed using LSMs forced by atmospheric observations or
reanalyses. However, Gao et al. (2020) show that large uncer-
tainties in forcing datasets over HMA (especially for precipi-
tation) lead to significant biases of snow-related variables. In
this study, we use the coupled LMDZORGOA configuration,
preserving the land—atmosphere feedback. Obviously, land—
atmosphere coupled simulations have their own drawbacks
too. To reduce these uncertainties, a nudging technique is ap-
plied to guide the large-scale atmospheric circulation and re-
duce the atmospheric biases in LMDZOR (Coindreau et al.,
2007). To do so, we add to a given field u of the model a
relaxation towards a guiding state u, according to Eq. (10):

du:—a-(u—ug), (10)
where o = df /7, and 7 is a time of relaxation. ERA-Interim
(Dee et al., 2011) is used for the atmospheric nudging since
it has been widely validated over HMA, and it shows good
skills compared to other reanalyses (e.g., Wang and Zeng,
2012; Bao and Zhang, 2013; Gao et al., 2014; Orsolini et al.,
2019; Lalande et al., 2021). The nudging technique is applied
on the LMDZ wind field and the atmospheric temperature at
the respective time steps of 6 h and 10 d. These nudging fre-
quencies have been chosen as a compromise between ensur-
ing sufficient reduction of the atmospheric biases while not
disturbing the physics of the model too much. The nudging is
relaxed close to the boundary layer to keep land—atmosphere
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where o is a hybrid sigma-pressure coordinate normalized
by the surface pressure.

2.4.3 Simulation configurations

Two configurations are used: one at low spatial resolution
(LR; 2.5° x 1.25°), similar to the resolution for the contri-
bution of IPSL to CMIP6 (Boucher et al., 2020), and the
other at high spatial resolution (HR; 0.5° x 0.5°), with both
79 vertical levels (up to about 80 km above the surface).
The Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010; Danielson and Gesch, 2011) topographic
file at 0.0625° is used in both simulations. The topographic
parameters are computed by overlapping the model grid with
the high-resolution topography file (for more details, see
https://github.com/mickaellalande/SCA _parameterization/

blob/Imdz- zstd-to-condveg/modipsl/modeles/LMDZ/libf/

phylmd/grid_noro_m.F90, last access: 20 October 2023).
Other forcing files are kept by default and are based on
CMIP6 forcing datasets. Both simulations are performed in
the period 2004-2008. The first year is kept as a spin-up, so
only the 4-year period from 2005 to 2008 is analyzed. By
constraining large-scale atmospheric variability (temperature
and dynamics) to be in phase with the observed ones, the
nudging allows us to derive meteorological time series
which can be directly compared to the observations at a daily
timescale (Cheruy et al., 2013). Due to computational costs,
all parameterizations, NY07, RO1, SL12, and LA23 (except
DNN), are applied in the LR configuration, whereas only
NYO07, SL12, and LA23 are used in the HR configuration.
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2.5 Evaluation methods
2.5.1 Metrics

Several metrics, zones, and periods are considered in this
study. For most evaluations, the mean bias (MB), the root
mean square error (RMSE), and the Pearson correlation co-
efficient () are computed as follows:

1 n
=170 =]
1 n
RMSE = mzwi(Mi _0027 (13)
=171 =
M, O
cov( ) (14)

"= Jeov(M, M) -cov(O, O)

1 n
i wi ;

where w; denotes either the weights defined in Fig. 2 (or
only the cosine of latitudes whenever specified) for spa-
tial analyses or w; = 1 for temporal analyses. M; represents
model simulations or estimated values and O; the observed
data, reanalysis, or a reference simulation. The bar above
the symbols (e.g., M) corresponds to the (weighted) mean.
The weighted Pearson correlation coefficient is only used in
Fig. 6, and the MB and RMSE are weighted on all spatial
analyses.

cov(M, 0) = w; (M; —M) (0; = 0),  (15)

2.5.2 Domains

For the validation of HMASR (Sect. 3), three subzones are
defined on the eastern side of the TP (where SD stations are
located): inner TP (ITP; 31-38° N, 79-99° E) corresponding
to a dry, continental climate; eastern TP (ETP; 31-38° N,
99-104° E), mostly affected by the east Asian monsoon; and
central-eastern Himalayas (HM; 26-31° N, 79-104° E), in-
fluenced by the Indian summer monsoon (Fig. 3a) (Bookha-
gen and Burbank, 2010; Palazzi et al., 2013; Sabin et al.,
2020). The common period between HMASR and stations is
considered to be from 1 October 1999 to 31 December 2013.

For the SCF parameterization evaluation with respect to
HMASR (Sect. 4), the whole reanalysis domain is consid-
ered, and four sub-areas are defined: Tian Shan (TS; 40—
45° N, 68-96° E), Hindu Kush—Karakoram (HK; 31-40° N,
68-80° E), Tibetan Plateau (TP; 31-40° N, 80-105° E), and
Himalayas (HM; 26-31° N, 77-104° E) (Fig. 6). The vali-
dation period is used for the analyses (1 October 2013 to
30 September 2017; Sect. 2.3).

For the global simulation assessment (Sect. 5), an ex-
tended HMA domain is used (20-55° N, 60-116° E) to cover
a larger area than HMASR. Additional regions are defined:
central Europe (EU; 30-80° N, 0-20°E), North America
(US; 20-70° N, 85-165° W), South America (SA; 10-60° S,
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60-80° W), and the whole NH excluding the Arctic region
(upper to 60° N; Fig. 9). We split analyses between flat and
mountainous areas with a threshold of 200m of the stan-
dard deviation of topography. The analyses are based on
the 4-year simulation period (1 January 2005 to 31 Decem-
ber 2008; Sect. 2.4).

2.5.3 Seasons

The following seasons are considered in this study — au-
tumn (SON/MAM), winter (DJF/JJA), spring (MAM/SON),
and summer (JJA/DJF) — depending on the NH or Southern
Hemisphere (SH). In addition, an extended DJFMA winter
season is considered for specific analyses whenever it is rel-
evant.

3 HMASR validation

Validation of the HMASR SCF with satellite data would
not be appropriate, as satellite observations (Landsat and
MODIS) have already been used for assimilation in this re-
analysis. Therefore, in this section, we compare HMASR
SD with the in situ stations from the TPDC as described in
Sec. 2.1.2. SD varies greatly at the typical scales from about
10 to 100 m because of snow—canopy interactions, snow re-
distribution by the wind, or small-scale ground asperities to
larger scales due to the influence of the topography inducing
orographic precipitation and subgrid-temperature gradients,
among other phenomena (Liston, 2004). Therefore, we do
not expect to have a perfect agreement between the in situ
stations and the HMASR nearest grid cells (especially since
in situ stations are mostly located in valleys, while HMASR
grid cells overwhelm high-elevation areas). Furthermore, ad-
ditional uncertainties related to the downscaling of the forc-
ing dataset applied in HMASR are expected. To overcome
these limitations, we use a similar method to that by Orsolini
etal. (2019) that consists in averaging all the stations together
in subregions before performing the evaluation. The aim is to
assess the skills of HMASR to represent the main climatolog-
ical features such as the annual cycles and climatologies in
each region.

Figure 3a represents the surface elevation of HMASR and
of the 62 in situ stations (mostly located in the eastern part
of HMA ranging from 1583 to 4612m). On average the
HMASR nearest grid cells are 66 m higher than the station
elevations (differences range from —97 to +999 m). The SD
at the station locations does not exceed a few centimeters
in winter (DJFMA climatology), while HMASR SD reaches
more than 1 m over high mountain areas (Fig. 3c). Hence, in
situ stations measure only a very small fraction of the snow
in HMA.

Figure 3b shows the comparison between the stations and
the nearest HMASR grid cells SD with respect to their ele-
vations. HMASR (crosses) tends to predict higher SD values
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HMASR / in situ station comparison over 1999-2013 (> 90 % temporal coverage and > 1 mm SD in DJFMA)

(a)

HMASR and in situ station elevation

(b) HMASR (+) / station (%)

B 5000 F 3
+ 4
] +
= 4000 =
5 +
S 30001
[}
o
+ ITP
2000 , + ETP
A + HM
T — T T
0 1 2 3
T T T
0 1000 2000 3000 4000 5000 SnowiDepth e
Elevation (m)
(d) HMASR (-) / station (--)
o] — Al (0.96)
—— ITP (0.86)
£, — ETP (0.97)
s —— HM (0.94)
P o
g
8 o
3
o
=
& 1]
0 S
T T T T T T T T T T T T
ONDJFMAMJJAS

2.5 5 71.5 10 20 40 60 80
Snow Depth (cm)
(e) Averaged stations and nearest HMASR grid cell time series
61— staton — HMASR| MB (HMASR - station) = 0.43 cm
5 Relative MB (HMASR - station)/station =/151.04 %
— RMSEji= 0.82 cm
5 41 r=0.60
£
8 34
o [ '
% 21 ‘
5 | l
19 ! 4‘ | L l ‘ (I \ |
O-:‘ ¥y ' L’ i ' \ W I\ L] ” "
h T T T T ! T T T
o [aY) < © oo} o o <
o o o o o - - -
o o o o o o o o
N o (Y] N (Y} (39 N (89

Figure 3. HMASR elevation (a) and DJFMA SD averaged over 1999-2013 (c) compared to the SD stations (circles). The black rectangles
correspond to the subregions: inner Tibetan Plateau (ITP), eastern Tibetan Plateau (ETP), and Himalayas (HM). (b) The 1999-2013 SD

average versus elevation (stations: triangles, nearest HMASR grid cells:

cross; ITP: orange, ETP: green, HM: pink). The straight faded lines

connect the stations to the nearest HMASR grid cells. (d) Monthly annual cycles (stations: dashed lines, nearest HMASR grid cells: solid
lines) averaged in each subregion (same period and colors as panel (c¢)) and in the whole HMA domain in blue. The number in brackets
in the legend corresponds to the Pearson correlation coefficient of the annual cycles between HMASR and the SD stations for each region.
(e) Daily time series averaged across all stations (blue line) and nearest HMASR grid cells (orange line). The MB, relative MB, RMSE, and
Pearson correlation coefficients are displayed on the upper-right side of this panel.

than the stations. The HMASR SD overestimation increases
with the elevation over most of the regions and is particularly
strong over ETP (green), reaching about 1 to 2 cm in annual
average between 3000 to 4000 m. The highest elevation dif-
ferences between the stations and HMASR nearest grid cells
are found in the HM region (pink; reaching more than a few
hundred meters), which could partly explain the SD differ-
ences in this region. The HMASR SD overestimation is also
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found for monthly averaged annual cycles (Fig. 3d), with an
annual relative MB reaching more than 170 % over HM (pink
line) and 150 % on average across all stations (blue line).
The maximum observed values of SD in the in situ stations
are found during the months of February and March reach-
ing 2cm over the HM region and 0.6 cm for ITP and ETP.
Despite the large differences with HMASR SD, a good cor-
relation is observed for the annual cycles, reaching 0.96 on
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average across all stations and being the lowest over ITP with
a value of 0.86.

At a daily timescale, a similar overestimation is found in
HMASR compared to the stations with a MB of 0.43 cm
(Fig. 3e). The daily correlation is lower with a value of 0.60,
which could be due to the fact that the reanalysis struggles
to represent sporadic snow events followed by quick melt-
ing. However, this could be partly explained by the different
scales represented between the 500 x 500 m HMASR grid
cells and the punctual measurements of the in situ stations.

4 Evaluation of the SCF parameterizations

Despite the overestimation of HMASR SD compared to
the stations, HMASR reanalysis is taken as a reference in
this section for the evaluation of the SCF parameterizations.
HMASR SD, SWE, and o), are given as inputs to the SCF
parameterizations to predict the SCF. The estimated SCF is
then compared to the actual HMASR SCF. The potential
caveats of using this reanalysis will be discussed in Sect. 6.

4.1 Seasonal topographic influence on SCF-SD
relationship

Previous studies have shown contrasting results regarding
the influence of the topography on the SCF-SD relationship
(e.g., Niu and Yang, 2007; Swenson and Lawrence, 2012).
This section aims to answer the following questions: (1) is
the HMASR SCF-SD relationship influenced by the topog-
raphy? And (2), are the SCF parameterizations used in this
study able to follow the observed behavior?

Figure 4 displays the 2D histograms of the HMASR SCF
versus SD for consecutive seasons (from autumn to summer).
The first row shows the SCF with respect to the SD using
all HMASR grid cells (excluding areas with more than 30 %
permanent snow). As found by Niu and Yang (2007), a hys-
teresis effect appears between the accumulation period and
the melting phase. SCF increases rapidly at the beginning
of the season (SON; a), reaching close to 100 % for aver-
aged SD values ranging between 10 to 20 cm, which is in
good agreement with the NY07 SCF parameterization (black
curve). During the melting period, the SCF-SD relationship
tends to have a wider spread and flatten out, leading to much
lower SCF values for a given SD (e.g., the SCF can reach
values lower than 50 % for SD higher than 50 cm on average
in a grid cell; panels ¢ and d). The NY07 SCF parameteriza-
tion tends to greatly overestimate the SCF during the melting
phase as compared to HMASR grid points. One hypothesis
of the origin of these discrepancies could be the influence of
the large-scale topography in the HMA region.

To disentangle the effect of topography, the second and
last rows of Fig. 4 split the data into two groups differenti-
ated by a threshold on the standard deviation of the topogra-
phy of 300 m. Most of the grid cells that have a lower SCF
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with respect to the SD during the melting phase are actually
located over mountainous areas (panels j-1). Indeed, temper-
ature vertical gradients, slopes, and aspects induce a strong
variability of temperature close to the surface in mountain re-
gions that translates into snow heterogeneities driven by large
differences in both accumulation and melting rates between
valleys and high mountain areas (Liston, 2004). This behav-
ior confirms the results from Swenson and Lawrence (2012),
suggesting that the NYO7 parameterization is not suitable
for mountainous areas, especially during the melting phase.
However, the HMASR SD overestimation shown in Sect. 3
could also explain part of these discrepancies. Nevertheless,
Miao et al. (2022) obtain similar results with an independent
downscaled SD satellite dataset over HMA, supporting the
importance of the influence of topography.

To assess the ability of all the SCF parameterizations to
reproduce the SCF-SD hysteresis effect and the contrast be-
tween flat and mountainous areas, Fig. 5 displays the dis-
tribution of the SCF with respect to the SD for the differ-
ent parameterizations during the spring (MAM). In general,
the SCF parameterizations show contrasting results, with the
SL12, LA23, and DNN having larger SCF-SD spreads (d—
f), while RO1 and NYO7 ones have narrower SCF-SD evo-
lutions (b and c¢). No noticeable differences are displayed
between flat and mountainous areas for the NY07 SCF pa-
rameterization (i and o), which can be explained by the non-
dependency on the subgrid topography. RO1 shows more dif-
ferences between flat and mountainous areas (h and n), which
is consistent with the fact that it includes a dependency on
the standard deviation of topography, although its SCF-SD
spread is underestimated as compared to HMASR (g and m).
The RO1 SCF parameterization shows poorer results for other
seasons, which might be explained by its single dependence
on SWE that does not allow the hysteresis effect of the SCF—
SD evolution (not shown) to be represented. The RO1 SCF
maximum limiting factor of 0.95 is in good agreement with
HMASR maximum SCF values. On the other hand, SL12,
LA23, and DNN better succeed in representing the wider
HMASR SCF-SD spread during all seasons and in partic-
ular during the melting period over mountainous areas (p—).
In addition, the DNN algorithm also learned about the maxi-
mum SCF asymptotic value.

4.2 Spatial and temporal analyses

This section presents the spatial bias (Sect. 4.2.1) and time
series analyses (Sect. 4.2.2) of the predicted SCF by the pa-
rameterizations with respect to the HMASR SCF during the
validation period (1 October 2013 to 30 September 2017).
Most analyses are performed at 1° x 1° spatial resolution.
The influence of the spatial resolution is assessed at the end
of Sect. 4.2.2.
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HMASR seasonal daily SCF—SD at 1° x 1°
(01/10/1999 to 30/09/2017 with > 30 % permanent snow grid cells excluded)
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Figure 4. Histograms of the daily HMASR seasonal SCF and SD aggregated at 1° x 1° spatial resolution for autumn (SON), winter (DJF),
spring (MAM), and summer (JJA) (first to the last column) during the whole HMASR period (1 October 1999 to 30 September 2017).
(a—d) Histograms based on all grid cells, (e-h) histograms based on grid cells having low topographic variability (otopo < 300 m), and (i—
1) histograms based on grid cells having high topographic variability (otopo > 300 m). Contours represent the logarithm of the number of
points. Black curves correspond to the NY07 SCF parameterization estimated with the average snow density of all points from each panel

(shown in the upper right of each panel).

4.2.1 Spatial bias analysis

This first section presents the HMASR non-permanent SCF
climatologies and the associated SCF biases predicted by
each SCF parameterization (Fig. 6). HMASR climatologies
(first column) exhibit the largest non-permanent SCF over
the HK and TS regions, with local values reaching up to 40 %
on annual average and more than 80 % in winter (DJF). On
the other hand, TP has a much lower snow cover with val-
ues below 20 % in any season. Similar values are found over
HM where snow is much more present on high mountain
peaks and partly as permanent snow. NYO7 SCF parameter-
ization overestimates SCF over HMA compared to HMASR
(+7.5 % in annual average; g), which is enhanced during the
melting period (MAM,; i) and mostly located over mountain-
ous areas (biases reaching more than 40 % locally over HK
and TS regions). A large part of these biases is correlated
with the standard deviation of topography (reaching up to
0.53 in spring; i). The RO1 SCF parameterization shows a
lower annual mean SCF bias of 2.3 % (d). However, it dis-
plays an opposite pattern through the seasons, with a slight
SCF underestimation during winter (—0.8 %; e) especially
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located over TS, and an overestimation during the melting
phase (8.1 %; f). Its consideration of the variation of the to-
pography allows the biases over the mountainous regions to
be reduced as compared to NYO7 (even if they remain partly
present). The SL.12 parameterization shows an overall SCF
overestimation of 9.3 % on average annually (j), reaching a
maximum in spring (4+12.5 %; 1) with respect to HMASR.
Contrastingly, low biases are displayed over mountainous re-
gions (rey,, ~ 0.2), confirming the effectiveness of taking
into account the influence of topography in SCF parame-
terizations. Its spatial biases are mostly located on the TP
— mainly flat areas — reaching up to +40 % locally, which
may be caused by an overestimated precipitation scale factor
k (see Eq. 4) or a deficiency in HMASR to simulate shallow
snowpacks (see Sect. 3).

LA23 and DNN parameterizations display the lowest SCF
biases with respect to HMASR (m-r) (which can partly be
explained by their calibration with it; see Sect. 2.3). They re-
spectively simulate annual SCF mean biases of —2.1 % and
—0.2 % and good spatial distributions (RMSEs of 4.4 % and
2.6 % respectively; m and p). The inclusion of a dependency
on the topography in LA23 (see Eq. 8) drastically reduces
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HMASR MAM daily SCF—SD at 1° x 1°
(01/10/1999 to 30/09/2017 with > 30 % permanent snow grid cells excluded)
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Figure 5. Same as Fig. 4 but only for the melting period (MAM). SCF-SD 2D histograms of (a, g, m) HMASR and (the second to last
column) RO1, NYO07, SL12, LA23, and DNN SCF parameterizations respectively.

the SCF biases in mountain regions compared to NY07. As
a result, the correlation between the spring SCF biases and
the standard deviation of the topography is reduced from
0.53 (NYO07; 1) to 0.03 (LA23; o). However, a SCF under-
estimation appears in winter over the TS region (< —20 %
locally) in both LA23 and DNN parameterizations (n and q).
This raises the potential limitation of considering only SD,
SWE (or snow density), and the standard deviation of topog-
raphy to simulate the SCF, which will be further discussed in
Sect. 6.

4.2.2 Time series analysis

Figure 7 shows analyses related to the SCF time series of
each parameterization and HMASR averaged over each re-
gion. The first column displays the daily SCF time series
over the validation period, the second column their monthly
averaged annual cycles, and the last column their associ-
ated Taylor diagrams (Taylor, 2001). The first and second
columns reveal marked annual cycles for HMASR seasonal
snow cover (black line) in the TS and HK regions (second
and third rows), reaching a maximum in March (between
30 % and 50 % seasonal snow) and then gradually decreas-
ing until August—September when the SCF reaches its min-
imum. Conversely, the TP and HM regions (fourth and last
rows) do not have such a marked annual cycle and show two
maximums — one in November and the other in April-May —
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due to the influence of both the western disturbances and the
Asian summer monsoons. The seasonal snow cover values
do not exceed 20 % and show a much greater daily variabil-
ity (d and m), which can be explained by their geographi-
cal location surrounded by orographic barriers formed by the
mountains around making them much drier regions (Lalande
et al., 2021).

The NYO7 parameterization (orange) overestimates the
SCF in all regions between 10% and 20 % compared to
HMASR (as already shown in Fig. 6), with slightly better
performance over the TP, which can be explained by its rather
flat area. SL12 (green) shows similar performance to NY07
on average over HMA; however, it leads to SCF values closer
to HMASR in the mountainous regions of TS and HK (d, e, g,
h), an improvement probably related to its dependency on the
topography. In contrast, its performance drops over TP, with
a systematic SCF overestimation of nearly 20 % compared
to HMASR. RO1 (blue) is in fair agreement with HMASR
during the accumulation period over most regions but fails to
reproduce the melting phase of the annual cycles with a lag in
the SCF decay compared to HMASR. This drawback is prob-
ably explained by the lack of hysteresis in the SCF-SWE re-
lationship (see Fig. 4). The calibration of the RO1 parameters
does not allow the estimated SCF to be synchronized with the
HMASR annual cycle because it leads to SCF biases persist-
ing either at the beginning or at the end of the snow season
(not shown). LA23 (pink) and DNN (yellow) reproduce the
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Figure 6. Annual (first column) and seasonal (DJF: second column, MAM: last column) climatologies at 1° x 1° spatial resolution of
HMASR non-permanent SCF (a, b, ¢) and non-permanent SCF biases of the RO1, NY07, SL12, LA23, and DNN parameterizations (second
to the last row) with respect to HMASR during the validation period (1 October 2013 to 30 September 2017). The hatched gray areas
correspond to the grid cells with more than 30 % of permanent snow (excluded from the analyses). The black boxes correspond to the
following subregions: Tian Shan (TS), Hindu Kush—Karakoram (HK), Tibetan Plateau (TP), and Himalayas (HM). In (a), (b), and (c) the
weighted mean non-permanent SCF is displayed on the upper-right side of each panel. For the other panels, the weighted MB, RMSE, and
spatial Pearson correlation coefficient () are displayed above each panel, and the spatially weighted Pearson correlation coefficient between
the MB and the standard deviation of topography is displayed in the upper right of each panel (rg,, )-
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Figure 7. The first column represents the daily time series of the non-permanent SCF of HMASR (black), RO1 (blue), NY07 (orange), SL12
(green), LA23 (pink), and DNN (yellow). The second column shows their associated monthly annual cycles. Data are computed as the area-
weighted average of the 1° x 1° grid cells over the entire HMASR domain (a, b, ¢) and over the TS, HK, TP, and HM subregions (second to
the last row). The validation period is used for all panels (from 1 October 2013 to 30 September 2017). The shadings on the annual cycles
correspond to the daily time series standard deviations. The last column represents the Taylor diagrams (Taylor, 2001) of the SCF daily time
series (first column) for each parameterization with respect to HMASR. The radial distance from the origin corresponds to the normalized
standard deviation, the radial distance from the black star corresponds to the normalized centered RMSE (light gray semi-circles), and the
azimuthal position corresponds to the Pearson correlation coefficient. Filled (empty) symbols correspond to the data spatially aggregated to
1° x 1° (0.3° x 0.3°) resolutions, and the symbols’ size is proportional to the mean bias ranges described in the legend.
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HMASR seasonal variations well, despite a slight underesti-
mation of snow cover in the TS region (d and e), as already
shown previously.

The Taylor diagrams (last column; filled symbols) con-
firm what is shown in the first and second columns: LA23
(pink) and DNN (yellow) show the closest SCF evolutions
compared to HMASR (black), resulting in the lowest bi-
ases (< x5 %), high temporal correlation (~ 0.98 except for
TP and HM regions where correlations drop between 0.7 to
0.9), and good daily SCF variability (0.8 to 1.2 of the stan-
dard deviation of HMASR). The SL12 SCF parameterization
(green) shows good performances over the TS region (f), but
it overestimates the SCF over the other regions by about 10
to 20 % (especially in winter). NY(07 (orange) overestimates
the SCF over all the regions by a magnitude similar to SL.12,
but it performs better over the TP (bias ~ 5 %; 1). The daily
temporal correlation is generally higher than 0.9 for all the
SCF parameterizations with respect to HMASR, except for
RO1 for which the correlation is under 0.8 over most of the
regions. The lowest correlations are found over the TP region
with values below 0.8 ().

The non-filled symbols on Taylor diagrams show the per-
formance of the SCF parameterizations at the spatial resolu-
tion of 0.3° x 0.3°, without further calibration of LA23 and
DNN SCF parameterizations. Most SCF parameterizations
(RO1,NY07, and SL12) perform slightly better at 0.3° x 0.3°
compared to 1° x 1° with about 0.01 to 0.03 improvements
of the daily time series correlations. The centered RMSE is
also reduced up to 3% (e.g., NYO7 on average over HMA;
c¢), and the mean biases are reduced by a similar order of
magnitude. No significant improvement or deterioration is
noticed for the LA23 parameterization, suggesting that the
optimized parameters are not very resolution-dependent. The
DNN algorithm, on the contrary, shows deterioration by in-
creasing the resolution with, for example, a centered RMSE
rising from 1.5 % to 2.4 % and a MB from —0.2% to 1.2 %
on average over HMA (c), suggesting that the DNN parame-
terization is more resolution-dependent.

5 LMDZOR simulations

In this section, the SCF parameterizations are implemented
in LMDZORG6A and tested in nudged land—atmosphere cou-
pled simulations (Sect. 2.4). Global simulations are analyzed
either over HMA or globally, considering the mountainous
regions as the areas with a standard deviation of the to-
pography greater than 200 m. Section 5.1 presents an eval-
uation of all the SCF parameterizations (except DNN) at
low resolution (LR; 2.5° x 1.25°) over HMA. Section 5.2
presents a global assessment of the NY07, SL12, and LA23
SCF parameterizations at high resolution (HR; 0.5° x 0.5°).
A comparison of the LR and HR simulations is presented
in Sect. 5.3. Land-atmosphere feedbacks are analyzed in
Sect. 5.4.

https://doi.org/10.5194/tc-17-5095-2023
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5.1 HMA analyses at LR (2.5° x 1.25°)

Figure 8 shows the SCF biases simulated with LMDZOR6A
at LR using the NY07, RO1, SL12, and LA23 parameteri-
zations with respect to the Snow CCI MODIS satellite ob-
servations (whose climatology is shown in the first row)
over HMA in annual average (first column), winter (second
column), and spring (last column). Snow CCI is similar to
HMASR, with large SCF values in the western part of HMA
(Tien Shan, Karakoram, and Hindu Kush), exceeding 50 % in
winter (b), and intermediate SCF levels along the Himalayan
range and over the Nyainq entanglha in the southeast of the
HMA region. It should be noted that in this section the entire
snow cover is analyzed (including both permanent and sea-
sonal snow), whereas HMASR only included seasonal snow
in the previous sections.

The NY07 simulation (second row) displays large SCF bi-
ases, especially in winter, reaching a mean value of +14.8 %
over mountainous areas (hatching) and local maxima exceed-
ing 450 % (in particular on the edges of the TP; e). The RO1
experiment (third row) has lower mean SCF biases ranging
between —1.0% to 3.6 % (depending on the seasons), but
it exhibits a SCF underestimation (overestimation) over the
Tian Shan (TP), which results in a RMSE that is still high
(e.g., 23.6 % in winter; h). The SL12 and LA23 experiments
show slightly better annual and spring SCF spatial distribu-
tions than the RO1 one, with an annual RMSE of 14.1 % and
14.7 % respectively compared to 15.3 % for RO1 (g, j, and m).
However, they show higher biases in winter with similar pat-
terns to the RO1 experiment (h, k, and n). SL12 and LA23 ex-
periments still overestimate the average SCF over the moun-
tainous areas, with annual mean biases of 3.5 % and 3.1 %
respectively and locally reaching more than +40 % (mostly
over the TP edges). During the spring season, RO1, SL12,
and LA23 experiments display reduced SCF biases over the
mountainous areas compared to the NYO7 experiment, with
aMB of 8.8 % for NY07 and MBs of 3.6 %, 3.3 %, and 1.7 %
for RO1, SL12, and LA23 experiments respectively.

These LMDZORG6A simulations show higher biases com-
pared to the SCF parameterizations directly applied to the
HMASR dataset (Fig. 6). These deficiencies are clearly re-
lated to other model biases. One main reason could be the
smoothed topography in the model that would not allow —
despite the nudging — a realistic simulation of the orographic
drag when air masses cross the high mountain ranges (Lott
and Miller, 1997; Beljaars et al., 2004; Y. Wang et al., 2020).
This would lead to an excess of advected moist air over the
TP, resulting in excessive snowfall rates over the TP. Other
model deficiencies are further discussed in Sect. 6.

5.2 Global analyses at HR (0.5° x 0.5°)
The influence of spatial resolution on the simulated SCF in

LMDZORG6A experiments over mountainous areas is inves-
tigated in Fig. 9. The SCF HR model biases computed with

The Cryosphere, 17, 5095-5130, 2023
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Simulated SCF at LR (144 x 142) 2005-2008
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Figure 8. Annual (first column) and seasonal (DJF: second column, MAM: last column) climatologies of the Snow CCI MODIS satellite
SCF observation (bilinearly regridded to the LR grid; a, b, ¢) and SCF biases of the R01, NY07, SL12, and LA23 SCF parameterizations
(second to the last row) computed as the simulated SCF by LMDZOR6A minus Snow CCI MODIS during the 4-year simulations (1 January
2005 to 31 December 2008). In (a), (b), and (c), the mean SCF over mountainous areas is displayed on the upper-right side of each panel.
For the other panels, the area-weighted MB and RMSE and the spatial Pearson correlation coefficient (r) computed over mountainous areas
are displayed on top of each panel. Mountainous areas are shown by the black hatching (otopo > 200 m).

respect to the Snow CCI dataset are shown for the config-
urations based on NY07, SL12, and LA23 and over HMA,
central Europe, and North and South America. The melting
period is considered because this is the season that is the most
impacted by the choice of the SCF parameterization (MAM
for the NH and SON for the SH). The improvements gained
over HMA with the SL12 and the LA23 parameterizations
are similar for HR and LR: the MB of 8.2 % over HMA in the
NYO07 experiment reaches 2.9 % and 1.7 % in the SL12 and

The Cryosphere, 17, 5095-5130, 2023

LA23 experiments respectively (d, h, and 1). However, the
LA23 parameterization induces a SCF underestimation north
of the Tian Shan in Mongolia from about —20 % to —30 %,
and SL12 shows a SCF overestimation over the northern flat
areas of HMA (from about 10 to 20 %), which spans the en-
tire NH, reflecting a late snowmelt (not shown). Overall, LR
and HR simulations display a similar SCF bias during all the
seasons but with patterns showing smaller areas restricted to
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Figure 9. Boreal (MAM) and austral (SON) spring SCF biases cli-
matologies of NYO7 (top panels), SL12 (middle panels), and LA23
(bottom panels) experiments, computed as the simulated SCF by
LMDZOR6A minus Snow CCI MODIS (bilinearly regridded to the
HR grid) during the 4-year simulations (1 January 2005 to 31 De-
cember 2008). The four mountainous regions SA, US, HMA, and
EU are represented in panels (a, e, i), (b, f, j), (d, h, 1), and (c, g,
k) respectively. The area-weighted MB and RMSE and the spatial
Pearson correlation coefficient () computed over mountainous ar-
eas (hatching) are displayed on the bottom left of each panel.

the mountainous regions (which are narrower in HR simula-
tions).

Over the EU region, slight improvements are simulated
by SL12, with a mean bias over mountainous areas vary-
ing from 2.4 % (NY07; ¢) to —1.5% (SL12; g) and RMSE
from 11.8 % to 8.5 %, mainly explained by a reduction of the
SCF overestimation simulated in the Alps with NY07. The
LA23 experiment shows similar improvements over the Alps
but increases the SCF underestimation over the flat areas of
Norway and Sweden (k). More contrasted results are found
over the US and SA regions, as the NY07 parameteriza-
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tion already underestimates the SCF by about —1.0 % (a and
b). Therefore, SL12 and LA23 parameterizations lead to a
SCF underestimation over the SA mountains from —0.8 % to
—1.7% and —2.6 % respectively (e and i) and from —1.0 %
to —4.9 % and —7.9 % over the US mountains (f and j). A
SCF underestimation is also simulated over the northern flat
areas of Canada with NYO07 and LA23 (from about —10 % to
—30 %; b and j), which could be related to a misrepresenta-
tion of the snow in the taiga forest as ORCHIDEE does not
explicitly take the snow—canopy interactions into account.

5.3 LR and HR simulations’ annual cycles

Figure 10 represents the area-weighted monthly averaged an-
nual cycles for each experiment over the NH flat areas and
the NH, US, EU, SA, and HMA mountain areas for the LR
and HR simulations with respect to the Snow CCI MODIS
(black) and AVHRR (gray) satellite observations. Note that
Snow CCI AVHRR exhibits lower SCF than MODIS (by
about 10 % in winter) over most mountainous regions (US:
b, e; EU: ¢, f; SA: h, k) except over HMA (i, 1). Snow CCI
MODIS likely provides a better SCF estimate over complex-
topography areas because of its higher spatial resolution
(1 km) compared to the AVHRR version (5 km). Therefore,
the Snow CCI MODIS product is used as a reference in
the following paragraphs. Nevertheless, the inconsistency be-
tween AVHRR and MODIS highlights the uncertainties in-
herent to observational datasets for SCF.

Overall Snow CCI MODIS shows increasing SCF in au-
tumn before reaching a maximum in winter between Decem-
ber to February depending on the regions in NH, and between
June to August in SH. The highest values of SCF — averaged
over mountainous areas — are found during winter in the US
region, reaching 40 % to 45 % in January (b and e), and the
lowest ones are found in the SA region, with values rang-
ing from 10 % to 15 % between June and August (h and k).
The increase in spatial resolution has only a limited influence
on SCF, except over the EU and the SA mountains, where
greater differences appear (c, f, h, and k). Note that there is
still a slight overall increase in the SCF by a few percent at
HR compared to LR in all mountainous regions, likely be-
cause the grid cells considered with a standard deviation of
the topography higher than 200 m reach higher elevations at
HR than at LR. The differences over the EU mountains are
reflected by an increase in the simulated SCF at HR (f) com-
pared to LR (c) of about +10 %. As a result, there is a shift
from a general SCF underestimation by all the parameteriza-
tions compared to Snow CCI MODIS in the LR simulations
(c) to a SCF overestimation for the NYO7 experiment (or-
ange) and a closer agreement of the SL.12 (green) and LA23
(pink) parameterizations at HR (f) with respect to the Snow
CCI MODIS observations.

This increase in the simulated SCF in the EU mountain-
ous region at HR could be explained by a better represen-
tation of the topography. Indeed, the HR experiments con-
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Figure 10. Monthly SCF annual cycles averaged over the NH flat (a, d) and mountainous areas (g, j) and the US (b, e), EU (c, f), SA (h, k),
and HMA (i, 1) mountain areas for the LR (a—c, g—i) and HR (d—f, j-1) simulations computed as the monthly area-weighted mean over the
simulation period (1 January 2005 to 31 December 2008). All areas under 60° N are not accounted for, as Snow CCI MODIS does not cover
the polar nights. The flat-mountain threshold is o1opo =200 m (resulting in slightly different zones between the LR and HR simulations,
as no regridding is performed before computing the spatial averages). The solid lines represent the SCF and the dashed lines the mean
spatially weighted RMSE. The Snow CCI MODIS and AVHRR satellite observations are displayed in black and gray respectively, and the
simulated SCF using the RO1, NY07, SL12, and LA23 parameterizations is displayed in blue, orange, green, and pink respectively. Note that
the RO1 experiment assessment over that NH flat area (a) is not relevant as we only use the Roesch et al. (2001) mountainous areas’ SCF

parameterization (see Eq. 1).

tain higher maximum elevation grid cells compared to the
LR ones (e.g., reaching 2375 m over the Alps at HR versus
1720 m at LR). This can lead to heavier snowfall at higher
elevations and colder conditions, favoring the persistence of
snow. Similar behavior is observed over the SA mountains (h
and k), with an increase of the simulated SCF between the
LR and HR experiments of about 5 % to 10 %, similarly to
that observed over the Alps — although all the parameteriza-

The Cryosphere, 17, 5095-5130, 2023

tions still slightly underestimate the SCF at HR compared to
Snow CCI MODIS in the SA region (k).

All the experiments show an early spring melt over the US
mountains (b and e). As a result, the reduction of the SCF
induced by the SL12 and LA23 SCF parameterizations over
mountainous areas amplifies these biases (as already shown
in the previous section). It is possible that this region is af-
fected by other model biases as we would expect the NY07
parameterization to overestimate the SCF in the mountains

https://doi.org/10.5194/tc-17-5095-2023
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of the US region, as pointed out by Swenson and Lawrence
(2012). On the other hand, the RO1 parameterization (blue)
underestimates the SCF over most of the regions, except in
HMA (i). The good performance of the RO1 parameterization
in HMA is contrasted with a higher spatial RMSE (dashed
lines) than the SL12 and LA23 parameterizations especially
in spring, reflecting a poorer spatial representation of the
SCF. In general, when biases are reduced for the SL12 and
LA23 parameterizations there is also a reduction in the spa-
tial RMSE.

The NYO7 parameterization simulates the strongest SCF
overestimation in the HMA region reaching almost 20 % in
winter at LR (i). The SL12 and LA23 parameterizations al-
low the SCF biases to be reduced compared to the NYO7
experiment (i and 1); nevertheless, they still overestimate the
simulated SCF by about 5 % compared to Snow CCI MODIS
in this region. This might be due to the excess of SCF around
the TP edges, as already shown in Figs. 8 and 9, and other
model biases that will be discussed in Sect. 6. The inclusion
of a dependency on the topography in the LA23 parameteri-
zation does not affect the mean SCF over the whole NH flat
areas, keeping a skill comparable to NYO7 in these regions
(aand d). LA23 induces a SCF bias reduction over the whole
NH mountain areas that reach on average 5 % to 10 % com-
pared to the NYO7 configuration (g and j), reaching a closer
agreement with the Snow CCI MODIS observations.

5.4 Land-atmosphere feedbacks

The land—atmosphere coupled configuration LMDZORG6A
allows us to study the feedbacks induced by the changes in
the snow cover scheme. Indeed, a slight variation in snow
cover can lead to large differences in variables such as
albedo, surface fluxes, temperature, or precipitation, which
can amplify (or dampen) the initial changes in SCF. To illus-
trate this, Fig. 11 shows the seasonal differences between the
LA23 and NYO7 LR experiments in HMA for the following
seasons: winter (first column), spring (second column), and
summer (last column). From top to bottom, the figure dis-
plays the changes in albedo (a—c), downward and upward in-
frared radiations at the surface (d—i), sensible and latent heat
fluxes (j—0), total cloudiness (p-r), snowfall rate (s—u), snow
water equivalent (v—x), and near-surface air temperature (y—
aa).

The SCF decrease in the LA23 experiment compared to
NYO07 induces a general decrease of the albedo of about 0.1
to 0.2 over the HMA mountainous areas (hatching), espe-
cially in spring during the melting period (b), and up to 0.3
in summer around the Hindu Kush and Karakoram mountain
ranges (c). The reduction in surface albedo must be due to the
fact that the underlying surface typically has a lower albedo
compared to the snow covering it. This reduction in snow
cover and albedo leads to an increase in the net short-wave
radiation absorbed by the surface reaching up to more than
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25 W m~2 in spring and summer, especially around the areas
where the albedo reduction is at a maximum (not shown).

The SCF reduction in the LA23 experiment also induces a
SWE reduction of more than 50 cm especially in spring and
summer in the western Himalayas, which halves the snow-
pack (v—x; see Figs. B1 and B2 in Appendix B for absolute
and relative difference values). In contrast, a slight increase
in SWE can be observed east of the Karakoram and on the
TP (ranging from about 10—40cm). It represents significant
relative differences (up to more than 100 % locally), espe-
cially on TP where the snowpack is thin. This higher SWE
might partly be attributed to an increase in snowfall, espe-
cially over cold and mountainous areas (like the Hindu Kush,
Pamir, and Himalayas), which spans between 0.10 and more
than 0.25 mmd~! (s—u). In turn, this snowfall increase could
be due to the increase in near-surface air temperature induced
by the albedo reduction (y—aa) — as warmer air can hold more
water vapor. However, at lower elevations, the snowfall rate
may decrease because the warming of the atmosphere leads
to more liquid precipitation.

In most areas where the albedo and SWE decrease, there is
an increase in the upward longwave radiation, sensible heat
flux, and latent heat flux (towards the atmosphere), particu-
larly in the western Himalayas in the summer (g—o0). At the
same time, an increase in downward longwave radiation is
simulated in certain areas, especially over the western Hi-
malayas in summer (f), which could be explained by the in-
crease in cloud cover fraction (reaching up to 20 % in sum-
mer over these areas; r).

These results show that quantifying the added value of
changing the snow scheme of a climate model is not straight-
forward because of the large number of land—atmosphere
feedbacks. Nonetheless, the use of the LA23 and SL12 SCF
parameterizations allows the annual cold bias over HMA to
be reduced from —1.8°C (NY07) to —1.0 and —1.2°C re-
spectively compared to the CRU observations (Fig. C1). Im-
proving the representation of the snow cover in mountainous
areas allows therefore the cold bias in HMA to be reduced in
the LMDZORG6A simulations.

6 Discussion

The main limitation of our study is the use of only one type
of snow reanalysis available over only one region, HMA,
to assess and calibrate the SCF parameterizations. The lack
of realistic worldwide snow datasets over mountainous ar-
eas (especially for SWE and SD) does not allow global
SCF parameterization calibrations to be performed with ho-
mogenous observational data (Dozier et al., 2016; Bormann
et al., 2018). Additional snow datasets are required to de-
velop SCF parameterizations (e.g., National Operational Hy-
drologic Remote Sensing Center, 2004; Fang et al., 2022).
Adjusting SCF parameterizations within the model itself is
another option, but it carries the risk of introducing bias com-
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Seasonal feedbacks LA23 - NY07 simulations at LR (144 x 142) 2005-2008
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Figure 11. Seasonal (DJF: first column, MAM: second column, and JJA: last column) differences between the LA23 and NYO07 experiments
(LA23-NYO07) at LR of the following variables (first to last row): albedo (fraction), downward infrared (IR) radiation at the surface (W m_z),
upward infrared (IR) radiation at the surface (W mfz), sensible heat flux (W mfz), latent heat flux (W mfz), total cloudiness (fraction),
snowfall rate (mm d-! ), snow water equivalent (cm), and near-surface air temperature (°C) during the simulation period (1 January 2005 to
31 December 2008). Hatching corresponds to mountainous areas defined with the threshold of otopo > 200 m.

pensations; e.g., a miss of solid precipitation could be partly
alleviated with an excessive SCF or the opposite. The use of
the Bayesian framework of HMASR could also enable pro-
vision of a range of possible parameters instead of a single
optimized value.

Despite significant uncertainties in atmospheric forcing
datasets in mountain regions, especially for precipitation
(e.g., Immerzeel et al., 2015; Lundquist et al., 2019; Gao
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et al., 2020), additional land surface simulations could pro-
vide further insights into the SCF parameterization evalua-
tion by using multiple atmospheric forcing datasets to better
understand these uncertainties (e.g., Bernus and Ottlé, 2022).
This would allow the added value of new SCF schemes to
be quantified independently from the influence of the at-
mosphere. Nonetheless, land—atmosphere coupled simula-
tions have the advantage of providing insight into the land—
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atmosphere feedbacks caused by changes in the SCF parame-
terizations in the model, which is a crucial aspect to consider
in the climate system.

The LMDZORG6A surface biases in HMA are likely am-
plified by surface—atmosphere coupling. Indeed, the IPSL-
CMO6A-LR model exhibits a cold bias reaching —4 to —5°C
in the mid-troposphere which coincides with the elevation of
the HMA region (Boucher et al., 2020, Fig. 3). The atmo-
spheric nudging applied in our study allows this bias to be
reduced to about —1 to —2°C with respect to ERA-Interim
(Dee et al., 2011, not shown). Stronger nudging on the tem-
perature would allow this tropospheric bias to be canceled
but with the risk of disrupting the physics of the model. Nev-
ertheless, the surface bias in HMA is still present with a
stronger temperature nudging (test performed with a 1d time
relaxation, not shown), suggesting a relative independence of
the surface and the tropospheric biases.

Additional uncertainties in the model evaluation could
arise from the Snow CCI observational datasets themselves.
Indeed, despite the linear interpolation applied on the tem-
poral axis to reduce the number of missing data (mostly due
to cloud cover; see Sect. 2.1.3), remaining missing values are
still present, especially over mountainous areas during the ac-
cumulation periods (not shown). Further interpolation meth-
ods could be explored, such as the one used in the MODIS-
derived product MOD10CM (Hall and Riggs., 2021), which
uses a method to favor the presence of snow when clouds are
present, or in Gascoin et al. (2015), which uses a machine
learning algorithm to fill the remaining gaps after doing the
same linear interpolation as in our study. Alternatively, Jiang
et al. (2019) used a four-step cloud removal approach to gen-
erate a cloud-free dataset. In addition, Stillinger et al. (2023)
show that the application of the normalized difference snow
index (NDSI) — which is used in Snow CCI products — shows
certain limitations over mountainous areas, whereas spec-
tral unmixing techniques could provide finer estimates of the
SCEF. Last but not least, the presence of shadows can also
affect the NDSI retrievals (Jasrotia et al., 2022). All these
factors contribute to the uncertainty of SCF retrievals in the
Snow CCI datasets; more observations should be used in the
future to assess the impact of these uncertainties.

The SCF overestimation in our parameterizations com-
pared to HMASR (Fig. 6) could also partly be attributed to
HMASR (in addition to the influence of the topography). In-
deed, this reanalysis tends to produce higher SD estimates
than the in situ stations (Fig. 3), which could lead the SCF
parameterizations to predict overestimated SCF. However, as
discussed in Sect. 3, SD varies greatly at the subgrid scales
from tens to hundreds of meters (Liston, 2004), and snow
pillows and other remote meteorological sites in mountains
usually lie on nearly flat terrain, leading to a poor represen-
tation of snow accumulation and melt rates on nearby slopes
(Dozier et al., 2016). Thus, it is not obvious to determine
whether HMASR does actually overestimate SD relative to
the in situ measurements or if the stations are merely not
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representative of surrounding areas. Furthermore, Miao et al.
(2022) found similar results to those shown in Fig. 6 of the
current paper using an independent downscaled SD satellite
dataset over HMA, supporting the hypothesis that topogra-
phy plays the most significant role in the SCF overestimation
exhibited in these mountain areas.

Additional uncertainties could arise from the original file
used to compute the standard deviation of the topography,
especially due to its resolution. Several sensitivity tests were
carried out using multiple topographic files at different res-
olutions (from about 500 m to 5km) to compute the stan-
dard deviation of topography at 1° resolution. The differ-
ences in the resulting standard deviation of the topography
could reach about 100 m locally (relative differences rang-
ing between 5 % to 20 %). However, these differences led to
SCF variations mostly lower than 1 % on average over HMA
on seasonal climatologies for all the parameterizations tested
here — although they could reach more than 10 % locally at
a given time (not shown). This highlights the limited impact
of the topographical dataset resolution on the estimated SCF
with the parameterizations for climatological studies.

Despite these uncertainties, our results suggest that the
NYO7 parameterization is inappropriate for simulating the
SCF over mountainous areas (Figs. 5, 6, and 7), which con-
firms the Swenson and Lawrence (2012) conclusions over
the United States. The NY(07 parameters could be optimized
with HMASR to improve the SCF parameterization over
HMA; however, this approach has been tested and leads to
large deteriorations of the simulation over flat areas (not
shown). It is therefore necessary to include a dependency
on the large-scale topography independently from the ground
roughness at the local scale. On the other hand, to better ad-
dress the spatial variability of small-scale ground asperities,
a variable ground roughness length parameter (zog) should be
considered instead of using a fixed value (see Eq. 2). Indeed,
one can expect that snow will more easily cover a completely
flat area compared to a rougher one (e.g., covered with rocks
or grasses) for a given SD. This should improve the SCF spa-
tial variability in NYO7 and LA23 over flat areas where the
large-scale topographic variability is not dominating the SCF
distributions.

Our study shows that RO1 parameterization is not able to
reproduce the observed SCF-SD hysteresis (Fig. 5). Its pa-
rameters could also be optimized to better fit the annual cy-
cle, but its sole consideration of the SWE induces a persistent
bias either at the beginning or at the end of the snow season
(not shown). It seems therefore necessary to take into account
the snow density in SCF parameterizations (as in NYO7 or
LA23) or to split the accumulation and depletion curves (as
in SL12) to simulate the seasonal changes in SCF.

The SL12 parameterization better reproduces the seasonal
SCF over mountainous areas, but it exhibits a SCF overesti-
mation over the TP as compared to HMASR (Fig. 6j-1). As
discussed previously, this overestimation could arise from an
overestimated SD in HMASR; however, SL12 also displays
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a SCF overestimation during the melting period in the LMD-
ZOR simulations over most of the NH, which supposes that
SL12 tends to overestimate SCF on flat areas. To mitigate this
effect, the scale factor k (Eq. 4) and other SL.12 parameters
should be calibrated to reduce this late-season SCF excess
over part of the NH and the TP but with the risk of inducing
SCF underestimations in other regions.

Furthermore, our study does not show a clear advantage of
using the more physical depletion curve of the SL.12 param-
eterization compared to the dependency on the snow density
used in LA23 (based on the NY07 parameterization) to sim-
ulate SCF. The SL12 parameterization has the advantage of
splitting the accumulation and depletion curves, which repre-
sent different physical processes, while the NY07 and LA23
ones combine these processes into a single formula. Despite
this difference, both approaches are able to accurately repro-
duce the daily variability of HMASR SCF (Fig. 7).

The deep-learning algorithm (DNN) outperforms the
other SCF parameterizations in comparisons with HMASR
(Figs. 6 and 7). However, the algorithm is trained with
HMASR itself, which partly explains its good skills over
HMA. Poorer results are expected at a global scale as long
as the training is not carried out in other areas. Neverthe-
less, the promising results of the DNN SCF parameterization
show great potential in the use of deep learning to design
such parameterizations. In addition, it could easily help to
investigate the influence of further parameters affecting the
SNOW COVer.

Snow cover actually depends on many other physical pa-
rameters. The subgrid SCF parameterization could include a
dependency on the percentage of the grid cells located above
and below the elevation of the freezing level (e.g., Walland
and Simmonds, 1996). Other factors such as the slope and as-
pect also have a great influence on the SCF distribution (e.g.,
Hao et al., 2021; Helbig et al., 2021); although, at a grid-
cell-size scale of a GCM, the elevation is the prior factor
to be taken into account (Younas et al., 2017). Considering
different land types in the SCF parameterization could also
improve the simulated snow cover, in particular for forested
areas which were not investigated in our study (e.g., Roesch
et al., 2001; Liston, 2004; Mooney et al., 2022).

The simulated SCF reaches higher values than the SCF
estimated from the parameterization directly applied to
HMASR on the TP edges (e.g., Fig. 8, Fig. 6). This may be
caused by the large-scale orographic drag simulated in LMD-
ZOR (Lott and Miller, 1997), which does not take into ac-
count the kilometric-scale topography. Beljaars et al. (2004)
and Y. Wang et al. (2020) showed that this small-scale oro-
graphic drag allows the location of precipitations in atmo-
spheric simulations to be greatly improved. We can there-
fore assume that — despite the atmospheric nudging — an ex-
cess of moisture is flushed to the TP instead of precipitating
down the mountainside. Since SL12 and LA23 parameteriza-
tions reduce the SCF where the variation in topography is the
greatest, if snowfall reaches the flat areas of the TP instead
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of the mountain flanks, the impact of the latter parameter-
izations is limited. Therefore, we can expect further added
values of the SL12 and LA23 parameterizations by imple-
menting an additional scheme for the small-scale orographic
drag in LMDZ that would allow a correct spatial distribution
of snowfall over mountainous areas.

The SCF parameterizations presented in this article could
also reach their limitation over permanent snow and ice ar-
eas. Indeed, over glaciers, for example, large SD variations
can occur within limited areas. However, increasing (de-
creasing) the average SD in the current SCF parameteriza-
tions presented in our study would lead to higher (lower)
SCF over the whole grid cell. Using more complex SCF
parameterizations with the aim to restrict high amounts of
snow to high-elevation areas could overcome this problem,
by including subgrid cells with different elevations for exam-
ple (e.g., Younas et al., 2017; Vernay et al., 2022). Further-
more, current GCMs generally do not include any scheme
for continental glaciers (except for Antarctica and Green-
land ice sheets). Large quantities of snow can be accumu-
lated over continental surfaces in GCMs, until they reach an
arbitrary threshold from which additional snow is simply nu-
merically removed. To address this problem, a coupling be-
tween snow and continental glaciers could be implemented
in ORCHIDEE to avoid unrealistic snow accumulation.

Furthermore, here is a (non-exhaustive) list of other limita-
tions that might impact the simulated SCF in LMDZOR: (1)
the current version of ORCHIDEE averages the albedos of
all surface types before computing a unique surface energy
budget for one grid cell. However, computing separate sur-
face energy budgets for snow-covered and snow-free areas
has been shown to have a great influence on the total surface
energy budget (e.g., Walland and Simmonds, 1996; Swenson
and Lawrence, 2012; Younas et al., 2017). (2) Aerosol de-
position on snow is neglected in the snow albedo calculation
of ORCHIDEE and could explain part of the SCF overesti-
mation simulated in HMA (Usha et al., 2020, 2022a, b). In-
deed, Usha et al. (2020) show that the snow darkening due to
aerosols increases the surface temperature by 1.33 £1.2°C,
which results in the reduction of SCF by 7+ 11 % on average
over HMA (and up to 20 % locally). (3) The albedo of fresh
snow depends on SD and is frequently less than 0.4 for shal-
low snowpack (W. Wang et al., 2020). Such low albedo val-
ues contrast with the high values used in the snow schemes
of land surface models, including ORCHIDEE, which might
lead to a SCF overestimation, especially over the inner TP,
where snow is more sporadic and generally shallow. To sum-
marize, calculating separate energy budgets for different land
types and using a more sophisticated snow albedo scheme
(e.g., Wiscombe and Warren, 1980; Warren and Wiscombe,
1980; Kokhanovsky and Zege, 2004) may help to reduce the
SCF biases simulated by LMDZOR.

Last but not least, modelers should involve further efforts
in developing new parameterizations — or improving and im-
plementing existing ones — to better simulate the subgrid
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processes occurring in mountainous areas, such as the oro-
graphic drag induced by the small-scale topography already
discussed (e.g., Zhou et al., 2018; Y. Wang et al., 2020) or the
subgrid topographical effects on the surface energy budget
which could help to simulate more realistic surface temper-
ature conditions and energy fluxes over complex-topography
areas (e.g., Hao et al., 2021; Huang et al., 2022; Robledano
et al.,, 2022). More generally, De Wekker and Kossmann
(2015) and Serafin et al. (2020) expose the lack of con-
straints for processes in the boundary layer over complex
terrain, in addition to the limited applicability of existing
turbulence theory with the frequent violation of its basic as-
sumptions (e.g., stationarity and isotropy of small-scale tur-
bulence) over mountainous areas. Further theoretical and ob-
servational work is therefore needed to continue improving
model parameterizations in mountain regions.

7 Conclusions

This study investigates the influence of topography on three
SCF parameterizations developed for GCMs, RO1 (Roesch
etal., 2001), NO7 (Niu and Yang, 2007), and SL12 (Swenson
and Lawrence, 2012), and we propose two new parameteri-
zations: one based on NY07, LA23, and the other based on
a deep-learning algorithm, DNN. In the first step, the skill
of RO1, NO7, and SL12 is assessed with the High Moun-
tain Asia Snow Reanalysis (HMASR) over HMA. The two
new parameterizations are calibrated over a training period
with HMASR, and then, all the parameterizations are as-
sessed over a validation period. HMASR is previously eval-
uated against SD stations. In the second step, RO1, NO7,
SL12, and LA23 parameterizations are used in global nudged
land—atmosphere coupled simulations and compared with the
Snow CCI MODIS and AVHRR SCF satellite observations.
The influence of SCF changes on land-atmosphere feed-
backs and the impact of resolution is also addressed.
HMASR tends to overestimate the SD of 0.43 cm com-
pared to local SD observations. It reaches correlations with
the in situ stations of 0.6 for the daily variability and 0.96 for
the monthly annual cycles. It should be noted that SD varies
strongly at the subgrid scale of tens to hundreds of meters
(Liston, 2004); thus it is not obvious to determine whether
HMASR does actually overestimate SD relative to the in situ
measurements or if the stations are merely not representative
of surrounding areas. Furthermore, the SD stations’ eleva-
tions are usually located at lower elevations than the nearest
HMASR grid cells, and their locations only cover a small part
of HMA — mostly in the east — where snow amounts are quite
low and not representative of high-elevation mountains. De-
spite these uncertainties — and because of the lack of better
snow observations (Dozier et al., 2016; Bronnimann et al.,
2018) — HMASR is used as a reference in this study.
HMASR confirms the distinct behavior of the snow cover
variability between flat and mountainous areas over HMA, as
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already pointed out by Swenson and Lawrence (2012) in the
United States, resulting in a faster SCF decrease in mountain-
ous areas compared to flat terrains with respect to the SD, es-
pecially during the melting period (Fig. 4). This phenomenon
can be attributed to the elevation differences between valleys
and mountains, inducing a larger accumulation of snow at
higher elevations. It is also explained by contrasted solar ra-
diations through the influence of local slopes and aspects of
the surface (Liston, 2004). As a result, the NYO7 parame-
terization — which does not include any dependency on the
topography — strongly overestimates the SCF in mountain-
ous areas (> 30 % locally; Fig. 6). Including a dependency
on the standard deviation of topography in SCF parameter-
izations significantly reduces these biases. For example, the
spring SCF bias decreases from 13.8 % in NY07 to —1.0 %
in LA23 on average in HMA.

The hysteresis pointed out by Niu and Yang (2007) in
the SCF-SD relationship with satellite observations is also
observed in both flat and mountainous areas with HMASR
(Fig. 4). This feature is well reproduced with the SL.12,
LA23, and DNN parameterizations but not with the RO1 one,
and the spread of NYO07 is not wide enough over mountain-
ous areas (Fig. 5). Splitting the accumulation and depletion
curves, as in SL12, and approximating this hysteresis with
a dependency on the snow density, as in LA23, are two ef-
ficient ways to reproduce the daily SCF variability and its
seasonal evolution (Figs. 5 and 7).

The promising results of the DNN parameterization sug-
gest a strong potential for deep-learning approaches to de-
sign such parameterizations. Nevertheless, our results sug-
gest that it is more resolution-dependent (Fig. 7), and it may
also be more region-dependent. It could also be used to eas-
ily investigate the SCF dependency on other variables and
parameters, such as the iso-0 level (e.g., Walland and Sim-
monds, 1996), the slopes and aspects (e.g., Younas et al.,
2017; Hao et al., 2021; Helbig et al., 2021), or different land
types (e.g., Roesch et al., 2001; Liston, 2004). The annual
spatial mean bias over HMA, for RO1, NO7, SL12, LA23,
and DNN parameterizations, is 2.3 %, 7.5 %, 9.3 %, —2.1 %,
and —0.2 % respectively, and their spatial RMSE is 7.1 %,
13.6 %, 12.4 %, 4.4 %, and 2.6 % with respect to HMASR.

NYO07,R01, SL12, and LA23 parameterizations were then
tested in global land—atmosphere coupled simulations pro-
duced with LMDZORG6A (ORCHIDEE LSM coupled with
LMDZ, the atmospheric component of the IPSL. GCM). The
simulations were nudged to force the large-scale atmospheric
circulation and temperature variability in LMDZ to be in
phase with the observations (see Sect. 2.4). The spatial dis-
tribution of the simulated SCF biases with respect to the
Snow CCI satellite observations differs from the ones as-
sessed with HMASR. The SCF overestimations are mainly
located around the TP edges in the LMDZOR simulations
with all the parameterizations. SL12 and LA23 allow lim-
ited improvements, whereas they were performing well when
directly applied with HMASR (Figs. 6 and 8). The annual
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spatial mean bias over the mountainous areas of HMA is,
for NO7, RO1, SL12, and LA23 parameterizations, 8.3 %,
1.3 %, 3.5 %, and 3.1 % respectively, and their spatial RMSE
is 19.5 %, 15.3 %, 14.1 %, and 14.7 % with respect to Snow
CCI MODIS. We hypothesized that these differences may be
due to the misrepresentation of the small-scale orographic
drag induced by the mountains in LMDZ, leading to exces-
sive moisture fluxes crossing the TP with a lack of precip-
itation on the mountain southern flanks (Zhou et al., 2018;
Y. Wang et al., 2020). Improving the spatial distribution of
precipitation in LMDZ should lead to further added values in
terms of SCF when using SL12 and LA23 in LMDZOR.

The increase in resolution does not show significant SCF
improvements over HMA in LMDZOR experiments, al-
though biases are narrower around the mountains when re-
fining the resolution (Fig. 9). In some regions the simulated
SCF increases in the HR simulations, likely because the grid
cells reach higher elevations that favor snowfalls instead of
rainfalls and allow a longer persistence of snow (e.g., in the
European Alps and the Andes; Fig. 10).

Globally, the use of SL12 and LA23 parameterizations re-
duces the SCF biases by about 5 % to 10 % on average over
mountainous areas compared to the original NY07 configu-
ration (Fig. 10). Nevertheless, SCF overestimations and un-
derestimations persist in several regions (e.g., HMA, Andes,
and Rocky Mountains). Establishing the causes of these per-
sisting biases is not obvious, especially because many other
processes might be involved in model biases. The reduction
of the snow cover biases — by taking into account the subgrid
topography — leads in turn to the reduction of the surface
cold bias in HMA from —1.8°C for NY07 to —1.0°C and
—1.2°C for SL12 and LA23 respectively (Fig. C1).

The changes in the SCF parameterizations actually involve
many other land—atmosphere feedbacks, such as changes in
albedo, cloudiness, precipitations, or SWE (Fig. 11), show-
ing the complexity of studying and calibrating SCF param-
eterizations. Performing land—atmosphere coupled simula-
tions — in addition to offline land simulations — is crucial for a
better understanding of these feedbacks and to constrain the
SCF parameters.
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Further calibration should be performed over other regions
and with multiple datasets to improve the SCF parameter-
ization skills. Adjusting SCF parameterizations within the
model itself is another option, but it carries the risk of intro-
ducing bias compensations. Designing and tuning SCF pa-
rameterizations is challenging as it requires correct estima-
tions of snowfall and snowpack, which turn out to depend on
the simulated SCF itself in land—atmosphere coupled config-
urations (Fig. 11). Furthermore, the lack of global snow ob-
servational datasets, combining SWE, SD, and/or snow den-
sity as well as snowfall over mountainous areas strongly lim-
its the possibility to develop and validate SCF parameteri-
zations. Overall, further efforts should be conducted to bet-
ter represent the subgrid-scale physical processes that affect
Snow in mountainous areas.
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Appendix A: In situ stations

5119

Table A1l. Description of the 62 in situ stations described in Sect. 2.1.2. Their number, latitude, longitude, and elevation are listed, along

with a comparison to the elevation of the nearest HMASR grid point.

No. Lat Long Station HMASR | No. Lat Long Station HMASR

©) (°) elev.(m) elev. (m) ©) (°) elev. (m) elev. (m)
52787 372 1029 3045.1 3053.8 | 56125 322  96.5 3643.7 3671.3
52978 352 1025 2929.4 2934.8 | 56151 329 100.8 3530.0 35349
56071 346 1025 3105.7 31059 | 56038 33.0  98.1 4200.0 4284.6
56074 340 102.1 3471.4 3477.0 | 56079 33.6 103.0 3441.4 3476.3
56080 35.0 1029 2910.0 2925.6 | 56146 31.6 100.0 3393.5 3352.1
56081 347 1033 2810.2 2789.7 | 56152 323 100.3 3893.9 3913.1
56082 34.6 103.5 2540.3 2632.0 | 56158 314 100.7 3250.0 3211.8
56084 34.1 103.2 2374.2 2599.2 | 56164 323 101.0 3284.8 3387.3
52836  36.3 98.1 3189.0 3188.4 | 56171 329 101.7 3275.1 3271.2
52856 36.3 100.6 2835.0 2812.5 | 56172 319 102.2 2664.4 2843.7
52863 36.8 102.0 2480.0 24829 | 56173 32.8 1025 3491.6 3491.0
52869 36.5 101.6 2667.5 2637.1 | 56182 32.7 103.6 2881.3 3055.1
52877 36.1 102.2 2834.7 2798.7 | 56184 314 103.2 1896.7 2114.5
52908 352  93.1 4612.2 4616.8 | 56185 32.1 103.0 2400.1 2471.8
52943 356 100.0 33232 3302.0 | 56257 30.0 100.3 3948.9 3955.5
52955 35.6 100.7 3120.0 3184.9 | 56357 29.1 100.3 3727.7 3770.1
52957 352 100.6 3148.2 3260.1 | 56374 30.1 102.0 2615.7 2733.4
52968 350 1015 3662.8 3652.8 | 55228 325 80.1 4278.6 4313.6
52974 355 102.0 2491.4 2503.6 | 55248 32.1 84.4 4414.9 4745.1
56004 342 924 4533.1 4537.1 | 55299 31.5 92.1 4507.0 4514.9
56016 339  95.6 4179.1 4184.8 | 55437 303 81.2 3900.0 4899.7
56018 329 953 4066.4 4209.5 | 55493  30.5 91.1 4200.0 4281.2
56021 34.1 95.8 4175.0 4189.1 | 55593 299 917 3804.0 3810.4
56029 330 97.0 3716.9 3729.7 | 55655 28.2 86.0 3810.0 4347.5
56033 349 982 4272.3 42740 | 56116 314  95.6 3873.1 3898.1
56034 338 97.1 4415.4 4429.1 | 56128 31.2  96.6 3810.0 3825.9
56043 345 100.2 3719.0 3716.6 | 56223  30.8 95.8 3640.0 3778.2
56045 340 999 4050.0 4029.0 | 56434 28.6 975 2327.6 2793.7
56046 33.8 99.7 3967.5 39854 | 56444 285 98.9 3319.0 3221.5
56065 347 101.6 3500.0 35139 | 56533 27.8 98.7 1583.3 1552.4
56067 334 101.5 3628.5 3639.8 | 56543 27.8 99.7 3276.7 3277.8
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Appendix B: Land-atmosphere feedbacks

Seasonal feedbacks NY07 simulation at LR (144 x 142) 2005-2008
DJF MAM JJA
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Figure B1. Same as Fig. 11 but for NY07 LR simulation values.
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Seasonal feedbacks LA23 - NY07 (relative to NYO07) simulations at LR (144 x 142) 2005-2008
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Figure B2. Same as Fig. 11 but for relative differences (LA23 — NY07)/NY07.
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Appendix C: Near-surface air temperature bias in LR
simulations

Simulated tas at LR (144 x 142) 2005-2008

Annual

o
Near-Surface Air Temperature (°C)

MB=-17°C RMSE=4.0°C r=096 MB=-27°C RMSE=4.0°C r=0.97

ol

NYO07

MB=-20°C RMSE=3.1°C r=0.98

08

RO1

MB=-1.0°C RMSE=25°C r=0.97 MB=0.1°C RMSE=36°C r=096 MB=-21°C RMSE=3.0°C r=0.98 ro

SL12

4

Bias of Near-Surface Air Temperature (model - obs) (°C)

LA23

Figure C1. Same as Fig. 8 but for the near-surface air temperature with respect to CRU TS version 4.00.
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Appendix D: Implementation of the new SCF
parameterizations in LMDZOR

All the implementation work is available at https://github.
com/mickaellalande/SCA_parameterization (last access: 28
April 2023) under various GitHub branches detailed below.

The standard deviation of the topography is retrieved in
the grid_noro_m.F90 (https://github.com/mickaellalande/
SCA_parameterization/blob/Imdz-zstd-to-condveg/modipsl/
modeles/LMDZ/libf/phylmd/grid_noro_m.F90, last ac-
cess: 30 November 2023) LMDZ file in the variable
zstd_not_filtered (GitHub branch: [lmdz-zstd-to-condveg).
ORCHIDEE offline simulations were not considered. Even-
tually, the standard deviation of the topography should be
processed by ORCHIDEE in order to keep the independence
between the LMDZ and ORCHIDEE models.

The NYO07, LA23, and ROl parameterizations are im-
plemented in the SUBROUTINE condveg_frac_snow
(https://github.com/mickaellalande/SCA_parameterization/
blob/RO1/modipsl/modeles/fORCHIDEE/src_sechiba/
condveg.fO0#L.846, last access: 30 November 2023)
of the ROI (https:/github.com/mickaellalande/SCA _
parameterization/blob/R0O1/modipsl/modeles/fORCHIDEE/
src_sechiba/condveg.fO0#L.846, last access: 30 Novem-
ber 2023) branch. Only the formulations using the
explicitsnow option were modified, which corre-
spond to the ORCHIDEE’s three-layer snow model
described in Sect. 2.4.1 used in this work. NYO07,
LA23, and ROl parameterizations are implemented
between the lines 877-878 (LMDZOR-STD-NYO07)
(https://github.com/mickaellalande/SCA_parameterization/
blob/R0O1/modipsl/modeles/fORCHIDEE/src_sechiba/
condveg.fO0#L.877, last access: 30 November 2023),
880-881  (LMDZOR-STD-LA23)  (https://github.com/
mickaellalande/SCA_parameterization/blob/R0O1/modipsl/
modeles/ORCHIDEE/src_sechiba/condveg.f90#L.880, last
access: 30 November 2023), and 889-896 (LMDZOR-
STD-RO1) (https://github.com/mickaellalande/SCA_
parameterization/blob/R01/modipsl/modeles/fORCHIDEE/
src_sechiba/condveg.fO0#L.889, last access: 30 Novem-
ber 2023) respectively. The SL12 parameterization is im-
plemented in the same SUBROUTINE (https://github.com/
mickaellalande/SCA_parameterization/blob/SL12/modipsl/
modeles/ORCHIDEE/src_sechiba/condveg.fO0#L.912, last
access: 30 November 2023) of the SLI2 (https://github.com/
mickaellalande/SCA_parameterization/blob/SL12/modipsl/
modeles/ORCHIDEE/src_sechiba/condveg.f90#L.912,
last access: 30 November 2023) branch between the
lines 912-966 (https://github.com/mickaellalande/SCA _
parameterization/blob/SL12/modipsl/modeles/fORCHIDEE/
src_sechiba/condveg.fO0#L.912, last access: 30 Novem-
ber 2023). Other versions are available and were used
for tests not presented in this paper. Only the fraction
of snow cover fracsnow,veg has been modified because
LMDZOR _v6.1.11 does not consider any nobio point
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(mainly corresponding to areas of glaciers and lakes not
considered over continental surface, except over Antarctica
and Greenland).

Code and data availability. All scripts to produce the figures
and results are available at https://github.com/mickaellalande/
SCF_param_paper (Lalande, 2023). Python (Oliphant, 2007;
Millman and Aivazis, 2011) version 3.8.5 and xarray version
0.16.0 (Hoyer and Hamman, 2017; Hoyer et al., 2020) were
used to perform the analyses. Interpolations were performed with
xESMF version 0.3.0 (https://doi.org/10.5281/zenodo.3700105,
Zhuang et al.,, 2020). For statistical purposes, Scipy version
1.5.2 (https://doi.org/10.5281/zenodo.3958354, Virtanen et al.,
2020a, b) was used. All graphics were produced using Proplot
version 0.6.4 based on Matplotlib version 3.2.2 (Hunter, 2007)
(https://doi.org/10.5281/zenodo.3898017, Caswell et al., 2020) and
Cartopy version 0.18.0 (https://doi.org/10.5281/zenodo.3783894,
Elson et al., 2020). The Taylor diagrams were produced
thanks to the Python implementation of Copin (2012). For
machine learning purposes, TensorFlow Core v2.7.0 was
used (https://doi.org/10.5281/zenodo.5593257, TensorFlow
Developers, 2021). The LMDZOR code can be accessed at
https://Imdz.lmd.jussieu.fr/pub/src_archives/unstable/modipsl.
20200304.trunk.tar.gz (last access: 28 April 2023). Further de-
tails on the parameterizations’ implementation are presented in
Appendix D.

The High Mountain Asia UCLA Daily Snow Reanalysis, Ver-
sion 1 is available at https://doi.org/10.5067/HNAUGJQXSCVU
(Liu et al, 2021b). The observational snow depth dataset
of the Tibetan Plateau (Version 1.0) (1961-2013) is avail-
able at https:/cstr.cn/18406.11.Snow.tpdc.270558  (National
Meteorological Information Center et al., 2018). The Snow
CCI datasets were download at https://doi.org/10.5285/
8847a05eeda646a29daS8b42bdf2a87c (Nagler et al., 2022)
and https://doi.org/10.5285/3f034f4a08854eb59d58e1fa92d207b6
(Naegeli et al., 2022). CRU TS (Climatic Research Unit gridded
Time Series) version 4.00 is available at http://doi.org/10/gbr3nj
(University of East Anglia Climatic Research Unit et al., 2017).
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