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INTRODUCTION

Modern Windows malware analysis has to cope with a large number of samples that have been steadily increasing for two decades. In 2022, both the AV-TEST Institute and Kaspersky registered over 400,000 new malicious programs daily [START_REF]New Malware[END_REF][START_REF]PCybercriminals attack users with 400,000 new malicious files daily[END_REF]. In order to counter such numbers, research and industry have begun to rely on Machine Learning (ML)-driven malware classification models. They can be applied over a large number of files and offer more flexible classification mechanisms than signature-based methods. Nevertheless, they have to contend with human attackers' imagination, which consistently produces new variants to fly under the radar. At their core, ML techniques capture the statistical correlation between training data and classification targets. As a result, such statistics-based classification models lose their effectiveness when going beyond the knowledge encoded in the training data. Human attackers aware of this limitation can thus always be one step ahead to choose attacks unseen in the training data, in order to evade the detection of ML-based methods. Moreover, ML-based classification models are often performed in a pipeline [START_REF] Han | MalInsight: A systematic profiling based malware detection framework[END_REF][START_REF] Loi | Towards an Automated Pipeline for Detecting and Classifying Malware through Machine Learning[END_REF][START_REF]Hybrid Classification and Clustering Algorithm on Recent Android Malware Detection[END_REF]. For example, given a suspicious file, a typical ML pipeline should first figure out whether it is malicious (binary classification), and then find out whether it belongs to a known family (family classification). Even though these classification tasks achieve high accuracy in previous literature [START_REF] Han | MalInsight: A systematic profiling based malware detection framework[END_REF][START_REF] Loi | Towards an Automated Pipeline for Detecting and Classifying Malware through Machine Learning[END_REF][START_REF]Hybrid Classification and Clustering Algorithm on Recent Android Malware Detection[END_REF]], most of these works have been carried out with unrealistic assumptions, mainly because of how the dataset was constructed.

In addition, a ground-truth of malware families is hard to obtain. Antivirus companies will not likely use the same name for the same family. Although the CARO (Computer Antivirus Research Organization) naming convention has been proposed to mitigate this issue, it still faces usage obstacles. Scientific research tackled this problem and produced AVClass [START_REF] Sebastián | AVclass2: Massive Malware Tag Extraction from AV Labels[END_REF]: given a list of AV labels (e.g., from a VirusTotal JSON report), the tool returns the single most likely family name. However, even if AVClass returns a single family name according to a consensus algorithm by default, it can also output a ranking of all alternative family names. Thus, the problem is that AVClass is often used to carry out studies using its default output as ground truth, even though it is probabilistic in nature.

Moreover, while it is straightforward to collect a high number of samples for popular families, collecting a large diverse malware dataset remains difficult and time-consuming [START_REF] Hyrum | Ember: an open dataset for training static pe malware machine learning models[END_REF][START_REF] Lee | Android malware dataset construction methodology to minimize biasvariance tradeoff[END_REF][START_REF] Pendlebury | TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time[END_REF][START_REF] Michael R Smith | Mind the gap: On bridging the semantic gap between machine learning and malware analysis[END_REF]. In this work, we collect PE malware executables from the VirusTotal (VT) feed [START_REF]VirusTotal API 2.0 Reference: File Feed[END_REF], a real-time stream of JSON-encoded reports of samples submitted to VirusTotal. Despite the appearance of more than 44M VT reports over a period of nearly three months and the collection of 227k samples from 13.8k families, only 780 malware families of those contain at least 100 samples.

To further complicate the matter, malware authors often use offthe-shelf packers and protectors [START_REF] Maffia | Longitudinal Study of the Prevalence of Malware Evasive Techniques[END_REF][START_REF] Miramirkhani | Spotless sandboxes: Evading malware analysis systems using wear-and-tear artifacts[END_REF]. Both modify a program to hinder its analysis while still preserving its original behavior. Based on their design, different malware that undergo the packing or protection procedures may generate executables that share a highly similar structure. This easily makes a ML classifier trained over these malware samples overfit the packed or protected file structure, rather than capturing its true malicious component.

Therefore, in this work, we put considerable effort to create four heterogeneous datasets for a total of 118,111 samples to perform a large-scale measurement study. Three of them are composed of malicious samples with varying numbers of families, while the fourth contains benign samples. We devoted particular attention during the construction of the datasets, trying both to reproduce the datasets usually used in research, but also considering real-world scenarios typical of malware analysis. Such datasets allowed us to create well-controlled experiments for studying how the effectiveness of ML-based binary and family classification change under different testing scenarios.

Finally, there is also another crucial aspect that influences ML algorithms that we further explored: feature extraction. The methods by which one can analyze executable files fall into two main categories, depending on what facets one wants to study, namely static properties and dynamic behavior; nonetheless, the previous two can also be combined. Since we wanted to study existing ML state-of-the-art solutions and not design new ones, we build our static and dynamic feature extraction approaches on what was described in recent papers [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF][START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF]. Therefore, this means that we have statically analyzed and dynamically executed in a sandbox more than a hundred thousand samples were used in this study.

Our work contributes by answering the following research questions for both binary and family classification tasks: ⟨R1⟩ How do static, dynamic, and combined models perform on different malware families/classes in binary and family classification? ⟨R2⟩ On which families and classes of malware does each model fail to produce accurate classification? ⟨R3⟩ What is the contribution of static and dynamic feature classes to the classification performance and does their contribution change when joining the two sets? ⟨R4⟩ Does the presence of off-the-shelf packers and protectors bring harm to classification accuracy? ⟨R5⟩ Do missing feature values in the runtime behaviors negatively impact the classification results? 

DATASET COLLECTION

To conduct our experiments we collected 118,111 Windows PE32 executables, divided in four datasets, as summarized in Table 1. This section describes the process for building those datasets.

Malware Samples

We collect PE malware executables from the VirusTotal (VT) feed [START_REF]VirusTotal API 2.0 Reference: File Feed[END_REF].

The VT feed is a real-time stream of JSON-encoded reports. Each report contains the analysis results of a sample submitted to Virus-Total -including file hashes, filetype, size, and the detection labels assigned by a large number of antivirus (AV) engines. These reports are generated both by new samples submitted by VT users, as well as by user-requested re-analysis of files already known to VT. Samples in the feed can be of various file types (e.g., PE, APK, PDF), but our collection focuses on Windows PE executables. Samples that appear in the feed can be downloaded within 7 days from the moment they appear in the feed. We want our dataset to be as diverse as possible in terms of the number of families, but also to be balanced, so that no malware family is over-represented or under-represented. Our initial target was to collect 1,000 malware families with a hundred samples each. The threshold of 100 samples per family was chosen to have enough samples per family to performing multi-class classification experiments, taking into account that samples are split into 60% training, 20% validation, and 20% testing. However, due to the collection, filtering, and reclassification process described below, we ended up with 670 families satisfying that threshold, as shown in Table 1.

To the best of our knowledge, this is the most diverse labeled malware dataset in terms of families to date. The most recent dataset was Motif [START_REF] Robert | MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels[END_REF] with 454 families. While the number of families in Motif is also large, it is 21 times smaller than our balanced dataset with 3,095 samples, and is unbalanced with a median of three samples per family. Only one family in Motif reaches 100 samples and 29% of the families have only one sample. Such a small number of samples for most families does not allow building an accurate multi-class classifier, as we will show in our evaluation.

Initial collection from VT feed. We collected reports and samples from the VT feed for 82 non-consecutive days between August 2021 and March 2022. We only retained reports of samples detected by at least one AV engine, and with a trID [START_REF] Pontello | TrID -File Identifier[END_REF] filetype identification field (available in the report) equal to '32-bit non-installer PE executable'.

We excluded 64-bit PE executables, dynamic-link libraries (DLLs), and executables generated by popular installer software (e.g., NSIS, InnoSetup). These restrictions are placed by our dynamic analysis sandbox, described in Section 3.2, which currently does not support running 64-bit PE executables or DLLs, and does not interact with GUIs in order to complete the installation of other programs. However, an analysis of the whole VT feed during the 82 collection days shows that from all malicious PE samples in the feed, 87.6% are 32-bit executables, 8.2% are DLLs (32-bit or 64-bit), 3.9% are 64-bit executables, and the remaining 0.3% are other PE types (e.g., OCX, CPL, SCR).

The retained reports are fed to the AVClass2 malware labeling tool [START_REF] Sebastián | AVclass2: Massive Malware Tag Extraction from AV Labels[END_REF], which outputs the most likely family name for the sample as well as a confidence factor that captures the number of AV engines assign that family to the sample (after removing duplicates due to AV engines that copy each other). For each family reported by AVClass2, our system downloaded 100 distinct samples. Each downloaded sample was then checked again to exclude any remaining non-32-bit PE executables and installers that were missed by trID. In particular, samples are removed if their PE header does not indicate they are 32-bit executables, or if they are detected as installers using public Yara rules by Avast [START_REF]Yara patterns of RetDec[END_REF]. As stated, our initial target was to collect 1,000 malware families with 100 samples each. However, when this target was reached, many other families had been collected with less than 100 samples, resulting in an initial dataset of 239,417 PE32 malware samples from 23,555 families.

Reclassification and family filtering. The AV labels of a sample may change over time as AV vendors refine their detection rules. These label changes may in turn change the family that AVClass2 outputs for a sample. To account for such changes, we re-collect the updated VT report for our samples 54 days after the end of our collection process, and feed the new reports to AVClass2 to obtain the (possibly) updated family. From the 239,417 samples, 9.7% [START_REF] Jordaney | Transcend: Detecting Concept Drift in Malware Classification Models[END_REF]171) were at this point re-classified as a different family. AVClass2 uses a taxonomy to identify a wide range of nonfamily tokens that may appear in the AV labels. These include file properties (e.g., FILE:packed:asprotect, FILE:exploit: gingerbreak), malware classes (e.g., CLASS:virus, CLASS:worm), behaviors (e.g., BEH:ddos, BEH:filedelete), and generic tokens (e.g., GEN:malicious, GEN:behaveslike). However, the AVClass2 taxonomy is assumed to be incomplete by design [START_REF] Sebastián | AVclass2: Massive Malware Tag Extraction from AV Labels[END_REF]. Thus, it may output a label for a sample that does not correspond to a real family, but rather to a previously unknown instance of the above categories. To address this issue, we manually inspected the collected family labels and conservatively filtered out any labels that may not correspond to real family names. This step identified 86 likely non-family tokens not in the AVClass2 taxonomy, such as gametool, testsample, nsismod, dllinject, and processhijack. We also removed random-looking labels (e.g., 005376ae) that AVClass2 failed to filter. As a byproduct of our effort, we will contribute our extended AVClass2 taxonomy to the open-source AVClass2 project.

After reclassification and family filtering, the dataset contained 227,296 samples from 13,894 families, out of which 780 families had at least 100 samples. Thus, despite examining more than 44M VT reports over a period of nearly 3 months, we were unable to reach our goal of 1,000 families with 100 samples. This illustrates the difficulty of building a diverse malware dataset.

Feature filtering. We performed static and dynamic feature extraction (as detailed in Section 3) for all samples of the 780 families with at least 100 samples. This required executing each sample in a sandbox to obtain a behavioral report. We discarded 122 samples for which the static feature extraction pipeline failed. The failure reasons were corrupted headers (26 binaries), empty output from the disassembler probably due to obfuscation techniques (95 samples), and the absence of the entry point in one binary. We also discarded samples that did not exhibit any runtime behavior, and sub-sampled families to keep only 100 samples each. The result is a balanced dataset (hereinafter 𝑀 𝐵 ) that contains 67,000 samples from 670 families. According to AVClass2, those families belong to 13 malware classes: 36% (282) of the families are classified as grayware (including its adware subclass), 15% (120) as downloaders, 11% (87) as worms, 10% (78) as backdoors, 5% (41) as viruses, and the remaining 23% (62) includes ransomware, rogueware, spyware, miners, hacking tools, clickers, and dialers.

Dataset statistics. Over 93% of the samples in the 𝑀 𝐵 dataset are detected by at least 20 AV engines, while only 0.3% have a VT score less or equal to 3. It is worth noting that the minimum number of detections for samples in the dataset is two since AVClass2 requires at least two AV engines to assign a label to a sample. Samples on the VT feed can be new (i.e., collected and scanned for the very first time by VT) or resubmitted (i.e., first submitted in the past but rescanned on the day they were collected). We compute the freshness of samples in the 𝑀 𝐵 dataset as the number of days between a sample's collection date and its VT first seen date. We observe that 53.4% of the samples were collected within a day of being first observed by VT, 7.6% within a year, and 37.8% are old samples first seen over one year before our study.

Packer and protector detection. To hamper analysis, malware authors may use packers that compress a sample and de-compress it at runtime, as well as more sophisticated protectors that may combine different obfuscations such as packing, encryption, and code virtualization. To evaluate the impact of packers and other protectors on malware classification, we determine whether a sample uses an off-the-shelf packer or protector by using the signature-based Detect It Easy (DIE) [START_REF]Detect-It-Easy[END_REF] tool, as well as the well-maintained Yara rules of Avast RetDec [START_REF]Yara patterns of RetDec[END_REF]. Overall, 22% of the samples in 𝑀 𝐵 use a packer or protector. The most popular packer is upx detected on 14.0% the samples, followed by aspack (3.2%) and pecompact (1.0%). The most popular protectors are vmprotect (1.9%) and asprotect (0.4%).

Testing Datasets

We create two other disjoint malware datasets, which we use in Section 4 to test the ability of ML classifiers to generalize beyond the 𝑀 𝐵 dataset they were built upon. The first dataset, referred as Malware Unbalanced (or 𝑀 𝑈 ) in Table 1, contains 18K samples from 1.5K families. These samples were part of the initial VT feed collection, passed the filtering and re-classification steps, but their families never reached the threshold of 100 samples and thus were excluded from 𝑀 𝐵 . All samples are detected by at least 20 AV engines and none of the samples nor their families are part of 𝑀 𝐵 .

The second dataset, Malware Generic (𝑀 𝐺 ), contains 16.5K samples for which AVClass2 was unable to output a family, due to AV engines using only generic labels. These samples were separately collected from the VT feed between June 23rd and July 6th 2022 and underwent the filtering steps to keep only 32-bit non-installer PE executables. All samples are detected by at least 20 AV engines and none of the samples are part of 𝑀 𝐵 .

Benign Samples

Building a benign dataset by just relying on the number of AV detections in the VT report is prone to errors due to the presence of malicious files that are still unknown to AV engines. Therefore, we took a more conservative strategy and decided to build a benign dataset by using a fresh installation of all the communitymaintained packages of Chocolatey [2] (which undergo a rigorous moderation review process to avoid pollution) in a clean machine running Windows 10. After each package was installed, we extracted all the executable files present on the hard disk, which may correspond to Windows system files or third-party publishers.

We exclude files that are not 32-bit PE executables and those with more than three detections on VT. This allowed us to discard borderline cases, i.e., benign files with characteristics very similar to malware, like hacking and scanning tools. Using this procedure we collected a dataset 𝐵 of 16,611 benign samples. The code signatures of those samples indicate a large diversity of publishers with over 1.4K different signers -including both small companies and large software publishers such as Microsoft, Oracle, and Google.

METHODOLOGY

Our work aims to answer the 8 research questions raised in the introduction. Notably, we aim to explore the performances of MLdriven malware classifiers that use features extracted statically, dynamically, or a combination of both with varied coverage of malware families and changed volumes of training samples. Developing novel ML-based malware classification models is beyond the scope of our study. Instead, we focus on discussing and evaluating the analysed issues using state-of-the-art ML models for malware classification. As explained next, we use features presented in previous works [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF][START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF][START_REF] Han | MalInsight: A systematic profiling based malware detection framework[END_REF][START_REF] Huang | MtNet: A Multi-Task Neural Network for Dynamic Malware Classification[END_REF]. This imposes a limitation as other features could provide better results.

Static Features

Hojjat et al. [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF] performed a literature review to identify the static features that carry the most useful information for binary classification. We implement their feature extraction methodology to extract the same classes of static features. Similar to Hojjat et al. [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF], we do not attempt to unpack the executables and perform the same feature extraction regardless of whether the files are packed or not.

The upper half of Table 2 summarizes the static feature classes (prefixed by s-). The s-headers class captures 29 integer features ( [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF]) from the Optional and COFF headers of the executable [START_REF]PE Format[END_REF]. The s-sections class captures 590 Boolean features from each section in the executable ( [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF]). The s-file features capture the file size in bytes and the whole file Shannon entropy [START_REF] Lyda | Using entropy analysis to find encrypted and packed malware[END_REF]. For the remaining 5 feature classes the exact number of features may differ from those reported by [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF] because they undergo a dataset-dependent feature selection step that retains only the features that show variability or that provide higher information gain (IG) [START_REF] Quinlan | Induction of decision trees[END_REF]. For instance, in s-bytegrams and s-opcodegrams, the selection process enumerates all values observed in the validation set (20% of samples in 𝑀 𝐵 ), excludes rare values appearing in less than 1% of the samples, computes IG, uses the elbow method to identify a threshold value for IG, and only retains features with at least that threshold IG. As in [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF], for s-dll, s-imports, and s-strings, the selection process only excludes rare values, but does not select an IG threshold.

The s-dll and s-imports class contain Boolean features extracted from the import table (imported libraries in case of s-dll and imported functions for s-imports). We extracted 637 unique libraries and 28,667 functions and retained only those that appear in at least 1% of the files in the validation set, reducing the number to 131 DLLs and 3,732 library functions. Similarly, for the s-strings class, we extracted 106,352,885 strings of at least 4 characters, filter those that appear in over 1% of the files, and kept 10,402 Boolean features capturing whether the string appears or not in the binary. The s-bytegrams class captures the presence of selected 4-grams, 5-grams, and 6-grams. As proposed in [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF], to keep memory usage manageable, the selection process for this feature class is performed on 1,000 randomly chosen files from 𝑀 𝐵 , instead of the full validation dataset. From the 1,363,150,788 s-bytegrams extracted, the selection retained the 13,000 features with the highest IG ( [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF]). The s-opcodegrams class captures 1-gram, 2-grams and 3-grams from the sequence of opcodes disassembled using Capstone [START_REF]Capstone -The ultimate disassembly framework[END_REF]. Given an initial set of 255,812 opcode n-grams, we computed the TF-IDF and used the elbow method on the IG distribution to retain the top 2,500 float features ( [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF]).

Sandbox

We have built a sandbox for executing malware using the best practices proposed by previous works [START_REF] Maffia | Longitudinal Study of the Prevalence of Malware Evasive Techniques[END_REF][START_REF] Miramirkhani | Spotless sandboxes: Evading malware analysis systems using wear-and-tear artifacts[END_REF][START_REF] Rossow | Prudent practices for designing malware experiments: Status quo and outlook[END_REF][START_REF] Miuyin | An Inside Look into the Practice of Malware Analysis[END_REF]. We configured a Windows 10 Pro 32-bit virtual machine (VM) with 2 CPUs (Intel Xeon Platinum 8160 @ 2.10GHz) and 2 GiB of RAM. We installed popular apps and populated the file system with common file types to resemble a legitimate desktop workstation as suggested by Miramirkhani et al. [START_REF] Miramirkhani | Spotless sandboxes: Evading malware analysis systems using wear-and-tear artifacts[END_REF]. Malware runs on clones of this VM orchestrated using Proxmox VE [6]. To improve performance, we stored all virtual disk images and VM snapshots in a RAM disk. As recommended by Rossow et al. [START_REF] Rossow | Prudent practices for designing malware experiments: Status quo and outlook[END_REF], each machine runs on its isolated local network with full Internet access through an ADSL line of our institution dedicated to this purpose. Recent works have measured that 40%-80% of modern malware use at least one evasive technique [START_REF] Galloro | A Systematical and longitudinal study of evasive behaviors in windows malware[END_REF][START_REF] Maffia | Longitudinal Study of the Prevalence of Malware Evasive Techniques[END_REF]. To limit the impact of such evasions, we base our analysis on the Intel PIN-based JuanLesPIN tool [START_REF]JuanLesPIN[END_REF][START_REF] Maffia | Longitudinal Study of the Prevalence of Malware Evasive Techniques[END_REF], which handles common evasive techniques, thereby increasing the likelihood that malware detonates. Unfortunately, it does not support 64-bit Windows executables, so we focus on 32-bit malware. We modified JuanLesPIN to monitor Windows APIs responsible for network, processes, services, registry, mutexes, file system, and DLL loading. Finally, we tested our analysis environment with the Al-Khaser [START_REF]LordNoteworthy/al-khaser[END_REF] tool to confirm that our sandbox could not be identified. To measure the overhead introduced by our analysis system we executed 1,000 malware samples randomly chosen among those that: (i) terminate the execution, (ii) use at least one evasive technique, and (iii) detonates according to the threshold proposed in [START_REF] Kuechler | Does Every Second Count? Time-based Evolution of Malware Behavior in Sandboxes[END_REF], i.e., the sample calls at least 50 Windows APIs. We measured their execution time with and without instrumentation by observing a percentage increase of 𝜇 = 125, 𝜎 = 31, 𝑚𝑖𝑛 = 26, 𝑚𝑒𝑑 = 106, 𝑚𝑎𝑥 = 206. This overhead is in line with that in [START_REF] Maffia | Longitudinal Study of the Prevalence of Malware Evasive Techniques[END_REF]. Kuechler et al. [START_REF] Kuechler | Does Every Second Count? Time-based Evolution of Malware Behavior in Sandboxes[END_REF] recently showed that the amount of code executed by malware samples plateaus after two minutes, and little additional information can be obtained thereafter. Thus considering the overhead mentioned above, we took a conservative approach and ran each sample for up to five minutes.

Dynamic Features

We extract 7 classes of dynamic features from the API calls (including their arguments) invoked by the malware during execution in the sandbox. The features were chosen to cover those used in previous works that built classifiers from malware executions (e.g., [START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF][START_REF] Han | MalInsight: A systematic profiling based malware detection framework[END_REF][START_REF] Huang | MtNet: A Multi-Task Neural Network for Dynamic Malware Classification[END_REF]).

The lower half of Table 2 summarizes the 7 dynamic feature classes (prefixed by d-). Categorical features such as filenames and domains are one-hot encoded to Boolean features. To encode each feature, we count all its possible values and exclude those appearing less than five times in the training set. The d-network class (438 features) captures the HTTP, TCP, and UDP traffic. Of those, 430 features capture unique domains contacted by the malware and HTTP User-Agent strings used; three count the number of HTTP requests, TCP connections, and UDP pseudo-sessions; and 5 randomnessrelated features capture the mean/median/min/max/std likelihood of domain names and URLs contacted according to a recently proposed Markov Chain model [START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF]. The d-file class features (60,555) capture the name and extension of 60,547 files created or accessed by the malware, the number of files read, written, and deleted; and 5 capture the randomness of the filenames. The d-mutex class features [START_REF]Yara patterns of RetDec[END_REF] capture the number of mutex objects created and the randomness of the mutex names. The d-registry class features (60) capture 55 unique registry keys written, and the count of registry keys created, opened, read, written, and deleted. The d-service class features (736) capture the count, randomness, and names of services and service managers created, started, and halted. The d-process class features [START_REF] Kuechler | Does Every Second Count? Time-based Evolution of Malware Behavior in Sandboxes[END_REF]198) capture the count of processes created, processes terminated, and shell commands invoked, as well as 28,195 unique process names. The d-thread class features [START_REF]Yara patterns of RetDec[END_REF] capture the number of the threads opened, created, resumed, terminated, and suspended, as well as the number of the interactions with the context of a given thread and the number of asynchronous procedure calls (APC) queued to a thread. The last two features help capture suspicious behaviors.

Missing features. When a dynamic feature cannot be computed (e.g.,due to lack of activity), we assign them default place-holder values that do not belong to the domain of the features. We refer to such features as missing features. For example, if a sample has no file system activity, we cannot compute the d-file filename randomness features. As a result, the 5 statistical features related to the randomness of the file names are thus not available. We perform dynamic feature extraction only over detonated malware samples (i.e., those that called at least 50 APIs as defined in 3.2), but even for detonated samples, there are still missing observations of feature values. To facilitate the analysis of the impact of the missing features, we define the feature missing rate (FMR) of a malware family as the fraction of family samples that have missing values in the file, registry, service, and process features (which, among the seven dynamic features classes we consider, are the most relevant for classification according to Table 5). Missing values over all these four feature classes considerably degrades both the amount and quality of useful information available to the classifier. According to our analysis, over 54% of the malware families studied in our work contain on average 77% of the malware samples per family with missing feature values in these four dynamic feature classes. Missing observations can negatively impact ML classifiers by overfitting the data and reducing the model's accuracy. Recently, Aonzo et al. [START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF] showed that classifier models tend to focus on static features, rather than dynamic ones, precisely because static features are rarely missing. In Section 4.2 we analyze the impact of missing features in the classification results.

Models

We train multiple models to capture different axis: classification task (i.e., binary or family classification), features (i.e., static, dynamic, combined), classifiers (i.e., Random Forest, XGBoost), dataset construction (i.e., distribution of families in training dataset), and a different number of families and samples.

Classification task. We build models for binary and family classification tasks. The binary classification models detect whether a given sample is malicious (positive class) or benign (negative class). The family classification models identify the family of a given malicious sample, that is, there is one class per malware family and no goodware class. We prefix the name of a model with binaryor familyto indicate the classification task.

Features. We build models that use all static features, all dynamic features, and all combined features (i.e., all static and all dynamic). The name of a model includes -static-, -dynamic-, or -combinedto indicate the features used.

Classifiers. Given a large number of ML classifiers, it is not possible for us to systematically evaluate all of them. In our experiments we selected Random Forest and XGBoost because they are consistently among the best-performing classifiers evaluated in previous works (summarized in Table 9 and Section 5). Moreover, being tree-based, they are easier to interpret, they allow direct analysis of feature importance, and they are also intrinsically capable of handling both categorical features (e.g., unique filenames accessed during execution) and continuous features (e.g., filename mean randomness). We also considered neural networks, but discarded them because to achieve good performance they require larger training datasets (e.g., ≥ 400𝑘 samples in [START_REF] Raff | Malware Detection by Eating a Whole EXE[END_REF]). It was not clear whether we could build a balanced family dataset of the required size. In addition, there exist many potential neural architectures to evaluate and their training times are longer, which is critical given the large number of models we evaluate.

Dataset construction. For the binary classification task, we experiment with two ways of building our dataset, namely uniform and not nonUniform. The uniform approach builds datasets that balance the number of goodware and malware, using a samplingwith-replacement approach, as follows. We uniformly select from each family in 𝑀 𝐵 a number of samples so that the total number of malicious samples matches the size of the benign dataset (i.e., each family in 𝑀 𝐵 provides 24-25 samples for a total of 16,611 malware samples). We repeat the process five times avoiding repetitions (i.e., each time selecting a different set of malware samples from each family in 𝑀 𝐵 ), to completely cover all the malicious samples in each family. These steps produce 5 balanced datasets. Each dataset is split into 60% of samples for training, 20% for validation (i.e., selecting the classifier hyper-parameters), and 20% for testing. To evaluate a model, for each of the five datasets, we perform a 10-fold cross validation to ensure that all the samples equally contribute to the training and testing datasets. We report average results across the five rounds and their respective folds. Thus, obtaining the accuracy results from one model requires us to train and test 50 times.

The nonUniform approach replicates the unbalanced distribution of samples per family in the Motif dataset [START_REF] Robert | MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels[END_REF]. The motivation for this dataset is to study whether the family distribution in the training set of a binary classification task (where family labels are not used) affects the detection accuracy. In Motif, 29% of families have only one sample, 41% have 2-5 samples, 12% 6-10, 10% 11-20, 4% 21-30, 2% 31-40, 1% 41-50, and 1% has over 142 samples. We replicate this distribution on the 670 families in 𝑀 𝐵 . For example, we select one sample from 29% (randomly-chosen without replacement) of the 670 𝑀 𝐵 families and 142 samples from one randomly-chosen family. The resulting dataset comprises all 16,611 benign samples and 4,821 samples from 670 families that follow the per-family sample distribution in Motif.

Number of families and samples. To measure the impact that the number of families to classify and the available samples for each family have on the results, we build multiple ML-based classifiers for the family classification task by uniformly sampling 70, 170, 270, 370, 470 and 570 families from the total 670 families. For each of them, we also experiment with a version trained and tested on 50, 60, 70, and 80 malware samples for each family. As indicated above, we have 20% samples used as the validation data. Therefore, at maximum, there are 80 malware samples for training and testing use.

EXPERIMENTAL STUDY

This section presents the results of the experiments we conducted to answer the research questions presented in the introduction. We have adopted the following structure for ease of reading: the reader will find the discussion to ⟨Rx⟩ in Section 4.x and a summary with the answer ⟨Ax⟩ at the end of each subsection.

Overall Classification Results

In this section, we examine how static, dynamic, and combined features impact binary and family classification. In this version, we only discuss the results using Random Forest. We refer the reader to our extended report [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF] in which we also report the performance when adopting XGBoost and the reasons behind the choice of the first architecture. Table 4 summarizes the accuracy results using Random Forest. The results correspond to the uniform dataset construction approach. Each line in the table reports the averaged precision, recall, and F1 score of 10-fold cross validation. It also reports the fraction of malware families with 100% family-wise accuracy. In binary classification, 100% family-wise accuracy for a family denotes that the family can be perfectly differentiated from goodware. In family classification, 100% family-wise accuracy instead means that samples from a malware family are not misclassified as another malware family. The static features achieve a higher F1 score than the dynamic features in both binary and family classification. However, the fraction of perfectly classified malware families is higher for dynamic features, suggesting that dynamic features work very well for some malware families, but poorly on others. The combination of static and dynamic features brings marginal improvements in F1 score over static-only features. It improves it by 1% for family classification, but decreases it by 2% for binary classification. On the other hand, adding dynamic features increases the percentage of perfectly classified families over the static case, although for binary classification the fraction reduces compared to dynamic-only features. The accuracy reduction with more features might seem counter-intuitive, but it can happen when the two feature sets are not independent and bring different strengths and weaknesses that lead to mistakes on different parts of the input space. It is well known as the curse-of-dimensionality in machine learning [START_REF] Trunk | A Problem of Dimensionality: A Simple Example[END_REF]. Adding more features does not necessarily improve the overall accuracy, more features may bring unexpected variance and noise into the classification module [START_REF] Chin | Comparative Study on Feature, Score and Decision Level Fusion Schemes for Robust Multibiometric Systems[END_REF].

Our results may raise concerns about the value of dynamic analysis. On the one hand, dynamic features outperform static features for a fraction of families, significantly raising the number of perfectly classified families (e.g., nearly doubling it for binary classification). This confirms the value of dynamic analysis, for example when researchers are interested to build behavioral signatures for specific malware families. On the other hand, the overall impact of adding dynamic features to static features is unclear. This might be the consequence of malware families for which dynamic features do not work well, because of intrinsic properties of the malware family (or malware class), but also because the sandbox might fail to stimulate samples adequately (e.g., due to evasion techniques or to the lack of a live command-and-control server). Adding dynamic features to the models may still provide other benefits. For example, recent work has shown that dynamic features are preferred by humans for interpretability [START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF]. Furthermore, dynamic features can increase the robustness of the model, making it more resilient to obfuscations designed to hamper static analysis.

Time-aware experiments. To avoid the temporal bias that crossvalidation may introduce, Pendlebury et al. [START_REF] Pendlebury | TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time[END_REF] suggested to split training samples into temporal bins. However, since our dataset only contains 100 samples per family, the individual bins would be too small and thus we decided to not perform temporal binning. Instead, in Section 4.8 we perform a separate out-of-distribution (OOD) evaluation with unseen families and singletons not present in the training dataset, which addresses the main bias that crossvalidation introduces.

⟨A1⟩ For both binary and family classification tasks, models trained on static features alone provide higher accuracy than the models trained only on dynamic features. The latter is able to perfectly classify more families, but perform poorly on others, producing an overall lower classification accuracy. Adding dynamic features on top of the static features brings marginal accuracy improvement for family classification and even negatively affects binary classification. On the other hand, dynamic features may offer benefits for model robustness and interpretability.

Hard-to-Detect Malware

This section analyzes which malware classes and families pose a greater challenge for classifiers based on static and dynamic features. Note that our multi-class classification models are for families. We only use here the coarser malware class (e.g., virus, worm) to draw conclusions on similar families.

Table 3 shows Recall and F1-scores for each malware class in binary and family classification respectively. In binary classification, the recall value is defined as the number of correctly classified samples in the class over the total number of samples in the class. The numbers differ from those in Table 4 because Table 3 only considers the classification results of malware samples, while covers the classification of both goodware and malware samples (thus taking also false positives into account).

As we can see, the recall and F1 score are not uniform across all classes and can widely vary depending on the task and the features used. Static features are considerably better at detecting downloaders, dialers, and worms. In contrast, dynamic features perform better on rogueware, miner, and ransomware.

These results are confirmed also if we look at individual families. We show in Table 6 of our extended report [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF] the 10 families with the lowest accuracy in both classification tasks using static and dynamic features. For instance, among the 10 malware families for which the static classifier makes more mistakes, we count four viruses (i.e., file infectors) and six grayware. This is even more remarkable if we consider the fact that there are only 40 families of Viruses in our entire dataset. The fact that viruses typically append their code to benign files results in a wide variation in terms of static features among samples of the same family, and this can explain why it is hard for a static classifier to differentiate them from goodware and from other families. Similarly, grayware is defined as undesirable code, which is not outright malicious per se, therefore making it difficult to find a clear boundary to isolate these families. In the worst 10 families using dynamic features, we can observe a similar pattern: grayware and viruses dominate the list. Besides, adware and spyware are also among the worst families. Malware samples in each of the classes have similar behaviors.

⟨A6⟩ Models employing static features find it more difficult to classify grayware and viruses. Dynamic features can identify ransomware, spyware, and adware as malware, but they have great difficulty in properly identifying their families, probably due to very similar runtime behaviors of different families in these classes.

Feature Class Importance

This section examines the importance of the static and dynamic features for binary and family classification using a Random Forest classifier. We measure feature importance using the average Mean Decrease Impurity (MDI) score. In a tree-based classifier, the MDI score of a feature captures how often the feature was used in the tree. The more a feature is used, the more important it is to distinguish different classes. For feature classes, we average the MDI Score across all the features belonging to the same feature class and over all the trees in the Random Forest model.

Feature classes. Table 5 summarizes the feature class importance. Overall, static features are ranked higher than dynamic features, especially for family classification. This matches results in Section 4.1 where dynamic features provide marginal improvements over static [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF]. On the other hand, the most contributing dynamic feature classes for both classification tasks are d-file and d-process. It is interesting to note that even expert human analysts used widely file and process operations to identify malicious behaviours [START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF].

In our dataset, over 50% of the malware samples contain missing features values in the d-network and d-service feature classes, thus missing feature values is likely the reason for their low importance. We evaluate this in Section 4.5. It is interesting that d-registry ranks second for binary classification, but only 10th for family classification. This means that registry operations are useful to differentiate malware from goodware, but they do not provide enough diversity to separate different malware families. This likely happens because multiple malware families operate on the same registry keys such as those related to achieving persistence (e.g., auto-start) and those that disable OS security features. In contrast, goodware does not need to operate on those keys.

Individual features. The most contributing static feature classes are s-bytegrams and s-opcodegrams, but their individual features are hard to interpret. For binary classification, the top 10 s-strings features capture 5 API names (exit, CreateThread, cexit, CopyFileA, WinExec), one section name (.idata), one module name (MSVCRT.dll), a string possibly related to the .NET runtime (<assemblyIdentity), and two short strings with unclear meaning (:0806, L$ H ). The top s-sections features capture section entropy and bit 31 in the section characteristics field, which states if the section can be written to. These features are likely related to packing. We further examine which static features allow to detect packed malware in Section 4.4. The top s-imports features have some overlap with the top strings (e.g., exit, cexit), but also contain APIs possibly used for evasion (e.g., queryperformancecounter, getsystemtimeasfiletime) and popular C runtime functions (e.g., free, calloc, malloc, fprintf ). For family classification, the top static individual features differ from those for binary classification with no intersection between the top 10 s-strings and s-imports for binary and family classification. For example, the top strings contain 6 API names (WNetOpenEnumA, WNetEnumResourceA, WNetCloseEnum, RegisterServiceProcess, Path-FileExistsA, UpdateResourceA), a third-party library name (StringX ), and some short strings (QQQQS3, lllll, 3.91). These strings are not highly ranked for binary classification and are possibly associated with specific families.

Among the dynamic features, the most contributing classes are d-file and d-process. In contrast to the static features, the top contributing dynamic features largely overlap between binary and family classification. The top process features are the number of processes invoking shell commands, and the number of terminated, opened, and created processes. The top file features capture the entropy of the files accessed, as well as the name of some specific files, such as appdata\local\temp\ 7zipsfx.000, which likely indicates the executable is an SFX installer. One difference between binary and family classification is that for family classification the number of mutexes created is a top contributor. Mutexes are often used by malware creators to avoid re-infecting the same host and their number and values are intuitively family-specific.

Overall, the interpretability of individual features can be hard, especially for n-grams. In fact, we argue that one benefit of ML classifiers is that they can select the features they consider most useful, which a human may not be able to identify based on domain knowledge. Our data release [START_REF]DecodingMLSecretsOfWindowsMalwareClassification[END_REF] includes the top individual features for the different models.

⟨A5⟩ Static features are more important than dynamic features for both classification tasks, but especially for family classification. Raw and opcode n-grams are the most important feature classes in both classification tasks. The importance of a feature class may depend on the classification task. For example, d-registry is important to distinguish malware from goodware, but is not relevant for family classification.

Impact of Packers and Protectors

This section evaluates whether the presence of off-the-shelf packers and protectors harms the classification accuracy when considering static features. Our dataset comprises real malware collected from a commercial feed, so we expect the fraction of packed samples to approximate that in the wild. Overall, we identified 119 unique known packers, including highly sophisticated ones like VMProtect and Themida, covering 22% of the samples in our dataset. However, this ratio is certainly a lower bound as packer detection tools may not identify custom packers. Tables ??-?? show that the packing rate largely varies per family: some have 99% of their samples packed while others have none. As explained in Section 3.1, we did not attempt to unpack samples, but follow prior work in extracting static features regardless of whether a file is packed or not. The packer information is only used for the analysis of the results.

We first investigate whether the models overfit the packers or instead can capture data that allows them to classify samples correctly. To answer this question, we first compute the family-wise classification accuracy for both binary and family classification using static features. We then compute the Pearson correlation scores between the family-wise accuracy scores and the rate of packed samples in each family. If packing negatively affects the ability to classify a sample, we would expect lower accuracy for families where packing is more prevalent. However, the correlation scores are 0.015 and 0.0001 respectively for binary and family classification.

To statistically support these results, we run a T-test with the null hypothesis being that there is not a significant correlation between classification accuracy and packing presence. We respectively obtain 0.51 and 0.98 as p-values that do not allow us to reject the null hypothesis. Thus, we conclude that there is not a statistically significant correlation between the two variables. This might seem surprising, as one might expect a high correlation between packing and misclassification rate at least for models that rely only on static features. After all, packing was one of the main reasons that led researchers to introduce malware analysis sandboxes and dynamic analysis. However, this is a common misconception. In fact, while packing is very effective at impeding static analysis (i.e., the ability to examine a sample and statically derive its behavior), other works [START_REF] Aghakhani | When Malware is Packin'Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features[END_REF] have shown that common packers leave certain areas of the binary untouched, thus having a limited effect on the ability of a ML classifier to identify a sample. While our static models seem capable to detect samples protected with off-the-shelf packers, newer protectors can be designed to specifically target static models. Also, it is possible that some of the hard-to-detect families use (undetected) custom packers that indeed hamper the detection.

To understand which static features are more effective at identifying packed malware, we compute the importance of the feature classes separately for two sets: packed samples on one side and unprotected (i.e., not packed) samples on the other. Table 6 summarizes the results for both binary and family classification. The All column captures the feature importance for all samples (regardless of packing) and thus matches the values already reported in Table 5. The results show that for both binary and family classification of packed samples, the relative importance of s-bytegrams increases significantly (compared to all samples) and there are also relevant increases in the importance of s-sections, s-headers, and s-dll. On the other hand, the relative importance of s-opcodegrams and s-imports is greatly reduced. This is likely due to the fact that much of the code in packed samples is compressed or encrypted, reducing the amount of useful opcodes that can be extracted statically to those in the unpacking routine. On the other hand, raw bytegrams are still able to capture distinctive sequences of bytes, which may act like signatures for the packed samples. Those sequences can be extracted from parts of the executable that are not code (e.g., PE header and data sections). The classifier focusing on those parts for packed samples would also explain the increased importance of s-sections, s-headers, and s-strings. In addition, some packers use weak encryption schemes based on XOR operations with a fixed key, which may make distinctive byte sequences in the unpacked code to still be distinctive (in their encrypted form) in the packed executable. The decrease in importance for s-imports is likely linked to packers obfuscating the import table. Finally, most packers leave a very reduced import table that tends to use the same Windows libraries, which could explain the slight increase for s-dll.

⟨A3⟩ Packed or protected samples (with off-the-shelf tools) do not significantly correlate with their classification accuracy using static features. This means that although these technologies function well to deter static analysis (in particular reverse engineering), they do not significantly affect ML classifiers, which are still able to successfully identify byte-level signatures.

Impact of Missing Dynamic Feature Values

Some possible explanations for the worse results of dynamic features compared to static features are that a sandbox may fail to stimulate samples adequately to cause them to 'detonate', or that samples may not work properly due to missing local or remote components. As a result, the classifier might need to take a decision based on a partial view of the malware runtime behavior.

We computed the Pearson correlation coefficient between the family-wise recall of binary classification and the FMR to study the link between the two. Interestingly, the correlation is not statistically significant for the binary classification task (pearson -0.1 and p-value 0.11). However, there is a clear negative correlation (-0.43, p-value of 7.61 * 10 -16 ) for the family classification task. In this case, as the fraction of samples with missing feature values for a family increases, its classification accuracy decreases. This is also confirmed by looking at the malware families that are the most difficult to classify with dynamic features, i.e., those for which the classifier has the lower accuracy (see Tables ?? and ?? in Section.4.2). Among the top-10 all have an FMR > 65%.

This outcome demonstrates that the ML classifier might still be able to identify signs of malicious behavior in incomplete dynamic analysis reports, but more feature values are needed to precisely distinguish among different families (in particular for those, like downloaders, that might have similar behavioral profiles). In addition, binary classification is also affected by the quality of the behaviors collected from benign samples, while family classification accuracy is solely associated with the feature completeness of malware samples in each family.

⟨A2⟩ Globally, a statistically significant inverse correlation in the family classification task between the family-wise classification accuracy using dynamic features and the amount of missing dynamic feature values exist. The correlation is instead not significant for the binary classification task.

Impact of Ground Truth Confidence

To assign a family to a sample AVClass2 computes a list of (tag, confidence) pairs, e.g., (FAM:sality, 5), (CLASS:virus, 4), (FAM:zpevdo, 1). Then, it selects as family the highest confidence tag that is either a family in its taxonomy or an unknown tag not in its taxonomy. The confidence score roughly represents the number of AV engines that assign a tag to the sample, after accounting for aliases and discounting groups of AV engines that copy their labels. This section examines whether the AVClass2 confidence score for the selected family impacts the classification accuracy.

To examine this issue, we first compute the confidence score for each family. For each sample, we obtain a normalized confidence in the [0,1] range by dividing the confidence score of the assigned family over the sum of the confidence scores for all family and unknown tags for the sample. In the case above, this step returns 0.83 as the FAM:sality confidence was 5, but FAM:zpevdo also appeared in the output. Then, we average the normalized confidence factor across all samples in the family to produce a family confidence score.

Next, we compute the correlation between the family-wise classification accuracy and the family confidence score. The hypothesis is that higher family confidence scores correlate with higher family classification accuracy, i.e., the more agreement AV engines have when tagging the sample, the easier it should be to classify the sample. The Pearson correlation coefficient is 0.083 for static features (p-value 0.03) and 0.062 for dynamic features (p-value 0.01). The correlation is positive but extremely small. Thus, we can conclude that poor family classification is not influenced by a low AVClass2 confidence score and the result is statistically significant. This is further confirmed by examining the 10 families with the lowest classification accuracy using either static-only or dynamic-only features (Table 6 of our extended report [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF]). Of those 20 families, all have a confidence score above 0.5 and 15 have a confidence score above 0.8. This suggests that even when the AV engines do not fully agree on the name of a sample, the majority vote likely selects the correct family, which provides further confidence on our AVClass2-based ground truth generation approach.

⟨A4⟩ The accuracy of family classification is not correlated with the AVClass2 confidence score, which captures the agreement between different AV vendors on the family name of a sample. This observation supports that AVclass2 is a valid tool for getting ground truth when it is necessary to obtain the family name of malware.

Impact of Training Dataset Construction

This section evaluates the effect of the construction of the training dataset on classification accuracy. We specifically investigate the impact of the size of the training dataset, the variety of malware families represented, and the uniformity of the sample-family selection. To the best of our knowledge, the question of how diversity in terms of families impact binary classification has not been studied before.

To study this aspect we plot a number of heatmaps. In each experiment, as described in Section.3, we reserved randomly 20 Figure 1 and Figure 2 present heatmaps of the F1 score for binary classification, using static features and dynamic features respectively. Figure 3 shows the heatmap for the combined model, for brevity only showing the variation with the number of families. Overall, the results indicate that as the number of samples per family increases, the classification accuracy also increases. The exception is for the binary classification using static features, where increasing the samples per family may cause a decrease in overall accuracy. For example, when using 50 samples for each of the 670 families the F1 score is 0.960, but when using 80 samples it slightly decreases to 0.958. However, the trend is different if we consider more families. We consider these very small changes as fluctuations due to the randomness of the sample selection process. With respect to family diversity, the results confirm that the more families in the training dataset the more difficult their classification is. As expected, the decrease in classification accuracy is more marked for the family classification task, where intuitively the higher the number of classes the more difficult the classification becomes. The decrease is also more marked for the dynamic features than for the static ones, likely due to their lower discriminatory power as discussed in Section 4.1.

Non-uniform sampling. We also evaluate the impact of a nonuniform downsampling strategy for binary classification. For this purpose, we mimic the distribution of the recently-proposed MO-TIF dataset [START_REF] Robert | MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels[END_REF], which contain 3,095 PE malware samples from 454 families with an unbalanced distribution (e.g., the median is 3 samples per family and 29% of families have a single sample). We create a new dataset by applying the MOTIF distribution to 𝑀 𝐵 . This new MOTIF-like dataset comprises 4,821 samples from all 670 families with the following distribution: 29% of the families are singletons, 41% have 2-5 samples, 12% 6-10, 10% 11-20, 4% 21-30, 2% 31-40, 1% 41-50, and 1% has over 50 samples (up to 100).

We use this to compare two sampling approaches: the uniform approach (which is the one we adopted so far in the paper) where we keep a balanced number of samples for each family, versus a nonUniform approach, where we consider a real-world case in which the number of available samples varies from one family to another, as captured by the MOTIF-like dataset. Table 7 shows the results for both approaches and different feature sets. We could not identify any significant difference between the two approaches, thus suggesting that training a classifier with a non-uniform amount of samples does not significantly impact its performance, under the important assumption that the testing dataset also follows the same distribution.

⟨A7⟩ Increasing the number of malware families in the training set makes the classification more complex and generally results in lower accuracy. While not surprising, this is very important because previous studies were often performed on only a few dozens of families, with the risk of reporting inflated results that do not generalize to larger and more realistic datasets. Increasing the number of samples per family can help to increase the classification accuracy, in particular for models based on dynamic analysis. Finally, the choice between a non-uniform and a uniform downsampling strategy does not significantly affect the binary classification accuracy.

Model Generalization

In this section, we test how well our models for binary and family classification generalize on unseen data. To this extent, we validate the performance of the previously-trained models on the singleton This scenario is known as the "out-of-distribution" (OOD) test [START_REF] Liu | Energy-Based out-of-Distribution Detection[END_REF],

where training and testing data have different distributions in the feature space. The distribution gap between the training and testing data has been frequently witnessed in malware analysis [START_REF] Jordaney | Transcend: Detecting Concept Drift in Malware Classification Models[END_REF], as malware families evolve rapidly over time. Theoretically, one should expect the performance of a ML model to drop drastically in this more realistic scenario, as OOD samples directly violate the IID assumption of ML techniques.

Binary Classification. Table 8 summarizes the binary classification results over the singletons and unseen families using the static, dynamic, and joint feature pool. "Uniform" and "non-uniform" in the table denote training with the 670 families with uniformly and non-uniform dataset construction methods ( § 3.4) The empirical measurements shown in Table 8 can be summarized around three main observations. First, the accuracy of binary classification using only static or dynamic features deteriorates significantly over singleton and unseen family files. Using the combined feature set, the binary classification accuracy with the uniform setting augments over the singleton samples, whereas it deteriorates over the unseen families. In the non-uniform setting, we can observe the same tendency of accuracy drop over the OOD samples. The observations echo closely to the out-of-distribution challenge of machine learning raised in [START_REF] Liu | Energy-Based out-of-Distribution Detection[END_REF].

Second, the accuracy deterioration over the out-of-distribution samples is more significant in the non-uniform setting of training than that in the uniform setting, regardless of the used features. This is different from the results of the in-distribution evaluation in Table 7, where we observe no major difference in accuracy between the uniform and non-uniform settings. These results show an important point: classifiers built on very unbalanced datasets may perform equally well when tested on samples with the same unbalanced distribution, but generalize more poorly to other testing datasets, likely because many families were underrepresented in the training and thus the model failed to properly capture them.

Third, we can notice that static features generalize poorly to unseen families, while dynamic features perform better in this scenario. This is due to the nature of the features themselves: static information can precisely pinpoint only known samples, while dynamic behavior can better generalize also to unknown ones. Thus, compared to static features, dynamic features may provide more rich information to capture new types of malicious behaviors that never appear in the training phase.

We investigate this aspect in more detail by varying the number of families we used for training. In Figure 7, we can see that dynamic features perform poorly when the number of malware families for training is low (as there was not enough example of behaviors to learn from) but, with a sufficient number of families, they offer better classification results than static features. Dynamic features usually have a high dimensional and highly sparse feature representation. For example, some files or processes only appear a few times in the training set for specific malware families. A smaller number of families may aggravate the curse of dimensionality, which results in an overfitting of the classifier. Furthermore, we can observe the classification accuracy over unseen samples improves as the number of families increases, regardless of the features used in the test.

Family Classification. So far, we only tested the generalization of our models in a binary classification scenario. We now apply our family classifier trained using the 670 families over the singleton and unseen families as another out-of-distribution test scenario. Achieving high or low classification accuracy over these out-ofdistribution samples is not interesting, as most of these samples share no common families as the training data and we don't have the ground truth family labels for these samples. Thus, the purpose of organizing this test is only to study how the uncertainty level of the family classifier changes over the out-of-distribution malware samples.

To measure the uncertainty difference, we define the Relative Entropy Score (RES) of the classifier's output as

𝐶 𝑘=1 𝑝 𝑘 log 𝑝 𝑘 𝑇
, where 𝑇 = 𝐶 𝑘=1 1/𝐶 log 1/𝐶 and 𝐶 is the number of the families covered by the training data building the classifier. In this experiment, 𝐶 is therefore set to 670. For an input sample, the output of the family classifier is a 670-dimensional probability-valued vector {𝑝 𝑘 } (k=1,2,3,...,C=670). Each 𝑝 𝑘 gives the probabilistic confidence that the sample belongs to the corresponding family. By definition, the numerator 𝐶 𝑘=1 𝑝 𝑘 log 𝑝 𝑘 provides the entropy of the classifier's output. The denominator 𝐶 𝑘=1 1/𝐶 log 1/𝐶 denotes the maximum entropy that the classifier's classification output may have. As a result, the magnitude of RES is strictly normalized between 0 and 1. Higher/Lower RES denotes that the classifier shows higher/lower uncertainty level over the classification output. [START_REF] Zubair Shafiq | Pe-miner: Mining structural information to detect malicious executables in realtime[END_REF] 2009 [START_REF] Nataraj | A comparative assessment of malware classification using binary texture analysis and dynamic analysis[END_REF] 2011 ✗ ✓ ✓ ✓ 67k 561* OPEM [START_REF] Santos | OPEM: A Static-Dynamic Approach for Machine-learning-based Malware Detection[END_REF] 2012 [START_REF] Santos | Opcode sequences as representation of executables for data-mining-based unknown malware detection[END_REF] 2013 [START_REF] Dahl | Large-Scale Malware Classification using Random Projections and Neural Networks[END_REF] 2013 [START_REF] Kancherla | Image visualization based malware detection[END_REF] 2013 [START_REF] Saxe | Deep Neural Network Based Malware Detection using two Dimensional Binary Program Features[END_REF] 2015 [START_REF] Miller | Reviewer Integration and Performance Measurement for Malware Detection[END_REF] 2016 [START_REF] Huang | MtNet: A Multi-Task Neural Network for Dynamic Malware Classification[END_REF] 2016 [START_REF] Salehi | MAAR: Robust features to detect malicious activity based on API calls, their arguments and return values[END_REF] 2017 [START_REF] Raff | Malware Detection by Eating a Whole EXE[END_REF] 2018 [START_REF] Hyrum | Ember: an open dataset for training static pe malware machine learning models[END_REF] 2018 [START_REF] Rhode | Early-stage malware prediction using recurrent neural networks[END_REF] 2018 [START_REF] Billah | MalDy: Portable, data-driven malware detection using natural language processing and machine learning techniques on behavioral analysis reports[END_REF] 2019 [START_REF] Jindal | Neurlux: Dynamic Malware Analysis without Feature Engineering[END_REF] 2019 [START_REF] Han | MalInsight: A systematic profiling based malware detection framework[END_REF] 2019 [START_REF] Han | MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics[END_REF] 2019 Consistently with theoretical studies [START_REF] Liu | Energy-Based out-of-Distribution Detection[END_REF], we can find that the uncertainty level of the family classification output over the singleton and malware samples of previously unseen families increases significantly, compared to those derived with the testing samples sharing the same families of the training data. We refer the interested reader to our extended report for more details [START_REF] Savino Dambra | Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance[END_REF].

✓ ✗ ✓ ✗ 16k - Nataraj et al.
✓ ✗ ✓ ✓ 1k - Santos et al.
✓ ✗ ✓ ✗ 1k - Dahl et al.
✓ ✗ ✗ ✓ 1.8M - Kancherla et al.
✓ ✗ ✓ ✗ 25k - Saxxe et al.
✓ ✗ ✓ ✗ 350k - Miller et al.
✓ ✗ ✓ ✓ 1.1M - MtNet
✓ ✓ ✗ ✓ 2.8M 98 MAAR
✓ ✗ ✗ ✓ 3k - MalConv
✓ ✗ ✓ ✗ 284k - EMBER
✓ ✗ ✓ ✗ 400k - Rhode et al.
✓ ✗ ✗ ✓ 5.1k - MalDy
✓ ✓ ✗ ✓ 20k 15 NeurLux
✓ ✗ ✗ ✓ 34k - MalInsight
✓ ✓ ✓ ✓ 3.5k 5 MalDAE
✓ ✗ ✓ ✓ 5.5k - MALDC [61] 2020 ✓ ✗ ✗ ✓ 54k - IMCFN [57] 2020 ✓ ✗ ✓ ✗ 9 
⟨A8⟩ Our experiments confirm a significant performance drop in binary classification over out-of-distribution samples, both in the case of singleton and unseen families. At the same time, the confidence of the ML-based classifier decreases significantly over these out-of-distribution samples. This implies that ML-based models tend to be less certain over malware samples drifted from the training samples. Our results also show that models trained on a very unbalanced dataset generalize more poorly, and that dynamic features generalize better than static over new families. Overall, as the distribution gap between training and testing malware samples is common in practice, these results raise concern over the utility of ML-based malware classification for real-world scenarios.

RELATED WORK

Table 9 presents a categorization of previous works on Windows malware classification, according to their goal (binary detection or family classification), features (static or dynamic), and dataset size (both in terms of malware executables and malware families). Among the approaches in Table 9, the choice of the models varies widely including classical models like Support Vector Machine, GradientBoost, and Random Forest, as well as neural networks. Most approaches perform feature extraction, e.g. extract n-grams of bytes, opcodes, or system calls, but a couple of work directly operate on raw bytes and API sequences [START_REF] Jindal | Neurlux: Dynamic Malware Analysis without Feature Engineering[END_REF][START_REF] Raff | Malware Detection by Eating a Whole EXE[END_REF].

MalInsight [START_REF] Han | MalInsight: A systematic profiling based malware detection framework[END_REF] is the only study so far to provide a comprehensive coverage over the choice of features and classification tasks. However, their dataset includes only 5 families. At the other end of the spectrum, Nataraj et al. [START_REF] Nataraj | A comparative assessment of malware classification using binary texture analysis and dynamic analysis[END_REF] studied only family classification on an unbalanced dataset with over 500 classes. However, the authors consider each full AV label a different class, so that number does not correspond to real malware families. In contrast, our study investigates the factors impacting the performance of ML classifiers using a large-scale balanced dataset with 670 families.

ML challenges and pitfalls. In cyber security research, two major challenges are raised in the practices of ML-based analysis. First of all, the issue of missing observations affects the prediction accuracy, e.g., in network intrusion detection [START_REF] Pawlicki | Missing and Incomplete Data Handling in Cybersecurity Applications[END_REF][START_REF] Tavabi | Challenges in Forecasting Malicious Events from Incomplete Data[END_REF]. Secondly, most ML models follow a core assumption: the training and test data of a ML model should be drawn identically and independently from the same underlying distribution, i.e. the I.I.D. assumption. However, the I.I.D assumption does not hold in practice. Highly diversified and quickly evolving malware technologies make the implementations and behaviours of malware vary significantly and frequently. New variants of malware arise to exploit novel vulnerabilities and evade the detection of anti-virus services. Once a machine-learning-driven malware classifier is deployed in practical security applications, the fast-changing profiles of malware samples break the I.I.D, assumption and cause the deterioration of the classification accuracy [START_REF] Barbero | Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift[END_REF]. The design of a robust classifier for frequently drifting malware profiles is still an open problem.

Arp et al. [START_REF] Arp | Dos and Don'ts of Machine Learning in Computer Security[END_REF] review the use ML-based classification in cyber security published over the past 10 years. The study summarizes the existing issues at the different stages of the ML-based pipelines for cyber security data analysis. For example, the authors demonstrate that the statistical bias introduced by training sample sampling and inaccurate class label tagging may introduce spurious correlations into the ML classifiers. In addition, employing inappropriate performance metrics ignoring the class imbalance in the testing phase may lead to incorrect interpretation to the quality of ML-based predictive analysis. In general, according to [START_REF] Arp | Dos and Don'ts of Machine Learning in Computer Security[END_REF], the performance metrics of a ML-based analysis pipeline in cyber security practices should be defined by considering the characteristics of the security data collected and the requirements raised in the concerned applications. Otherwise, the pipelines may produce unrealistic performance and interpretations of security incidents. In our work, we focus instead on the bottlenecks of ML-based malware classification encountered in practices, which may obstruct the accurate classification of malware. For instance, we focus on the impact of the coverage of malware families for training and we dive into the potential reasons causing failure of ML-based models over certain malware samples. We also explore how the classifier behaves over out-of-distribution malware samples, which is an interesting problem in the practical deployment of ML-driven pipelines.

Dataset construction. In 2015, the Microsoft Malware Classification Challenge [START_REF] Michael R Smith | Mind the gap: On bridging the semantic gap between machine learning and malware analysis[END_REF] was developed as a Kaggle competition to conduct malware family classification. The corresponding dataset is composed of disassembly and bytes of 20K Windows malware samples from 9 families. It was released in the Kaggle competition and has since been used in several studies. [START_REF] Lee | Android malware dataset construction methodology to minimize biasvariance tradeoff[END_REF][START_REF] Pendlebury | TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time[END_REF] built largerscale Android malware datasets for evaluating the performances of ML-driven classification models. More specifically, [START_REF] Pendlebury | TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time[END_REF] evaluates the spatial and temporal bias of binary classification accuracy over 129,728 Android apps. [START_REF] Lee | Android malware dataset construction methodology to minimize biasvariance tradeoff[END_REF] explores the variance-bias trade-off of malware clustering on 134,698 Android apps. By comparison, our work focuses on the measurement study of large-scale Windows malware collections. Our goal is to characterize the applicability and limits of ML-driven malware classifiers for practical use. In [START_REF] Robert | MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels[END_REF], Joyce et al. built a multi-family dataset containing 3,095 malware samples collected from 454 families. This work offers the most diversified coverage over different malware families in public malware datasets with manually verified labels. Interestingly, this dataset has a highly skewed distribution over the number of malware samples per family. Over half of the families contain less than 5 samples per family, which poses a few-shot learning challenge to ML-driven malware classification. Our study tried to mimic this distribution to assess the impact of the skewed distribution of malware samples over the accuracy of the trained ML-based classifiers. We also compare the impact of the skewed distribution and that of varying malware coverage regarding classification accuracy. The empirical study helps identify the limits of ML-based classification methods in practical malware analysis.

FINAL RECOMMENDATIONS

The goal of this work was to understand the key factors that influence the performance of ML models for malware detection and family classification. Based on our experimental results, we can draw some general recommendations on the use of ML for malware classification:

1. Ideally, experiments on malware classification (both binary and family) should be performed on hundreds of different families, each containing a sufficient and balanced number of samples. However, this is often difficult to achieve in the malware field. Thus, we believe the contribution of our paper is not to simply re-state this obvious finding, but to provide for the first time a quantitative assessment of the impact of the lack of these characteristics on the classification results. For instance, we show that classifiers trained on a few families (like the ones using the popular Microsoft dataset) can provide misleadingly high accuracy scores while experiments conducted on unbalanced datasets tend to generalize poorly when tested over different distributions.

Our findings can also be used to better understand and compare results reported in previous studies. For example, our results show that a family classifier with a F1 score of 0.89 over 600 families is likely better than a classifier with a score of 0.93 on 30 families. 2. Static features dominate detection and classification of samples from known families, by relying on signature-like information extracted from sequences of bytes and opcodes. Packing, in its current widespread implementation, does not seem to have a considerable effect on this. The addition of dynamic features, which are much more time-consuming and error-prone to extract, has only a marginal impact on the classification accuracy and therefore its use should be carefully considered if the goal is to detect known families. However, static features are unable to capture samples from unknown families, where instead models based on dynamic behavior show a better ability to generalize. Therefore, our findings suggest that today static features alone are sufficient for family classification, but a combination of static and dynamic features is probably preferable for binary classification. 3. The performance of all ML models drop drastically when tested on OOD samples. While the feature completeness and the regular update of the training data to cover new malware families are key to obtaining good classification accuracy, both of them are difficult to achieve in the real world. It is due to the data-driven nature of ML-based classification mechanisms. The quality and coverage of training data play a core role in determining the classification performance. Beyond improving the quality of training data, our experiments suggest that the inclusion of dynamic features into the classification task can be used to alleviate the impact of the OOD issue. More specifically, we show that using dynamic features still allows us to successfully flag suspicious previously-unseen malware samples, even if with less accuracy and higher false positive rates in binary and family classification tasks.

Our work opens several directions for future work. For example, we would like to explore how to mitigate the impact of missing features in dynamic analysis, e.g., through feature selection. We also plan to analyze the reasons behind hard-to-detect families, which could be due to custom packers, benign functionality in the malware, generic families that cover different malware, or other reasons.
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 123 Figure 1: F1 score heatmap for binary classification using static model.
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 4564 Figure 4: F1 score heatmap for family classification using Random Forest on static analysis features.
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 7 Figure 7: Binary classification accuracy on singletons and unseen families of the uniform dynamic and static models. (SS: Static Singleton. SU: Static Unseen. D is for Dynamic)

Table 1 :

 1 Dataset summary

	Dataset	Samples Families
	Malware Balanced (𝑀 𝐵 )	67,000	670
	Benign (𝐵)	16,611	-
	Malware Unbalanced (𝑀 𝑈 )	18,000	1,500
	Malware Generic (𝑀 𝐺 )	16,500	-
	All	118,111	-
	⟨R6⟩ Is the AVClass2 confidence score correlated with ML-based
	decisions?		
	⟨R7⟩ How does the training dataset construction strategy
	affect the model performance?		
	⟨R8⟩ How does the ML-driven malware classifier perform
	over the families unseen in the training data?

Table 2 :

 2 Feature classes used in the classifiers.

	ID	Class	Extraction Features
	s-headers	PE headers	static	29
	s-sections	PE sections	static	590
	s-file	File Generic	static	2
	s-dll	DLL imports	static	131
	s-imports	API imports	static	3,732
	s-strings	Strings	static	10,402
	s-bytegrams	Byte n-grams	static	13,000
	s-opcodegrams Opcodode n-grams	static	2,500
	d-network	Network activity	dynamic	438
	d-file	File activity	dynamic	60,555
	d-mutex	Mutexes used	dynamic	7
	d-registry	Registry operations dynamic	60
	d-service	Services activity	dynamic	736
	d-process	Process activity	dynamic	28,198
	d-thread	Thread actitivy	dynamic	7

Table 3 :

 3 Classification accuracy for malware classes.

	Class	Binary class. Recall Family class. F1 score Static Dyn. Comb. Static Dyn. Com.
	Adware	0.905 0.915 0.981	0.926 0.761	0.925
	Backdoor	0.966 0.943 0.996	0.830 0.730	0.838
	Clicker	0.971 0.929 1.000	0.817 0.692	0.821
	Dialer	0.994 0.875 1.000	0.988 0.888	0.984
	Downloader 0.974 0.899 0.996	0.864 0.695	0.874
	Grayware	0.932 0.895 0.986	0.832 0.675	0.852
	Miner	0.989 0.972 0.999	0.927 0.807	0.962
	Ransomware 0.967 0.945 0.997	0.839 0.580	0.853
	Rogueware	0.984 1.000 0.992	0.616 0.401	0.663
	Spyware	0.972 0.829 0.998	0.869 0.704	0.879
	Tool	0.992 0.929 1.000	0.864 0.778	0.830
	Virus	0.885 0.939 0.971	0.819 0.719	0.809
	Worm	0.978 0.899 0.996	0.922 0.721	0.921
	Average	0.967 0.920 0.9907 0.848 0.704 0.865

Table 4

 4 

Table 4 :

 4 Overall classification results using Random Forest.

	Task	Features	Precision Recall F1-score	Families with 100% accuracy
	Binary Static	0.956	0.957	0.957	242 (36.12%)
	Binary Dynamic	0.945	0.892	0.926	465 (69.40%)
	Binary Combined	0.963	0.934	0.948	450 (67.16%)
	Family Static	0.856	0.850	0.848	68 (10.15%)
	Family Dynamic	0.734	0.708	0.704	114 (17.17%)
	Family Combined	0.874	0.867	0.865	138 (20.60%)

Table 5 :

 5 Feature class importance using MDI score.

	Feature Class	Binary classification Family classification Comb. Static Dyn. Comb. Static Dyn.
	s-bytegrams	40.88 51.38	-	38.60 41.67	-
	d-registry	17.19	-25.00	0.51	-	0.60
	s-opcodegrams	13.44 21.08	-	23.48 20.87	-
	s-strings	9.09 15.27	-	17.62 19.27	-
	d-file	7.74	-29.70	3.16	-56.20
	s-sections	3.05	6.73	-	5.62	6.48	-
	s-imports	2.48	4.17	-	7.87	9.30	-
	d-thread	2.06	-	7.34	0.16	-	5.26
	d-network	1.51	-	3.50	0.35	-	3.70
	d-process	1.47	-32.90	0.87	-30.70
	s-headers	0.34	0.72	-	0.73	0.96	-
	d-mutex	0.25	-	0.16	0.03	-	1.19
	d-service	0.19	-	1.40	0.07	-	2.39
	s-dll	0.17	0.28	-	0.52	0.57	-
	s-file	0.13	0.35	-	0.39	0.87	-

features. This observation is in line with recent findings that although humans prefer dynamic features, ML algorithms rely more on the always present static features

[START_REF] Aonzo | Humans vs. Machines in Malware Classification[END_REF]

. The most contributing static feature classes for both classification tasks are s-bytegrams, s-opcodegrams, and s-strings. This confirms what was previously observed in the literature, with raw and opcode ngrams dominating over other static features

Table 6 :

 6 Feature class importance using MDI score when considering all, packed only, and not-packed samples only.

	Feature Class	Binary classification All Packed Not-Packed All Packed Not-Packed Family classification
	s-bytegrams	51.38	62.22	49.30 41.67	53.66	38.59
	s-opcodegrams 21.08	8.30	22.69 20.87	9.95	25.02
	s-strings	15.27	16.80	16.16 19.27	18.17	17.80
	s-sections	6.73	7.50	6.29 6.48	9.39	10.17
	s-imports	4.17	2.29	4.35 9.30	5.32	6.09
	s-headers	0.72	1.42	0.63 0.96	1.30	1.17
	s-dll	0.28	1.06	0.21 0.57	0.91	0.78
	s-file	0.35	0.40	0.36 0.87	1.29	0.36

Table 7 :

 7 Impact of uniform and non-uniform sample selection in training dataset.

	Model	Prec. Recall	F1	Acc.
	binary-static-uniform	0.956	0.957 0.957 0.957
	binary-dynamic-uniform	0.962	0.892 0.926 0.929
	binary-combined-uniform	0.963	0.934 0.948 0.948
	binary-static-nonUniform	0.961	0.960 0.961 0.960
	binary-dynamic-nonUniform	0.959	0.886 0.921 0.924
	binary-combined-nonUniform	0.955	0.927 0.940 0.927

Table 8 :

 8 Binary classification accuracy on singletons and unseen families datasets.

		Model			Singletons Unseen
		binary-static-uniform		0.943	0.815
		binary-dynamic-uniform		0.805	0.898
		binary-combined-uniform		0.985	0.908
		binary-static-nonuniform		0.810	0.653
		binary-dynamic-nonuniform	0.328	0.855
		binary-combined-nonuniform	0.758	0.637
		SS	0.520 0.580 0.634 0.888 0.899 0.939 0.943
	Experiment	SU DS	0.556 0.611 0.658 0.735 0.799 0.803 0.815 0.242 0.366 0.413 0.776 0.815 0.832 0.805
		DU	0.831 0.855 0.938 0.958 0.957 0.954 0.898
			70	170	270	370	470	570	670
					Families	
			0.3	0.4	0.5	0.6	0.7	0.8	0.9

Table 9 :

 9 Related work on ML-based Detection and family Classification of Windows malware (S=Static, D=Dynamic)

			Goal	Features	Dataset
	Work	Year	D	C	S	D	#	Fam.
	Rieck et al. [46]	2008	✗	✓	✗	✓	10k	14
	McBoost [40]	2008	✓	✗	✓	✓*	5.5k	-
	PE-Miner							
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