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ABSTRACT

In the Generalized Linear Model (GLM), the unknowns may
be non-identically independent distributed (niid), as for in-
stance in the Sparse Bayesian Learning (SBL) problem. The
Generalized Approximate Message Passing (GAMP) algo-
rithm performs computationally efficient belief propagation
for Bayesian inference. The GAMP algorithms predicts the
posterior variances correctly in the case of measurement
matrices with (n)iid entries. In order to cover more ill-
conditioned measurement matrices, the (right) rotationally
invariant (RRI) model was introduced in which the (right)
singular vectors are Haar distributed, leading to Vector AMP
VAMP however assumes iid priors and posteriors. Here we
introduce a convergent version of AMB (AMBAMP) applied
to Unitarily transformed data, with a variance correction
based on Haar Large System Analysis (LSA). The recently
introduced reVAMP perspective shows that the resulting AM-
BUAMP algorithm has an underlying multivariate Gaussian
posterior approximation, that does not get computed but that
allows the LSA. The individual variance predictions are exact
asymptotically in the RRI setting, as illustrated by a Gaussian
Mixture Model example.

Index Terms— Approximate Message Passing, AMP, VAMP,
reVAMP, AMB UAMP, Haar Large System Analysis

1. INTRODUCTION

The recovery of sparse signal vectors is a fundamental prob-
lem in signal processing and has wide-ranging applications,
including compressed sensing, image and speech processing,
and machine learning. Sparse Bayesian Learning (SBL) [1] is
one popular method for sparse signal recovery. In spite of the
a priori non sparsifying Gaussian prior, when the prior vari-
ances need to be estimated also, this hierarchical Gaussian
setting becomes sparsifying. In the Gaussian noise case, the
signal model for the recovery of a sparse signal vector x can
be formulated as, y = Ax+ v, where y are the observations
or data, A is called the known measurement or sensing matrix
of dimension M × N with M < N in the compressed sens-
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ing case. For a sparse model, x contains only K non-zero (or
significant) entries, with K < M < N .
However, SBL can be computationally complex, especially
when dealing with high-dimensional data. This complexity
arises from the need to perform matrix inversion in each iter-
ation (for the hyperparameter estimation).
To overcome this challenge, approximate inference methods
have been developed, with Approximate Message Passing
(AMP) being a popular and efficient approach [2]. AMP has
been shown to be effective in recovering high-dimensional
signals, and its dynamics can be fully characterized by state
evolution [3]. However, the convergence of AMP can be
problematic when dealing with ill-conditioned measurement
matrices A.
To address this issue, the Vector Approximate Message Pass-
ing (VAMP) algorithm has been proposed [4]. It generates
the factor graph by splitting one vector variable node x into
two variable instances x1 = x2 = x. An Expectation-
Propagation (EP) like message passing algorithm [5] is then
applied to the factor graph with vector valued messages.
VAMP has been shown to perform well under Right Rota-
tionally Invariant (RRI) A, and the (variance) state evolution
of VAMP has been rigorously established [4].

1.1. Prior Work

In previous research [4], the optimality of VAMP has been an-
alyzed using the replica method [6]. The replica method gives
a system of equations that describes the fixed point of the
VAMP state evolution and the optimal (sum) Mean Squared
Error (MSE). VAMP (implicitly) assumes identically inde-
pendently distributed (iid) priors and posteriors. AMP pro-
vides individual MSEs, but with convergence issues. Uni-
tary Transformed AMP (UTAMP) [7] applies AMP to a trans-
formed linear model to make AMP more robust to A.
In [8] we have introduced a convergent version of AMP, AM-
BGAMP, which works with arbitrary priors to accommodate
e.g. LASSO and many other compressed sensing problem
formulations. The variance predictions in AMP are correct
in the Large System Limit (LSL) for a matrix A considered
random with non iid (niid) elements (i.e. independent but not
necessarily identically distributed, e.g. an A with determin-
istic magnitudes but iid signs). In [9] we have introduced
UAMP which assumes a RRI model for A. Such a model



covers a much wider class of matrices since only the right
singular vectors are considered Haar distributed [10] (the row
subspace of A is uniformly oriented in space), whereas left
singular vectors and singular values are deterministic. The
RRI model requires a variance correction to be correct in the
LSL, based on Haar Large System Analysis (LSA). However,
UAMP in [9] is limited to Gaussian priors.

1.2. Main Contribution

In this paper, we extend UAMP to handle arbitrary priors,
leading to the Generalized Linear Model (GLM) (here still
with Gaussian noise though). We introduce the Haar LSA
based variance corrections to the convergent AMBAMP ap-
plied to a unitarily tranformed data model, resulting in the
AMBUAMP algorithm. Since the LSA is based on Gaussian
signal models, we invoke the recently introduced reVAMP
perspective [11] to show that these AMP algorithms with
arbitrary priors implicitly construct a multivariate Gaussian
posterior approximation, on which the LSA can be based,
and which is consistent with the marginal posterior first and
second-order moments constructed by the algorithm. We
show that without correction term the optimal MSE is not
reached, but the Haar LSA allows to distill the proper correc-
tion term which only depends on quantities already appearing
in the algorithm. To illustrate the proper functioning of the
AMBUAMP algorithm, we work out the details for and sim-
ulate the case of Gaussian Mixture Model (GMM) priors.

2. UNITARILY TRANSFORMED LINEAR MODEL

The data model considered in AMP is essentially a linear mix-
ing model

y = Ax+ v , px(x) , pv(v) (1)

with (possibly) non identically independently distributed
(niid) prior px(x) =

∏N
i=1 pxi

(xi) and iid measurement
noise pv(v) =

∏N
i=1 pv(vi), v ∼ N (0, σ2

vI). A is the
M × N measurement matrix and we assume M < N . In
order to handle possibly ill-conditioned A , consider the
economy singular value decomposition (SVD) of A :

A = UΣVT (2)
where U ∈ RM×M is an orthogonal matrix, Σ ∈ RM×M is
diagonal and V ∈ RM×N is semi-orthogonal (VTV = I).
As in the computationally efficient version of VAMP [7], [4],
we can take advantage of the simple white Gaussian noise
model to transform the linear model as:

UTy = ΣVTx+UTv . (3)
Since we assume v to be iid Gaussian, we still have UTv ∼
N (0, σ2

vI). For simplicity, let’s denote y′ = UTy, v′ =
UTv, σ2

v = σ2
v1, A′ = ΣVT , S′ = A′.A′ and λ = Σ21,

leading to the transformed linear model
y′ = A′ x+ v′ (4)

where z = A′ x is the result of the linear mixture.

3. PROPOSED AMBUAMP

The abbreviation AMB stands for ACM-LSL-BFE, which
stands for Alternating Constrained Minimization of the LSL
of the Bethe Free Energy (BFE). AMBGAMP employs most
of the same updates as GAMP, but GAMP does not apply
a strict alternating minimization (block coordinate descent)
principle, particularly in the presence of constraints. AM-
BGAMP has been derived in [8] of which we recall the
key steps. We shall apply here AMBGAMP to the unitarily
transformed data (4), which will lead to AMBUAMP after a
correction of the variances. GAMP corresponds to the con-
strained minimization of a LSL of the BFE (see also [12] and
references therein):

min
qx,qz,τp

JBFE(qx, qz, τp)

s.t. E(z|qz) = A′ E(x|qx)
τp = S′ var(x|qx),

(5)

where the LSL BFE is given by
JBFE(qx, qz, τp)=D(qx||e−fx)+D(qz||e−fz)+HG(qz,τp)

with HG(qz, τp) =
1
2

M∑
k=1

[
var(zk|qzk)

τpk

+ln(2πτpk
)

]
(6)

and where D(q||p)=Eq(ln(
q
p )) is the Kullback-Leibler Di-

vergence (KLD) and HG(qz, τp) is a sum of a KLD and an
entropy of Gaussians with identical means but different vari-
ances. The LSL BFE optimization problem (6) can be refor-
mulated with the following augmented Lagrangian

min
qx,qz,τp,u

max
s,τs

L(qx, qz, τp,u, s, τs) with

L = D(qx||e−fx)+D(qz||e−fz)+HG(qz, τp)

+sT (E(z|qz)−A′ E(x|qx))− 1
2τ

T
s (τp − S′ var(x|qx))

+ 1
2∥E(x|qx)− u∥2τr

+ 1
2∥E(z|qz)−A′ u∥2τp

,
(7)

where s, τs are Lagrange multipliers, and τr = 1./(S′T τs)
is just a short-hand notation for a quantity that depends on
τs. We also use the notations: ∥u∥2τ =

∑
i u

2
i /τi, element-

wise multiplication as in s.τ and element-wise division as in
1./τ , and 1 is a vector of ones. In [8] we apply an alternating
optimization strategy, combined with a gradient update with
line search for the auxiliary quantity u, an ADMM update of
the Lagrange multipliers s, and fixed point iterations for τp
and τs. We detail two key steps.

3.1. Update of u

To update u, we use a gradient descent method with line
search optimized step-size. From (7) we get at iteration t

L(qt−1
x , qt−1

z , τ t−1
p ,u, st−1, τ t−1

s )

= 1
2∥x̂

t−1 − u∥2
τ t−1
r

+ 1
2∥ẑ

t−1 −A′ u∥2
τ t−1
p

+ const.

(8)
where const. denotes constants w.r.t. u. The minimizing up-
date can be obtained as

ut = ut−1 − ηt gt (9)



with gradient gt = gt(ut−1) where
gt(u) = ∇uL(q

t−1
x , qt−1

z , τ t−1
p ,u, st−1, τ t−1

s )

= −A′T ((ẑt−1 −A′u)./τ t−1
p )− (x̂t−1 − u)./τ t−1

r

= gt(0) +Ht u, Ht = D(1./τ t−1
r ) +A′TD(1./τ t−1

p )A′

(10)
where D(τ ) denotes a diagonal matrix with diagonal ele-
ments τ . The step-size ηt gets optimized for maximum de-
scent :

∂L(qt−1
x , qt−1

z , τ t−1
p ,ut, st−1, τ t−1

s )

∂ηt
= 0

⇒ ηt = ∥gt∥2/gt THtgt .
(11)

3.2. Update of qx
For the update of qx, consider the relevant terms in the aug-
mented Lagrangian (and remember that 1./τ t−1

r = S′T τ t−1
s )

L(qx, q
t−1
z , τ t−1

p ,ut, st−1, τ t−1
s )

= D(qx||e−fx)− st−1TA′ E(x|qx)
+ 1

2τ
t−1T
s S′ var(x|qx) + 1

2∥E(x|qx)− ut∥2
τ t−1
r

+ const.

= D(qx||e−fx) + 1
2 (1./τ

t−1
r )T E(x.x|qx)

−st−1TA′ E(x|qx)− (ut./τ t−1
r ))T E(x|qx) + const.

= D(qx||e−fx) + 1
2 (1./τ

t−1
r )T E(x.x|qx)

−(ut + τ t−1
r .A′T st−1)T (E(x|qx)./τ t−1

r ) + const.

= D(qx||e−fx) + 1
2 E(∥x− rt∥2τ t

r
|qx) + const.

(12)
where const. denotes constants w.r.t. x, and rt = ut +
τ t−1
r .A′T st−1 . The Lagrangian in (12) is separable. We get

per component
min
qxi

D(qxi ||gtxi
/Zt

xi
) ⇒ qtxi

= gtxi
/Zt

xi
, Zt

xi
=

∫
gtxi

(xi) dxi,

− ln gtxi
(xi) = fxi

(xi) +
1

2τt
ri

[(xk − rti)
2 − rt 2i ] .

(13)
The partition function Zt

xi
acts as cumulant generating func-

tion:
τ tri

∂ lnZt
xi

∂rti
= E(xi|qtxi

) = E(xi|rti , τ tri) = x̂t
i

(τ tri)
2
∂2 lnZt

xi

∂rt 2i
= var(xi|rti , τ tri) = τ txi

.

(14)

In the Gaussian prior case, we get a Gaussian posterior qtx
with

1./τ t
x = 1./τ t−1

r +1./σ2
x, x̂

t=τ t
x.(r

t./τ t−1
r ) . (15)

The AMBUAMP algorithm appears in the Algorithm 1 table.
The variance correction term appears in red, where the in-
troduction of the nonnegative part ⌊.⌋+ may avoid transient
problems.

4. REVAMP INTERPRETATION

In [11], we introduced the reVAMP algorithm, which corre-
sponds to a revisited VAMP approach to MMSE estimation
in the GLM where the only asymptotic approximation that
is made is to invoke the Central Limit Theorem (CLT) to ap-
proximate the extrinsic pdfs by Gaussians. A MMSE estimate
corresponds to the mean of the posterior pdf, and decouples

Algorithm 1 AMBUAMP
Require: y′, A′, S′ = A′.A′, fx(x), σ2

v

1: Initialize: t = 0, u0 = 0, x̂0 = 0, ẑ0 = 0, s0 = 0, τ0
r = 1, τ0

p = 1

2: repeat (t=1,2,. . . )
3: ut=ut−1 − ηt gt, with gt, ηt from (10), (11)
4: [Input node update]
5: rt = ut + τ t−1

r .(A′T st−1)

6: x̂t = E(x|rt, τ t−1
r ), Gaussian px : 1./τ t

x=1./τ t−1
r + 1./σ2

x

7: τ t
x=var(x|rt, τ t−1

r ), Gaussian px : x̂t = τ t
x.(r

t./τ t−1
r )

8: τ t
p = S′ τ t

x

9: [Output node update]
10: pt = A′ ut − st−1.τ t

p

11: 1./τ t
z = 1./τ t

p + 1./σ2
v

12: ẑt=τ t
z .(y

′./σ2
v+pt./τ t

p)

13: st = st−1 + (ẑt − A′ut)./τ t
p

14: τ t
s = 1./(τ t

p +
⌊
1 − 1

N2

(
1T τ t

x

)(
λT τ t−1

s

)⌋
+

σ2
v)

15: τ t
r = 1./(S′T τ t

s)

16: until Convergence

between the components of a vector. So, consider the joint
pdf

p(x,y′) = p(y′|x)
N∏
i=1

pxi(xi) . (16)

The true posterior for xi can be written as

p(xi|y′) = pxi
(xi)

(∫
p(y′|x)

∏N
j ̸=i pxj

(xj)dxj

)
/Zi(y

′)

≈ pxi
(xi)N (xi; ri, τri)

(17)
where

(∫
p(y′|x)

∏N
j ̸=i pxj (xj)dxj

)
/Zi(y

′) is the extrinsic
for xi and Zi(y

′) is a normalization factor. For a very large
class of models for A′ and x, it is clear that the CLT will al-
low to approximate the extrinsic by a Gaussian distribution, as
indicated in (17). As explored in [11], the Gaussian extrinsic
approximation can be built from the Component-Wise Con-
ditionally Unbiased MMSE estimate of xi. Now, from the
non-Gaussian approximate posterior in (17), with Gaussian
extrinsic but true prior, we can find the MMSE estimate x̂i

and associated MMSE τxi
. These quantities allow us to build

a Gaussian posterior approximation qxi
(xi) = N (xi; x̂i, τxi

)
which minimizes the KLD to the non-Gaussian posterior. The
(marginal) Gaussian posterior approximation qxi(xi) in turn
allows us to find a Gaussian prior approximation qi(xi) by
Gaussian division
qi(xi) = N

(
xi; ai, σ

2
xi

)
∝ N (xi; x̂i, τxi) /N (xi; ri, τri) ,

1/σ2
xi

= 1/τxi
− 1/τri , ai = σ2

xi
(x̂i/τxi

− ri/τri) .
(18)

Note that in the Gaussian prior case, the σ2
x are of course the

variances of the true prior. The joint distribution
∏N

i=1 qi(xi)
equals N (x;a,σ2

x). Now, since also p(y|x) is Gaussian, the
(independent) Gaussian priors in turn induce a multivariate
Gaussian posterior approximation

qx(x) = N (x;m,Cm) ∝ p(y|x)N (x;a,σ2
x) (19)

where
Cm =

[
A′TC−1

vvA
′ +D−1

x

]−1

m = Cm

[
A′TC−1

vvy
′ +D−1

x a
]
,

(20)



Dx is a short hand notation for D(σ2
x) and Cvv = σ2

vI. Fur-
thermore, if we define τm = diag(Cm), then we have at con-
vergence of the reVAMP algorithm m = x̂ and τm = τx,
and qxi

(xi) is a marginal of qx(x). This reVAMP perspec-
tive on the (AMB)(U)AMP algorithm shows that asymptoti-
cally, the MMSE estimates can be associated to an underlying
Gaussian linear model which will facilitate the large random
matrix analysis for the variances.

5. HAAR LARGE SYSTEM ANALYSIS

Following [4], we model A as a right rotationally invari-
ant matrix. That means that in the economy SVD of A =
UΣVT , U and Σ remain deterministic but V is considered
drawn as M columns of a Haar distributed N × N random
matrix (i.e. the columns of V form an orthonormal basis for a
uniformly randomly oriented M -dimensional subspace of the
N -dimensional space). The analysis of the large system pri-
marily relies on the deterministic equivalent proposed in [13],
which states

Lemma 1. Let P be any Hermitian matrix with bounded
spectral norm and let V ∈ RN×M be M < N columns of
a Haar distributed (unitary) random matrix. Let B be a non-
negative definite matrix with ||B|| < ∞ (||B|| represents the
spectral norm) and D be any diagonal matrix with positive
entries. Then the following convergence result holds almost
surely,
1

N
tr
[
B
(
VPVT +D

)−1
]
− 1

N
tr
[
B(e I+D)−1

] a.s.−−→ 0.

(21)
The scalar e can be obtained as the unique solution (fixed
point) of the following system of equations,

e =
1

N
tr
[
P (eP + (1− e e)I)

−1
]
,

e =
1

N
tr
[
B(eI+D)−1

]
.

(22)

The MMSE solution for (1) is given by

x̂MMSE =
(

1
σ2
v
ATA+D

(
1./σ2

x

))−1
1
σ2
v
ATy,

CMMSE =
(

1
σ2
v
ATA+D

(
1./σ2

x

))−1

.
(23)

Thus, the MSE is

MSE =
1

N
tr[CMMSE]. (24)

By using Lemma 1, we obtain the large system approximation

MSE
a.s.−−→ 1

N
tr
[
(e0I+D(1./σ2

x))
−1

]
(25)

with
e0 = 1

N tr
[

1
σ2
v
Σ

2
(

e0

σ2
v
Σ

2
+ (1− e0e0)I

)−1
]
,

e0 = 1
N tr

[
(e0I+D(1./σ2

x))
−1

]
.

(26)

6. LARGE SYSTEM ANALYSIS OF AMBUAMP

We will first prove that under the assumption that V is Haar-
distributed, the averaged τx, namely 1

N 1T τx, does not match

the optimal MSE defined in (24). Then in the next section,
we will propose a correction term such that τx matches the
optimal MSE. The steady state of variances in UAMP can be
summarized as follows

1./τ∞
s = σ2

v + S′τ∞
x

1./τ∞
x = 1./σ2

x + S′T τ∞
s .

(27)

With the large system assumptions, as N tend to infinity,
we approximate V

T
DNV and VDMV

T
to 1

N tr(DN )I and
1
N tr(DM )I respectively. Thus, we have

S′τ∞
x = diag

[
ΣV

T
D(τ∞

x )VΣ
]
=

1

N
1T τ∞

x λ,

S′T τ∞
s = diag

[
VΣD(τ∞

s )ΣVT
]
=

1

N
λT τ∞

s 1.

(28)

Now we show the following.

Lemma 2. In AMP with equivalent measurement matrix A′,
the variance prediction 1

N 1T τ∞
x does not match the optimal

MSE in (25).

Proof. If the noise is iid, the MSE remains unchanged under
a unitary transformation. Therefore, equations (25) and (26)
remain the same in this transformed system. We will prove
by contradiction.
Suppose that τ∞

x matches the optimal MSE, we then have
1

N
tr[D(τ∞

x )] =
1

N
tr
[(
D(S′T τ∞

s ) +D(1./σ2
x)
)−1

]
= e0 =

1

N
tr
[
(e0I+D(1./σ2

x))
−1

]
,

(29)

which implies

e0 = 1
NλT τ∞

s = 1
N tr

[
Σ

2
D(τ∞

s )
]

= 1
N tr

[
Σ

2 ( 1
N tr[D(τ∞

x )]D(λ) + σ2
vI
)−1

]
= 1

N tr
[
Σ

2
(
e0Σ

2
+ σ2

vI
)−1

] (30)

One can observe that e0 in (30) only equals e0 in (26) if
e0e0 = 0.

6.1. Correction Term For τs

Considering the asymptotic MSE expression in (25), and the
second equations in (27), (28), we can still write

1
N tr[D(τ∞

x )] = 1
N tr

[(
D(S′T τ∞

s ) +D(1./σ2
x)
)−1

]
= 1

N tr
[(

1
NλT τ∞

s I+D(1./σ2
x)
)−1

]
(31)Introduce

ec =
1

N
tr[D(τ∞

x )] , ec =
1

N
λT τ∞

s . (32)

Now compare (31),(32) with (25),(26), then we require ec to
be of the form

ec =
1

N
tr
[
Σ

2
(
ecΣ

2
+ (1− ecec)σ

2
vI
)−1

]
. (33)

From the definition of ec in (32), we have

ec =
1

N
λT τ∞

s =
1

N
tr
[
Σ

2
D(τ∞

s )
]
. (34)



Comparing (34) with (33), we want to design the update
scheme of τs such that at steady state,

D(τ∞
s ) =

(
ecΣ

2
+ (1− ecec)σ

2
vI
)−1

. (35)

From the definition of ec in (32), we have

ecΣ
2
=

1

N
tr[D(τx)]Σ

2
=

1

N
1Tτx Σ

2
=

1

N
1Tτx D(λ).

(36)
Under the large system approximation (28), we obtain

ecΣ
2
= D(

1

N
1Tτx λ) = D(S′τ∞

x ). (37)

Substituting (32) and (37) into (35), we get

D(τ∞
s )=

[
D(S′τ∞

x )+σ2
vI−

1

N2

(
1T τ∞

x

) (
λT τ∞

s

)
σ2
vI

]−1

.

Therefore, we propose a simple correction for the update of
τ t
s in the algorithm

τ t
s = 1./

[
σ2
v −

1

N2

(
1T τ t

x

) (
λT τ t−1

s

)
σ2
v + τ t

p

]
(38)

One can verify by Lemma 1 that with this correction, (ec, ec)
converge to a fixed point of (26) and hence τx will converge
to the optimal MSE.

7. CONVERGENCE ANALYSIS

Since the variance updates have been modified, the conver-
gence of the variance subsystem needs to be reanalyzed. We
provide here a sketch analysis following [8], where we an-
alyze the contractivity via the infinity norm of the Jacobian.
From the variance updates

1./τ t
x = 1./σ2

x + ST τ t−1
s ,

1./τ t
s = σ2

v1+ Sτ t
x − σ2

v

N2 (1
T τ t

x)(λ
T τ t−1

s ),
(39)

we obtain the following Jacobians

Jt
xs =

∂τ t
x

∂τ t−1,T
s

= −Dt,2
x ST ;

Jt
sx =

∂τ t
s

∂τ t,T
x

= −Dt,2
s (S− σ2

v

N2 (λ
T τ t−1

s )1M1T
N );

Jt
ss =

∂τ t
s

∂τ t−1,T
s

= −Dt,2
s (

σ2
v

N2 (1
T τ t

x)1NλT ) .

(40)

Following the chain rule, we write with the gradient of τ t
s

Gt = −(Dt
s)

−1 dτ t
s

dτ t−1
s

Dt−1
s = −(Dt

s)
−1(Jt

sxJ
t
xs + Jt

ss)D
t−1
s

= −Dt
s

(
S− σ2

v

N (λT τ t−1
s )1M1T

N

)
Dt,2

x STDt−1
s

−Dt
s

(
σ2
v

N2 (1
T τ t

x)1NλT
)
Dt−1

s .

(41)
The optimal test vector for the matrix infinity norm will again
be 1. We then have

Gt1 = Dt
s

(
S− σ2

v

N (λT τ t−1
s )1M1T

N

)
Dt

xD
t
xS

T τ t−1
s

+Dt
s

(
σ2
v

N2 (1
T τ t

x)1NλT
)
τ t−1
s .

(42)

From (39), we see that Dt−1
x ST τ t−1

s ⪯ 1, leading to

Gt1 ⪯ Dt
s

(
S− σ2

v

N (λT τ t−1
s )1M1T

N

)
τ t
x

+Dt
s

(
σ2
v

N2 (1
T τ t

x)1NλT
)
τ t−1
s = Dt

sSτ
t
x

(43)

From (39), Dt
sSτ

t
x ⪯ 1, and hence, ∥Gt∥∞ < 1.

8. GAUSSIAN MIXTURE MODEL PRIOR CASE

8.1. True MMSE Solution

Assume that the prior distribution of each xi is given by:

pxi
(xi) =

∑L
n=1 αnN (xi;µni, σ

2
ni);

∑3
n=L αn = 1.

(44)
The true MMSE estimation mean and covariance matrix for a
Gaussian mixture are derived in [11]

x̂MMSE = E[x|y],
CMMSE = E[xxT |y]− E[x|y]E[x|y]T . (45)

8.2. AMBUAMP Scalar MMSE Calculations

The computation of the posterior (13) in UAMP with a Gaus-
sian mixture prior (44) can be derived analogously to (45),
see [11]. Define Zni :

Zni=
∫
αnN (x;µni, σ

2
ni)N (x; ri, τri)dx

= αn√
2π(σ2

ni+τri )
e
− (µni−ri)

2

2(σ2
ni

+τri
) .

(46)

Then we have

x̂i =
∫
x
∑3

n=1 αnN (x;µni,σ
2
ni)N (x;ri,τri )dx∫ ∑3

n=1 αnN (x;µni,σ2
ni)N (x;ri,τri )dx

=

∑3
n=1

µniτri
+riσ

2
ni

σ2
ni

+τri

Zni∑3
n=1 Zni

,

(47)

τxi
=

∫
x2 ∑3

n=1 αnN (x;µni,σ
2
ni)N (x;ri,τri )dx∫ ∑3

n=1 αnN (x;µni,σ2
ni)N (x;ri,τri )dx

− x̂2
i

=

∑3
n=1

[
(
µniτri

+riσ
2
ni

σ2
ni

+τri

)2+
τri

σ2
ni

σ2
ni

+τri

]
Zni∑3

n=1 Zni
− x̂2

i .

(48)

9. SIMULATION RESULTS

To verify our findings, we simulate the scenarios where the
measurement matrices A ∈ R5×10 are ill-conditioned. We
set the condition number of the measurement matrix to 100
and the diagonal entries in the singular matrix of A form a
geometry series. We fix the SNR to 20dB. Each element of
the signal vector x is independently drawn from a Gaussian
mixture model
pxi

(xi) = 0.5N (xi; 0, 4× 0.25i−1) + 0.5N (xi; 0, 0.5
i−1)
(49)

To evaluate the averaged posterior variance prediction error,
we compare the normalized square of the sum difference,
which is defined as

(tr[CMMSE]− 1T τx)
2

tr[CMMSE]2
. (50)



Similarly, we use the normalized sum of squares to evalu-
ate the individual prediction error of the posterior variances,
which is defined as

(diag[CMMSE]− τx)
T (diag[CMMSE]− τx)

tr[CMMSE]2
. (51)

The simulation results appear in Fig. 1. It is an average of 20
realizations of different measurement matrices A. The cor-
rection term is seen to lead to improved variance predictions
even at these small dimensions.
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Fig. 1. MSE with or without correction.

10. CONCLUDING REMARKS

In this work, we have investigated the recovery of a sparse
signal vector with a non-identically independently distributed
arbitrary prior. This occurs typically in a compressed sensing
problem but the approach is applicable to MMSE estimation
in any GLM with Gaussian noise. The reVAMP algorithm
we have introduced in [11] also solves this problem with-
out any convergence or variance approximation issues, only
involving the asymptotic Gaussian extrinsic approximation.
However, the AMBUAMP proposed here addresses the high
complexity issues in reVAMP for high dimensions. It com-
bines the convergent AMP in [8] with the Haar LSA based
variance correction in [9]. The Haar LSA is based on the un-
derlying approximate multivariate Gaussian posterior approx-
imation elucidated in [11]. The Haar LSA is formulated for
the sum MSE. However, the expressions in (28) indicate that
asymptotically also the individual component MSEs become
correct, based on the same sum MSE variance correction. We
have illustrated AMBUAMP for a GMM prior, leading to a
GMM posterior. The efficient computation of MMSE esti-
mates with Gaussian extrinsics and arbitrary prior deserves
further work however.
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