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Abstract  12 

Insect value chains are a complex system with non-linear links between many economic, 13 
environmental, and social variables. Multi-objective optimization (MOO) algorithms for finding 14 
optimal options for complex system functioning can provide a valuable insight in the development 15 
of sustainable insect chains. This review proposes a framework for MOO application that is based 16 
on gradual implementation, beginning with factors that have an immediate impact on insect 17 
production (feed qualities, resource utilization, yield), and progressing to integrated units 18 
(environmental, social, and economic impacts). The review introduces the key hotspots of insect 19 
production chains, which have been developed in suitable MOO objectives. They represent aspects 20 
of resource use, feed quality and its conversion by insects, labor safety and wage fairness, as well 21 
as environmental impacts. The capacity of the suggested MOO framework to describe all facets of 22 
sustainability may have certain limits. To determine the framework's applicability and the specific 23 
MOO algorithms that can perform the function, modeling and further testing on real insect 24 
production chains would be necessary for the intended objectives. 25 
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1. Introduction 29 

Assurance of a safe and environmentally sound protein supply is an urgent task in future food 30 
systems, as animal-sourced foods currently constitute the primary source of protein for most people 31 
and account for the largest share of environmental impacts in European diets (Sandström et al., 32 
2018).. According to FAOSATAT, the world’s average meats consumption in 2020 is 5,2 Mt 33 
(FAOSTAT Food and Agriculture Data). The amount of global consumption of animal protein 34 
could rise by 14% by 2030 compared to 2018-2020 (OECD-FAO), leading to extreme 35 
environmental consequences. There are a few promising alternative protein sources such as edible 36 
insects (Akhtar and Isman, 2018), single-cell proteins and tissue cultures, which can emerge in the 37 
food system and induce system changes when considering multiple sustainability dimensions 38 
(Green et al., 2022; Parodi et al., 2018a; Rubio et al., 2020; Smetana et al., 2017).  39 

In Western countries, entomophagy, the human consumption of insects, is still met with some 40 
revulsion (Looy and Wood, 2015; Raheem et al., 2019; van Huis et al., 2013). Rather than a 41 
potentially nutritious food supply, insects are known as disease carriers (Butler et al., 2010) and 42 
often viewed as pests (Looy and Wood, 2015). Given the FAO recommendation for insects 43 
consumption as a possible solution to the world food supply’s shortage, western consumer 44 
acceptance still continues to remain low (van Huis et al., 2013). For example, insect acceptance as 45 
a food product or ingredient in the European Union is the lowest at 9% compared to 84% for 46 
available alternative proteins (e.g., new plant, single-cell and in vitro proteins) (Grasso et al., 2019; 47 
Iannuzzi et al., 2019). Although studies show that consumers who have eaten insects before show 48 
a significantly more positive attitude towards repeating the experience (Lensvelt and Steenbekkers, 49 
2014). In addition to being a potential food source for humans, insects are a valuable feed 50 
alternative for replacing other livestock feed such as fish and soy (Mat et al., 2022). Similar to the 51 
challenges facing insects as food, the acceptance of insects as feed remains a critical aspect of the 52 
insect rearing industry’s development (Van Huis, 2013). However, the consumer receptivity to 53 
integrate insects in animal diets is related to various key factors, such as gender, food neophobia, 54 
and the impact of environmental messaging on consumers (Bazoche and Poret, 2020). 55 

FAO defends that insect farming and/or gathering can increase employment in different regions, 56 
particularly for the lower classes of developing countries since insects can be used as food, feed, 57 
fiber collection, pest control and more (van Huis et al., 2013). The price of insects varies depending 58 
on the origin country and insect type sold. For instance, prices range from 10€/kg of termites in 59 
Kenya to 3.50 €/kg of canned fried crickets in Cambodia (Interreg NWE, 2020). Conversely, the 60 
cost can rise to around 107 €/kg of weaver ant pupae in the United Kingdom or almost 143 €/kg of 61 
migratory locusts in the Netherlands (Interreg NWE, 2020). This wide price range illustrates the 62 
diverse insect markets worldwide, and underscores the growing significance of the edible insect 63 
industry. With this, the edible insect market’s worth is predicted to rise up to 1.96 billion by 2026, 64 
and 7.2 billion € by 2030 (Interreg NWE, 2020). 65 

Alternative protein sources offer promising solutions to various pressing challenges, including 66 
addressing food security, improving human health, and mitigating environmental impacts (Sobczak 67 



 
   
 
et al., 2023). In this context, insects emerge as a sustainable protein source for human consumption, 68 
as they efficiently convert feed into protein, requiring fewer resources (water, land, labor) and 69 
generating fewer emissions compared to traditional livestock (Skrivervik, 2020). 70 
The justification on the sustainable benefits of alternative proteins is not straightforward and 71 
requires multi-perspective holistic assessment of complete value chains (Veldkamp et al., 2022), 72 
especially when the utilization of side-streams and wastes is involved in the production process 73 
(Smetana, 2020). Life Cycle Assessment (LCA) and other multicriteria studies dealing with 74 
production of insects, microalgae, fungi and mycoproteins, leaf proteins and underutilized plants 75 
for food and feed purposes identify wide ranges of results. Variations in approaches and methods, 76 
such as system boundaries and functional units create challenges for sustainability assessment 77 
comparisons between studies (Parodi et al., 2018b; Pleissner and Rumpold, 2018; Smetana et al., 78 
2018). Furthermore, available sustainability studies are fragmented, not covering the whole 79 
spectrum of conditions (e.g., infrastructure, processing, product formulation), relying on various 80 
methodologies and different system boundaries for the assessment (Bosch et al., 2019; Smetana et 81 
al., 2021).  82 

Insects as an alternative protein source have all the mentioned aspects of sustainability assessment 83 
challenges. There is a vast variety of insect species suitable for mass production for food and feed 84 
purposes (Ortiz et al., 2016), which can be produced on different feeding substrates affected by 85 
climate conditions of various locations (Oonincx et al., 2015; van Huis et al., 2021). Insects have 86 
different development cycles and can be utilized at various development stages (Halloran et al., 87 
2016). They can serve as waste recirculation agents in food systems, returning nutrients to soils 88 
(Gold et al., 2018; Ojha et al., 2020; Poveda, 2021), feed (Ites et al., 2020) and even food (Smetana 89 
et al., 2020, 2019).  90 

Such fragmentation and inconsistency in sustainability aspects (Macombe et al., 2019; Niyonsaba 91 
et al., 2021; Smetana et al., 2021; van Huis et al., 2021) indicate the need in the development of an 92 
integrated sustainability assessment framework, which would analyze different stages of insect 93 
production from multiple perspectives and define the optimal variants of production. A few insect 94 
producing companies and research teams involved in EU Horizon 2020 project SUSINCHAIN 95 
(SUStainable INsect CHAIN) highlight the demand for such a multi-objective optimization (MOO) 96 
tool in order “to contribute to novel protein provision for feed and food in Europe by overcoming 97 
the remaining barriers for increasing the economic viability of the insect value chain.” (Veldkamp 98 
et al., 2022). To clarify, A MOO problem consists of simultaneously optimizing (i.e., looking for 99 
the minimum or the maximum) multiple conflicting objectives under several inequality and 100 
equality constraints and discrete or mixed variable types. MOO results in a set of trade-off solutions 101 
between the competing objectives known as Pareto optimal solutions instead of one single best 102 
solution.  103 

The biggest advancements in evaluating multiple criteria (objectives) for the holistic sustainability 104 
assessment are connected to the need to integrate economic, social and environmental pillars 105 
(Azapagic et al., 2016; Florindo et al., 2020), combined with fuzzy logic algorithm and analytic 106 



 
   
 
hierarchy process methods (Florindo et al., 2020; Zheng et al., 2019), or using multidimensional 107 
Pareto optimization for economic and environmental aspects (Ostermeyer et al., 2013). While the 108 
application of multicriteria analysis in sustainability assessment studies is well described in 109 
literature, it is notably absent in studies dealing with insects.  110 

Multi-objective optimization methods can be categorized into two groups: the Pareto and 111 
scalarization (Gunantara, 2018). Pareto methods are nature-inspired such as multi-objective 112 
metaheuristics, where a population represents a set of feasible solutions (Coello, 2009). The 113 
population is then developed iteratively throughout the mechanism of reproduction of selected 114 
individuals until a termination condition is met (Deb et al., 2016). The multi-objective methods can 115 
be based on various strategies, such as elitism, as illustrated by methods like Strength Pareto 116 
Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorting Genetic Algorithm II(NSGA-II) 117 
(Deb et al., 2000; Zitzler et al., 2001), decomposition, as exemplified by Multiobjective 118 
Evolutionary Algorithm Based on Decomposition (MOEA/D) (Qingfu Zhang and Hui Li, 2007), 119 
and dominance concepts, which include methods like  dominance rank e. g., MultiObjective 120 
Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993), dominance depth e.g., NSGA (Srinivas 121 
and Deb, 1994) and dominance count e.g., SPEA (Zitzler and Thiele, 1998). There are also multiple 122 
methods of scalarization that consists of converting a MOO problem into a simple objective 123 
problem. Among these methods we consider the well-known weighted sum method which consists 124 
of multiplying each objective by positive weights where each expresses the relative importance of 125 
the associated objective, the !-constraint (Barichard, 2003) that consists of converting k-1 of the k 126 
objectives of the problem into constraints and separately optimize the remaining objective and the 127 
method goal programming (Zerdani 2013) that consists of minimizing the distance, according to a 128 
given metric, between the current solution and the aspirations of the decision-maker. 129 

In the context of insect production, performance depends on the quality of feed used. However, 130 
there is a conflict between the environmental impact and economic value while choosing the feed 131 
(Smetana et al., 2021). Insects can be produced on waste, but then product safety, legal and social 132 
acceptance can become barriers (Chia et al., 2019; Van Huis, 2022). Given these various factors 133 
that affect insect value chains performance, it is necessary to develop a MOO framework for 134 
finding suitable compromises between the conflicting objectives of insect production. The 135 
objectives considered should account for the three aspects, namely environmental impact, societal 136 
concern and economic viability. The final goal of framework application and MOO modelling is 137 
to find a set of Pareto-optimal solutions, from which a human decision maker will eventually select 138 
one final compromise. 139 

Considering the need in the development of an integrated framework for sustainability assessment 140 
of insect production chains (Veldkamp et al., 2022) and identification of Pareto optimal variants of 141 
chains (Smetana et al., 2021; Spykman et al., 2021), current conceptual review study is aimed to 142 
define the optimization models (objectives) for sustainable insect production chains. The review 143 
approach relied on the identification of environmental, social and economic hotspots described in 144 
literature dealing with insect production. It was followed by identification and development of 145 



 
   
 
mathematical models, describing different aspects of sustainability of insect production, which can 146 
be integrated in a multi-objective optimization framework.   147 

2. Methodological approaches  148 

Identification of sustainable hotspots 149 

In Figure I, the process of growing insects (either for feed or food) is illustrated, though it can vary 150 
considerably, most of the time follows this general scheme. It typically begins with the production 151 
of feed ingredients, followed by the introduction of eggs or larvae (also known as seed larvae) in 152 
the rearing vessel together with the selected feeding substrate. The rearing units can be continuous 153 
or batch systems (Newton and Sheppard, 2012). The rearing process can take from a few days to 154 
several weeks, depending on the insect species and the stage of their life cycle they are harvested, 155 
as explained in (IPIFF, 2022; van Huis et al., 2013). Next follows harvesting of the insects, where 156 
the insects are separated from the frass. Frass consists of insect excrement, leftover feed together 157 
with dead insects or body parts such as shells, wings, legs and others (IPIFF, 2022). The last point 158 
of insect cultivation/production is insect processing. The processing route varies with the final 159 
product but mostly consists of steps like killing, washing, drying and fractionation (IPIFF, 2022; 160 
van Huis et al., 2013). 161 

Insect production is similar to cattle production in the sense that both deal with animals and need 162 
similar inputs to grow and reproduce (European Commission, 2019). Type of feeding substrate and 163 
feed production system becomes one of the critical points defining the sustainability of insect 164 
production (Bosch et al., 2019). Most farmed insect species are omnivores which shows that their 165 
diet is flexible, meaning they can grow for several generations fed on suboptimal or alternative 166 
substrates (Ortiz et al., 2016). But current European legislation prohibits feeding substrates that are 167 
not of vegetal origin or is considered post-human consumption waste (European Commission, 168 
2019).  169 

A growing product range from insect production requires the implementation of specific 170 
legislation, standards, labelling and other regulatory instruments to protect consumers from 171 
possible health risks associated with their consumption. These risks can be biological (bacterial, 172 
viruses, fungi, parasites), chemical (e.g., mycotoxins, pesticides, toxic metals) or of other origins 173 
(FAO, 2021). Presently, there are some regulations in place for that end such as (European 174 
Commission, 2015) – this is because in the EU all insect-based products (whole insects, their parts 175 
or extracts) meant for human consumption fall under the name of “novel food products”. Within 176 
the insect production chain, various activities within each production phase can have varying 177 
impacts on each sustainability dimension. For example, the type of substrate used during the rearing 178 
phase can have significant environmental impacts (Smetana et al., 2019) and economic aspects 179 
because of the feeds’ influence on insect development times (Spykman et al., 2021). To determine 180 
impact improvement opportunities to be tackled in the developing framework, sustainability 181 
hotspots were identified along the production chain, as described in Table 1. 182 

 183 



 
   
 
 Establishment of an integrated framework of optimization models 184 

The sustainable efficiency of insect production and consumption is influenced by multiple aspects, 185 
which cannot be systematically measured and analyzed. To achieve multi-objective optimization 186 
(MOO) for insect production chains, a specific framework structure should be established, leading 187 
to the determination of key objectives (goals of optimization), variables, constraints, and 188 
sustainability trade-offs. 189 

The framework follows three main phases: (1) identification of data and information categories 190 
relevant to the objectives of the methodological framework; (2) development of the methodological 191 
framework through combination of existing models and/or development of new approaches for 192 
different objectives; and (3) validation and refining of the methodological framework (McMeekin 193 
et al., 2020). The proposed stages and steps of the integrated framework of MOO are divided into 194 
three main stages and nine steps (Table 2, which will be used to define key objectives and 195 
constraints relevant to the sustainability of insect production chains.  196 

Identification of sustainable hotspots in insect value chains and relevant objectives, emphasize the 197 
need for systematic multi-objective optimization approach. A stepwise procedure is proposed, 198 
which begins with modeling value chain establishment and collection of data related to direct 199 
impact (production and quality of feed, insect biomass yield, generated wastes, as well as directly 200 
consumed resources). Further framework levels include integrated assessments applicable to the 201 
complete value chains targeting environmental (LCA), social (social impacts, e.g., fair wage), and 202 
economic (cost analysis) aspects. The final optimization stage deals with data interconnection and 203 
interoperation for the implementation of MOO algorithms. Application of defined framework to 204 
the insect production chains, makes it possible to define few key objectives and constrains relevant 205 
to sustainability of insect production chains.  206 

Table 2. Proposed steps and stages of integrated framework of optimization models 207 

Framework stages:  Steps of optimization models application 

1. Modeling, 
biomass handling 
and resource use 

(1) Value chain model establishment (material flow model, 
modular input-output frameworks) 

(2) Feed production and properties estimation (resource use, 
nutritional properties) 

(3) Direct use/transformation of biomass (feed conversion 
efficiency, amount of insect biomass generated, amount of 
frass produced) 

(4) Direct use of resources by insect production (energy, water, 
renewable energy) 

2. Assessment and 
Economic 
analysis 

(5) Integrated environmental impact in cradle-to-gate (grave) 
approach (LCA) 

(6) Fair wage potential (or similar) identification 



 
   
 

(7) Total annual cost analysis (e.g., CAPEX and OPEX 
combined)  

3. Optimization (8) Data management and interconnections identification 
(9) MOO algorithms application  

 208 

3. Defined Objectives in MOO sustainable framework for insect production 209 

In this paper, we defined a set of objectives for the purpose of optimizing insect production from a 210 
multi-objective perspective. The formulation of each objective aims to address specific concerns 211 
related to insect production and its impact on environment, society, and economy. In this section, 212 
we will introduce each of these objectives, their significance and their role in the multi-objective 213 
optimization framework for insect production. The set of objectives presents the foundation for our 214 
methodological framework, and consequently clear assessment of the sustainability of the insect 215 
value chain. The objectives are as follows: 216 
 217 

Analysis of environmental aspects and resource efficiency  218 

● Integrated environmental impact (ENV): 219 

Insects are perceived as one of the environmentally preferred alternatives to currently used 220 
ingredients of food, feed, fuel and other industries (Ites et al., 2020; Manzano-Agugliaro et al., 221 
2012; Mlcek et al., 2014). Such perception is associated with their relatively high feed conversion 222 
rate (1.7-3.6%) and ability to feed on a variety of materials, including some side-streams and waste 223 
materials (Gligorescu et al., 2020; van Huis, 2013). Environmental impact of insect production 224 
depends on a variety of factors - insect species, feed, farming conditions such as reducing food 225 
waste, as they can be used as a feed source for insects (Smetana et al., 2021) to name a few. In 226 
some cases, though, insects can have a relatively high environmental impact in energy use and 227 
global warming potential (Smetana et al., 2021). Accounting for the various aspects of 228 
environmental impacts of insect production stages is not a viable strategy, when multiple social 229 
and economic aspects are considered. Moreover, for construction of such a comprehensive system, 230 
compatibility and comparability between different studies are needed. It is especially important as 231 
even within research of insect production impacts, different system boundaries, methodologies, 232 
production scales or impact categories are used. It makes it very difficult to compare or integrate 233 
results of different studies (Smetana et al., 2021). There are two potential ways out for this problem: 234 
(1) select a limited number of environmental factors playing the crucial role; or (2) integrate the 235 
environmental impacts from different approaches in a similar single score. First approach, while 236 
viable, is limited due to the potential elimination of important environmental factors. While the 237 
second way faces the challenges of method standardization and might require further development 238 
(Bosch et al., 2020). Work on MOO, where compatibility is crucial for appropriate optimization, 239 
affirms the need for integrated environmental impact, able to provide compatible, standardized 240 
information and thus clear overview of the insect-production-centered flow of materials, energy, 241 
impacts and value. In this case, multi-objective optimization should incorporate a  unified 242 



 
   
 
environmental impact score, consistently calculated across different stages of insect production. 243 
This entails adopting a modular approach to assess insect value chains (Spykman et al., 2021) and 244 
applying established Life Cycle Impact Assessment methods to consolidate impacts to a single 245 
score. 246 

● Direct energy use (DEU): 247 

DEU refers to the amount of energy needed throughout the insect production; it also includes the 248 
energy needed to produce feed for the insect. As the production of insects at scale is still new, 249 
optimizing energy use is key, because insect production can have high energy use impacts when 250 
compared to their alternatives (e.g., fishmeal, chicken). For example, one study found that cricket 251 
production at industrial scale could result in energy use values similar to that of chicken (Lundy 252 
and Parrella, 2015). Energy demands are considerable due to the controlled climate, including 253 
heating, needed during the rearing phase (van Huis and Oonincx, 2017). The heating is necessary 254 
because ambient temperatures dictate insect body temperatures; however, this also means that feeds 255 
can be used more efficiently (van Huis and Oonincx, 2017). Depending on the chosen insect feed, 256 
high energy use can also be associated with the feed production phase. Energy use is not always 257 
directly reported in studies; some only report global warming potential (GWP) or GHG emissions 258 
as metrics related to climate change. While DEU is not directly correlated with climate change 259 
impacts, a high energy use can indicate high climatic impacts. As energy decoupling becomes more 260 
prevalent with the advancements in renewable energy, a high DEU will not be linked to as high of 261 
climate impacts. The potential for this is briefly discussed in the following section.  262 

● Renewable energy use share (RES) 263 

As seen above, RES is an important factor in insect production systems. RES refers to the 264 
percentage of electricity and heat that is sourced from renewable energy. It is not intrinsically 265 
related to the production of insects; it is an external factor. However, the management of insect 266 
production could efficiently alter this aspect and thus change the impact on the environment. In 267 
conventional systems, RES is dependent on the national energy mix for the energy supply. 268 
Alternative choices for more sustainable sources of electricity, generated by solar or wind 269 
generators, as well as geothermal sources, provided by the suppliers, can be a viable strategy for 270 
the improvement of resource efficiency and environmental impacts. Insect producing companies 271 
can specifically decide to purchase renewable energy for their operations. Options for this include 272 
buying certificates for renewable energy, using power purchase agreements to contract supply of 273 
renewable energy, purchasing renewable energy from utilities, or generating own renewable energy 274 
for consumption (IRENA, 2018). A higher renewable energy share is largely desirable because 275 
emissions, leading to global warming damages, are much higher in energy derived from fossil fuels 276 
(Sims et al., 2003). Currently, for the EU, RES is around 21% with a set target up to 40% in 2030 277 
(European Commission, 2022). Such information indicates that increases in RES will make insects 278 
much more sustainable in terms of energy use.  279 

● Direct water use (DWU) 280 

Insect production chains require water for the multiple production phases (Rumpold & Schlüter, 281 
2013), such as insect rearing phase and harvest phase (Table 1). Water footprint of insect 282 



 
   
 
production chains can have similar impact to other animal production systems. For example, one 283 
study found that crickets had a similar water use efficiency to chickens (Halloran et al., 2017). 284 
Furthermore, water use can vary substantially across insect species. Another study found that 285 
mealworms required almost ten times more water than cricket farming (Miglietta et al., 2015). As 286 
with energy use, high water use is also associated with the feed production phase and can vary 287 
considerably depending upon the substrate used (Ites et al., 2020; Roffeis et al., 2017). However, 288 
in most cases, water use for insect production that excludes the feed production phase is much 289 
lower than that of livestock systems (Halloran et al., 2017). While it is important to account for the 290 
water footprint (water use upstream, direct water use and water use downstream) for the insect 291 
production chains, in most cases it is not in the abilities of the insect production company to 292 
effectively change upstream and downstream processes. The reduction of the direct water 293 
consumption (use) on the other hand can be an efficient resource preservation strategy. DWU refers 294 
to the water supplied for the consumption (tap water) directly for the insect production stage. To 295 
date, DWU has only been quantified in a limited number of studies (Bava, et al. 2019, Ites, et al. 296 
2020) but could serve as a viable and easy to account factor for the determination of water use 297 
efficiency.  298 

● Feed conversion efficiency (FCE) 299 

FCE refers to the ability of the insects to ingest and convert the amount of feed provided into insect 300 
biomass and is typically expressed in percentage dry mass (% DM). For insect production to 301 
successfully upscale and become a profitable business, insects’ feeding conversion efficiencies on 302 
wastes and side streams need to increase and remain consistent. A major obstacle in upscaling is 303 
the inconsistency in insect performance when the nutritional composition of the feed slightly 304 
changes, leading to variability in produced insect biomass. Various factors can influence the feed 305 
conversion efficiency, such as, the insect species (Oonincx et al., 2015), type of feed and its 306 
nutritional composition (van Broekhoven et al., 2015), larval density (Deruytter and Coudron, 307 
2022) and development times (Lalander et al., 2019). For example, Lalander et al. 2019, 308 
demonstrated the FCE (referred to as biomass conversion efficiency) for Hermetia illucens varied 309 
from 0.2 to 13.9% DM when reared on digested sludge and food waste, respectively, with 310 
development times ranging from 14 days to 42 days. To assist with increasing FCE on various 311 
types of feed and shortening development times, research has focused on formulating diets to 312 
increase performance and reduce the variability among the many types of feeds. For instance, Gold 313 
et al. 2020 formulated differing biowastes to have the same protein-to-non-fiber carbohydrates 314 
(NFC) ratios of 1:1 to increase and stabilize H. illucens performance among the wastes. Although 315 
the FCE (bioconversion rate) improved on the formulated feeds compared to the individual wastes, 316 
the FCE (described as bioconversion rate) still varied among the different formulated diets ranging 317 
from 15 to 32% DM (Gold et al., 2020). Further research is aiming to identify other nutritional 318 
factors that could reduce the variability in insect performance. However, the nutritional needs to 319 
improve feed efficiency may differ among different insect species: Oonincx  (Oonincx et al., 2015) 320 
showed that four different insect species reared on the same feed (food waste and by-products) 321 
resulted in different FCEs. The two species more suitable for animal feed (e.g., Argentinean 322 
cockroaches and H. illucens) had higher conversion efficiencies compared to the edible insect 323 
species (e.g., T. molitor and house crickets). Therefore, identifying areas where to optimize FCE 324 



 
   
 
among various insect species would provide guidance to insect production facilities on how to 325 
create a more reliable and consistent production of insect biomass. 326 

● Nutritional value of feed index (NVF) 327 

The NVF measures the nutritional value of insect feeds and is derived based on the concept of 328 
nutrient profiling algorithms, which are extensively used to rank food items and diets based on 329 
nutrient density. Examples of such algorithms include the nutrient-rich food (NRF) index and 330 
Nutrient Density to Climate Impact (NDCI) (Drewnowski and Fulgoni, 2008; Fulgoni et al., 2009; 331 
Smedman et al., 2010). They measure nutrient intakes against daily recommended nutrient intake 332 
values. We follow a similar approach to rank different feeds based on their nutrient density. Insects 333 
do not have well established recommended intake values for specific nutrients or components. They 334 
do, however, have baseline diets that experts have deemed to be optimal for insect performance 335 
(Cammack and Tomberlin, 2017; Hogsette, 1992). Thus, we equate these baseline diets to the daily 336 
recommended intakes mentioned earlier. This assumes that these current baseline diets are the 337 
’golden’ standard for insects (with assumption that they will be further confirmed, improved and 338 
standardized). However, in the absence of more specific data, this is the best available option. 339 
Insect diets generally report ash content, protein, fat, carbohydrates, and amino acids. Thus, we 340 
include these in the NVF index. The index has a range of 0 to 100, with 100 indicating a perfect 341 
match of the baseline diet. A higher nutritional value means that the conversion efficiency might 342 
be higher which would be beneficial in terms of optimal outcomes.  343 

●  Amount of insect biomass (AIB) produced 344 

The ability of a production system to supply the needed amount of biomass with required properties 345 
would to a great degree define the business relevance of an insect farm. Pilot industrial scale 346 
production of insects required a minimum reach of one ton per day of fresh weight insects (van 347 
Huis et al., 2013), however modern insect production facilities can produce 100-1,000 times higher 348 
amounts of biomass. Such a rapid increase in scale in just under a decade, and foreseen future 349 
increases, call for the analysis of available resources needed to produce insects, especially feed. 350 
Species destined for mass production should have high potential of biomass transformation; high 351 
feed conversion rate (1.7 for fresh weight); short development cycle; high survival and high 352 
oviposition rate, as well as potential to be used for food and feed. Available literature indicates that 353 
H. illucens and species of mealworm have a potential to transform low value food waste into usable 354 
biomass (rich in fats and proteins). H. illucens fed on brewery grains or expired food is more 355 
environmentally and economically efficient than composting and biogas production (Ites et al., 356 
2020). Insect species accumulate proteins very efficiently – Tenebrio molitor utilizes 22-45% of 357 
dietary proteins, H. illucens larvae about half (43-55%), whereas an optimized diet leads to more 358 
efficient use of feed often available from commercial combined feeds (Allegretti et al., 2018; 359 
Magalhães et al., 2017; Orkusz, 2021; Renna et al., 2017). When it comes to renewability and 360 
digestibility of insect biomass, H. illucens has a better energy to energy efficiency than soymeal 361 
(Allegretti et al., 2018). The conversion efficiency from 75% lignin rich olive pomace residue to 362 
insect biomass is high, with 33% for protein, 79.76% for lauric acid, and 65.05% for palmitoleic 363 
acid (omega 7) (Ramzy et al., 2021). Nutritional value of insects (see further) could vary in quite 364 
a range, depending on the feed composition and conditions of growth. However, it can be 365 



 
   
 
hypothesized that the amount of produced insects (biomass) can serve as an indirect indicator of 366 
the impact of company production on the feed or food market.  367 

●  Amount of insect frass (AIFr) generated 368 

Frass is an essential by-product from insect biomass production that can help boost the commercial 369 
viability of insect farming systems by providing an extra revenue stream. Frass is a good soil 370 
amendment since it is high in carbon (C) and nitrogen (N) depending on the insect diet. T. molitor 371 
frass can be utilized to make high-quality bio adsorbents (van Huis et al., 2013; Yang et al., 2019), 372 
and H.illucens frass has the potential to be used as a biofertilizer (made from either poultry waste, 373 
brewery waste or green market waste) (Quilliam et al., 2020). One limiting factor for the frass 374 
application indicated in legal documents is the need for the frass hygienisation (treatment for 1 375 
hour for 70 degrees Celsius) (Elissen et al., 2023). Such treatment may potentially affect the 376 
fertilizing properties of the frass.  High nutrient availability after frass addition to soil might result 377 
in significant quick losses of C (as CO2, partly CH4) and N (specially N2O) gases and decreasing 378 
the ecological advantages associated with insect-based proteins (Halloran et al., 2017; Houben et 379 
al., 2021; Kagata and Ohgushi, 2012; Quilliam et al., 2020). Inclusion of insect frass into biogas 380 
production also shows promising outcomes, since it is a sustainable soil amendment and plant 381 
fertilizer. Gärttling et al. found that the frass produced by H.illucens had nutritional composition 382 
of 3.4% N, 2.9% P2O5 and 3.5% K2O (Gärttling et al., 2020). The insect frass could be used to 383 
replace some artificial nitrogen fertilizers and offset their emissions (Poveda 2021). Thus, the 384 
amount of frass could serve as an indicator for the potential of insect production for the 385 
multifunctionality and thus for the more robust production system.  386 

Analysis of social aspects 387 

● Fair wage potential (FWP) 388 

Social impacts of insect production chains are currently poorly investigated. The only study 389 
(Macombe et al., 2019), highlights possible positive social effects associated with job creation, 390 
while negative impacts might be associated with allergy risks for the workers and potential 391 
disturbances to the neighborhoods. The last issue is suggested to be solved by the careful selection 392 
of the locations for the insect production industry study (Macombe et al., 2019) and therefore can 393 
be eliminated from the important factors. Job creation, however, is a powerful aspect, which can 394 
determine the social success of the insect production chains. Therefore, it is necessary to define the 395 
weight of the factor in relation to variable conditions.  396 

Income and wage are integrative and deterministic factors, reflecting the standard of life and well-397 
being of workers. While it is not expected that wages in insect production are different than those 398 
of similar industries in the countries (Niyonsaba et al., 2021; Weinreis et al., 2023), they can serve 399 
as an integrated estimate for the overall position of insect production wages in a country. The 400 
characterization model of Fair Wage Potential (FWP) proposed by (Neugebauer et al., 2017) 401 
accounts for the actual wage paid at each step of production in comparison to a minimum living 402 
wage, relates to effective working time and includes an inequality factor to account for income 403 
inequalities. In this way, the weighting of FWP is related to the national conditions, while variations 404 
between different nations can be accounted for through additional relations. FWP proposed for the 405 



 
   
 
application in insect production chains is following the similar approach, but also includes the 406 
factor of income relations between different countries. It should be considered that this factor might 407 
not reflect high variations in the European Union but would reflect on any issues appearing in 408 
upstream and downstream processed and social impacts of insects produced in other countries.  409 

● Labor safety (LS) 410 

The level of worker safety (exposure to allergens, potential toxic substances, critical physical 411 
factors) is defined as an important factor reflecting potential negative social consequences of insect 412 
production (Macombe et al., 2019). Therefore, it is important to estimate the rate of exposure the 413 
workers can potentially get during insect production and/or the means to eliminate the potential 414 
impact. IPIFF Guide on Good Hygiene Practices for EU producers of insects as food and feed 415 
(IPIFF, 2022) equalizes the requirements regarding personal protective equipment (PPE) in the 416 
insect industry with those in food production facilities. PPE recommended for workers in insect 417 
production and processing facilities include ear plugs, helmets, glasses, gloves, masks and aprons. 418 
Therefore, one of the criteria defining the optimization models should be associated with the level 419 
of personnel protection with PPE. Such a criteria can be expressed through the cost of PPE supplied 420 
annually to the workers (Gurcanli et al., 2015) in relation to the scale of production (Table 3). 421 
Potentially, the relation of costs for PPE can be also expressed in relation to the different revenue 422 
streams or external investments, however, such relations require additional research.     423 

Analysis of economic aspects 424 

● Total Annual Cost (TAC) 425 

Economic costs are a key driver of company performance and willingness to adopt new 426 
technologies. In a very general approach, it is usually divided into two main parts: cost and 427 
earnings, with the relation of those defining the profitability. It is quite hard to estimate the earnings 428 
of the insect producing companies, as there are a lot of potential selling channels with large price 429 
fluctuations on the market. Costs, on the other hand, should be always minimized and are usually 430 
well assessed by companies. Therefore, economic aspects of companies’ performance were defined 431 
through costs calculation and indicating them as an objective to minimize. 432 

4. Discussion 433 

Integration of the proposed objectives in a framework 434 

The proposed objectives, applicable for the MOO of insect production chains, can be computed 435 
and acquired using inputs from various public sources. It is recommended to follow the steps of 436 
the integrated framework for optimization models after exercising critical judgment since this paper 437 
proposes potential fragmentation of data (Table 2). The proposed steps are set according to the 438 
resources needed for a stakeholder to acquire the necessary data. Thus, the first stage of framework 439 
application indicates the set-up of the block-flow models with identification of feed amount and its 440 
properties, feed conversion efficiency, and amount of insect and frass generated. Together with the 441 
data on resources used (step 4) the framework sets the first level of the MOO application used for 442 
the core of the insect production chain (Figure II). These aspects are integrating a few key criteria 443 
and are directly related to the production of insects. Next step includes the calculation and 444 



 
   
 
integration of other external and separate aspects such as environmental impacts, social and 445 
economic factors. And the last, third step includes the MOO algorithms application.  446 

Predicted functionality and application for multi-objective optimization 447 

MOO can be applied to multiple objectives; however, it is currently efficient if applied for the 448 
optimization of two-six confronting aspects (Tanabe and Ishibuchi, 2020). The efficiency of MOO 449 
is limited due to the computing power but also with the ability to interpret the outcomes of the 450 
multi-objective analysis. Therefore, there is a potential to perform MOO with different triplets of 451 
objectives. It should be noted that the selection of three and more objectives could be performed in 452 
various combinations, but those combinations should not reflect the same characterization aspect. 453 
For example, combining direct energy use and water use, both aimed for minimization, would yield 454 
only scenarios with low resource use and would ignore the need for the high yield rates. Combining 455 
those objectives with feed conversion efficiency or amount of insect biomass produced would 456 
provide better MOO results. Therefore, the applicability of the proposed framework for the MOO 457 
of insect production relates to the selection of optimal solutions between the conflicting aspects, 458 
such as: nutritional quality of feed and feed conversion efficiency, renewable energy use and total 459 
cost, total annual cost, fair wage potential and environmental impact.  460 

There are various approaches to combining objectives, and the choice depends on the specific 461 
problem addressed by the user of the framework, as well as their priorities and constraints. 462 
Opting for a single objective and leaving out conflicting ones may not capture the full spectrum of 463 
trade-offs in the optimization problem. Conversely, considering the conflicting objectives allows 464 
users of the framework to gain insights into the trade-offs between different aspects of insect 465 
production. 466 
 467 
The interpretation of the objective function depends on the chosen objectives. For example, if the 468 
user selects both economic and environmental objectives, the objective function becomes a 469 
weighted combination of economic and environmental performance metrics. Instead of optimizing 470 
for a single metric, users must now consider the trade-offs between these objectives. The objective 471 
function represents a compromise or balance between these chosen objectives, and the resulting 472 
solutions are located on a Pareto front, representing the best achievable trade-offs. As an 473 
illustration, for the economic aspect, we can choose the following sub-objectives: minimizing Total 474 
Annual Cost (TAC) while maximizing Fair Wage Potential (FWP). For the environmental aspect, 475 
we can select sub-objectives such as minimizing Direct Energy Use (DEU), minimizing Direct 476 
Water Use (DWU), and minimizing Integrated Environmental Impact (ENV). Additionally, we can 477 
incorporate social aspects into the framework. The optimization process aims to maximize 478 
Economic Viability while minimizing environmental impact. To achieve this, we normalize each 479 
sub-objective to establish a common scale and then combine them through scalarization. 480 
Scalarization involves assigning weights to each sub-objective to reflect its relative importance in 481 
achieving the overall objectives. Subsequently, we apply one of the MOO optimization algorithms, 482 
such as NSGA-II. The final outcome consists of a set of solutions that represent trade-offs between 483 
the objectives, from which the decision-maker can select the most suitable one. 484 
  485 



 
   
 
In summary, the choice of objectives and their integration method should align with the goals and 486 
constraints of the optimization problem that the framework user is addressing. The integration of 487 
objectives is flexible and it depends on the specific needs of the user. 488 
 489 
Interrelation of the sustainability hotspots of insect production chains 490 

As seen previously, the hotspots of insect production are the production of feed, biomass farming 491 
and energy consumption, which is also supported by other studies (e.g., Smetana et al., 2021). The 492 
conceptual scheme of proposed criteria applicable to the insect production chains (Figure II) 493 
provides an overview of the connections between the selected parameters. This way, changes in 494 
one objective could cause a cascade of positive or negative effects changing the whole system. 495 
These parameters are divided into four groups according to the effect on the different aspects of 496 
sustainability: economic, environmental, social, and parameters that can be applied to a few 497 
aspects. 498 

Insect feed production has a high impact because, even though insects can grow on suboptimal or 499 
alternative substrates, the current legislation prohibits most feed materials of animal origin or post-500 
consumer waste (European Commission, 2009). Some formed foodstuffs (e.g., dairy and eggs) are 501 
exceptions1. The nutritional value of the feed affects the produced insect biomass: the more 502 
nutritious it is, the less amount is necessary to grow the insects. This reduces the costs and improves 503 
the profit margin. Feed conversion efficiency helps predict the amount of insect biomass produced. 504 
Consequently, affecting the amount of insect frass produced. Studies show that the impact of 505 
farming together with insect biomass fractionation ranges between 15 to 70% (Bosch et al., 2019; 506 
Smetana et al., 2021, 2019). This way, it also becomes important to analyze and break down the 507 
impacts in this category and refine them.  508 

Some parameters are transversal to the entire process, for example, energy or water consumption 509 
(known as direct energy use or direct water use) that accounts for the total energy and water 510 
consumed in the processes during the production of insects. In the case of energy, it’s still possible 511 
to see the share of renewable energy that is used through a third parameter. And lastly, the total 512 
annual costing looks at the accumulated cost of the entire process. To evaluate the impact of insect 513 
production, multiple objectives can affect or be affected by each other since they are all related, as 514 
seen in Figure II.  515 

Envisioned limitations 516 

Due to the novelty of using multi-objective optimization modeling for insect production, there are 517 
some envisioned limitations, as wide data gaps within the literature remain. Data on certain factors 518 
that may be of importance when finding the best possible solution is still lacking. For example, as 519 
discussed previously, social impact assessments have not been widely conducted, therefore, it may 520 
be difficult to reflect realistic scenarios or account for all possible alternatives when considering 521 
the social dimension. Additionally, with the data currently represented in the literature; many 522 
inconsistencies remain which need to be accounted for. For example, even within studies conducted 523 

 
1 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32016R0429 



 
   
 
on the same insect species, such as H. illucens, there has not been a standardized approach on 524 
feeding experiments. Experimental conditions differ across studies, with differences ranging from 525 
starting weight of seed larvae to the rearing time prior to harvesting and climate conditions used, 526 
creating difficulty when wanting to compare and find the best solution. These differences may 527 
provide some limitations because of the inability to determine the underlying influence on insect 528 
performance. Therefore, a reader should carefully consider the fragmented nature of some data 529 
used for the analysis and model construction and use the outcomes with a critical approach. Another 530 
factor that could create a potential limitation is that lab scale data does not always accurately 531 
represent or translate to industry scale. For example, larval densities typically used within literature 532 
for H. illucens can range from 0.6 larvae/cm2 (Isibika et al., 2019) to two larvae/cm2 (Gold et al., 533 
2020). However, these larval densities do not necessarily represent industry protocols, as industry 534 
suggests using larval density of three-five larvae/cm2 (Dortmans et al., 2021). Current data on 535 
standards applied in industry are still lacking, which could lead to inaccuracy when evaluating 536 
different scenarios and their social, environmental, and economic impacts. The use of a scaling 537 
factor to translate lab scale data to industrial will be essential. The insect production chain is 538 
inherently complex, so deciding alternatives for each main activity along the value chain will 539 
require different sustainability criteria to be set.  540 

Further work 541 

Creating a multi-objective criteria optimization model could provide a more holistic approach on 542 
decision-making for optimizing the insect production chain. To assist in reducing limitations for 543 
optimization modeling, further work should consist of conducting more studies and gathering more 544 
data, especially from insect production facilities. The proposed framework and MOO scenarios 545 
should be tested with the field data to define the applicable objectives, algorithms and approaches. 546 
Additionally, a standardized approach on rearing insects and life cycle assessments (possibly 547 
through the development of Product Environmental Footprint Category Rules for insect production 548 
chains or for alternative proteins) should be implemented, so that data can become more consistent 549 
and comparable to generate optimal solutions reliably. 550 

5. Conclusions 551 

Insect value chains represent a complex system with indirect connections between quality and 552 
availability of feed, environmental impacts of production, economic and social factors. Such 553 
conditions create a basis for multi-objective optimization (MOO), aimed at finding optimal 554 
production chains influenced by multiple aspects. In order to apply the MOO efficiently, the 555 
following components should be defined: (1) identified sustainability hotspots representing 556 
environmental impact, societal concern and economic viability, which can fulfill the objective 557 
requirements and expressed in quantitative manner; (2) multi-objective optimization framework 558 
for describing different aspects of sustainability of insect production; (3) algorithm of MOO 559 
framework application.  560 

The main environmental impact hotspots of insect production are associated with resource 561 
consumption of feed production, and various insect production phases. Application of alternative 562 
energy sources may reduce the energy-related impacts. Direct social impacts are associated with 563 



 
   
 
jobs created and employees’ safety. Economic hotspots include the costs of production. Such 564 
aspects are the primary candidates for the MOO framework, consisting of three stages and 565 
structured around nine consecutive steps starting from insect production chain modelling through 566 
characterization of sustainability hotspots to the application of MOO algorithms. Proposed MOO 567 
framework for insect chains is designed for the gradual application targeting first factors directly 568 
influencing the production of insects (feed properties, resources use, yield) and moving to more 569 
integrated factors affecting environment, social and economic feasibility.  570 

Proposed MOO framework might have certain limitations in ability to characterize all the aspects 571 
of sustainability. It would also require modelling and testing on the available data for the proposed 572 
objectives to define the applicability of the framework and specific algorithms of MOO which can 573 
serve the function.   574 
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Figure I. Insect production system (Cortes Ortiz et al., 2016; IPIFF, 2022; Newton and 
Sheppard, 2012) 
 



Table 1. Identified sustainability hotspots across the insect production chain. The production phases were adapted from (Spykman et al., 2021) 

Insect production system Environmental impacts Social impacts Economic 
impacts 

Production 
phase Activity Resource 

use Energy use Emissions Stakeholders  Costs/ 
Profitability 

Feed 
preparation/ 
production  

Production of feed 
ingredients/feed  
Transport of feed 
Preparation of feed for insect 
rearing 

Water  
Land 
Feed 
ingredients 

Diesel/fuel 
Electricity/ gas 

GHG 
Wastewater 
and solid 
wastes 

Creation of jobs  
CAPEX 
/OPEX 
Transport cost 

Breeding  
and nursery  

Production of eggs 
Rearing of new hatchlings  
Maintenance of adults 
Maintenance of climate 
conditions 

Water 
Land 

Electricity/ gas 
Diesel/fuel 

GHG 
Wastewater  

Creation of jobs 
Allergy 

CAPEX 
/OPEX 
Transport cost 

Insect 
rearing 

Distribution of feed to insects 
Maintenance of climate 
conditions 

Water 
Land Electricity/ gas GHG 

Wastewater 
Creation of jobs 
Allergy 

CAPEX 
/OPEX 
Development time  

Harvesting Separation of insect from residue Water Electricity/ gas GHG 
Wastewater 

Creation of jobs 
Allergy 

CAPEX 
/OPEX 

Processing  
Killing of insect 
Processing into desired product: 
Drying, fractionation, etc. 

Water 
Land  
Detergents 

Electricity/ gas GHG 
Wastewater Creation of jobs CAPEX 

/OPEX  

End-product 
handling 

Human food 
Pet food 
Animal feed  
Frass 

Packaging 
components Fuel 

GHG 
Packaging 
wastes 

Creation of jobs 
Health risk 

Retailer price 
Transport cost 

  

 

 



Table 3. Main characteristics of defined objectives applied in MOO sustainable framework for insect production 

Objective Definition 

Measurement 
unit 

(optimization 
aim) 

Equation / Calculation methodology Source 

Amount of insect 
biomass (AIB) 
produced 

Amount of insect biomass 
produced at the end of insect 
production chain as a main 
product (fresh or dried insects or 
fractions of biomass).  

ton or kg (DM) 
(maximize) !"# = !"% ∗ %'(  

Based on (Bosch et 
al., 2019) 

Amount of insect frass 
(AIFr) generated 

Amount of insect frass generated 
as a by-product of insect 
cultivation  

ton or kg (DM) 
(minimize) !"%) = *

!"%
+,%

- (1 − %'()	%)3%	
Own equation 

Direct energy use 
(DEU) 

Direct resources used for insect 
production from feed 
preparation to climate system, 
inhouse transportation and 
processing (electricity, fuel and 
gas combined) 

MJ or kWh 
(minimize) 4(5 = 6(! 78 %9, '3, 5;<, 9='>

+ (" 78 '3,5;<, 9='>

+ (# 78 ;=@ ∗ < ∗ A!>B

∗ (CD)EF3%	

Own equation 

Direct water use 
(DWU) 

Direct water consumed (blue 
water) for insect production 
from feed preparation to climate 
system, inhouse transportation 
and processing  

ton or m3 
(minimize) 

4@5 = 78 %9, '<3> ∗@GHD)3%	

Own equation 



Integrated 
environmental impact 
(ENV) 

Integrated environmental impact 
of insect production calculated 
by means of Life Cycle 
Assessment 

Ecopoints 
(minimize) IMPACT2002+; ReCiPe Endpoint or similar 

integrated methodology 

(Huijbregts et al., 
2016; Jolliet et al., 
2003) 

Feed conversion 
efficiency (FCE) 

Efficiency of feed conversion of 
feed to insect biomass 
(classically defined as relation of 
amount of insect biomass to 
amount of insect feed) 

% (maximize) 

%'( = %DDI3% ∗ +,%	

Own equation 

Fair wage potential 
(FWP) 

Fair wage potential representing 
the deviation from standardized 
salaries paid in the area and 
industry.  

FWeq 
(maximize) %@9 = *

=@
=@;

-'%$%	
Neugebauer et al. 
2017 

Labor safety (LS) Labor safety in a company 
measured as an annual supply 
(expenditure) of personal 
protective equipment for the 
workers  

€ (maximize) 

<3 = 78 99(& ∗ +&>3%'(	

Adapted from 
(Gurcanli et al., 
2015) 

Nutritional value of 
feed (NVF) 

Measures the nutritional value of 
feed  

Points 
(maximize) (+,%) =8

 

 

1
C
× *

+KH)LDCHM*
+KH)LDCHM+

× 100-	
Own equation 

Renewable energy use 
share (RES) 

Share of renewable energy used 
in insect production, based on 
statistical values from 
EUROSTAT, SHort Assessment 
of Renewable Energy Sources 
(SHARES), Suppliers of 
renewable energy sources and 
company data 

% (maximize) 

=(3 = %	P)LI=DC(C +%'QRS=DC(C
+ (%3KST=DC(C)	

Example: 
(Eurostat, 2021) 

Total annual costing 
(TAC) 

Total expenses of insect 
production calculated for annual 
values. 

€ (minimize) 
;!' = 'GSDU + VSDU	

Corbetta et al. 2017  



Note: DM – dry matter basis; AIF – amount of insect feed (dry matter basis); FrSF – frass scaling factor (depends on insect species, scale of 
production and growth conditions); Ee – electrical energy; FP – feed preparation (conditioning); CS – climate system; UTL – utilities; PRC – 
processing; Eh – heat energy; Et – transportation energy (mostly fuels); TRW – transported weight; L – distance; He – heat energy of fuel; 
EnergySF – energy scaling factor (depends on insect species, scale of production); CLS – cleaning system; Water SF – water scaling factor 
(depends on insect species, scale of production); NVF – nutritional value of feed; FeedSF – feed scaling factor (depends on insect species, 
growth conditions); RW – real wages (€/month for annual period) paid to workers employed in process of insect production; RWT – real 
working time (hours/week) of workers involving in production process; CFFW – fair wage related characterisation factor (month/€) for 
production process in relevant country, region and specific conditions; PPE – personal protective equipment cost, N – number of PPE units; SFLS 
– scaling factor (depends on the scale of production and complexity of production chain); %GridRenEn – share of renewable energy in supply 
(country) mix (Eurostat, 2021); %CompRenEn – share of renewable energy supplied by the means installed in insect producing company; 
(%SuplRenEn) – optional measure (if data is available) of renewable energy share supplied by installed means in supplied companies. Capex - 
capital expenditure; Opex - operating expenditure; Nutrientsf – nutrient amount in feed; Nutrientsb – nutrient amount in baseline diet.  

 


