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Insects oscillations

• Flying insects’ attitude wobbles 

• Flying insects’ ups & downs



Syrphid flies

Conquest of the skies (BBC)





Insects navigate by vision

[Freas and Spetch, 2022]
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 Honeybees perceive their distance travelled

[Srinivasan et al., 2000] 9



 Measuring the distance travelled

In the literature: accumulation of raw translational optic flow 𝜔! (OFacc model)

𝑂𝐹𝑎𝑐𝑐 = &𝜔! d𝑡 (1)
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n = 630 traj. 

[Bergantin et al., 2021]



Oscillations in flying insects
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[Portelli et al., 2011]

[Kirchner and Srinivasan, 1989]A
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Optic flow cues

Translational optic flow:

Optic flow divergence:

used to observe the state
Vector [Ho et al., 2017]
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13[Bergantin et al., 2021]



Optic flow cues

Optic flow divergence:
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Translational optic flow:

used to observe the state
vector [Ho et al., 2017]

[Bergantin et al., 2021]



Observability analysis

Introduction
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Observability matrix: 
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Locally observable if
 𝑢 ≠ 0, ℎ ≠ 0, 𝑣" ≠ 0
as in [Ho et al., 2017] 
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Simplified honeybee vertical dynamics [Portelli et al., 2010]:

(6)
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[Bergantin et al., 2021]



SOFIa Simulations 
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§ Optic flow regulator [Franceschini et al., 2007] 

§ Neurons sensitive to translational optic flow 
[Ibbotson, 1991; Stone et al., 2017] 

§ Neurons sensitive to optic flow divergence [Bidwell and Goodman, 1993]

§ Self-oscillations [Kirchner and Srinivasan, 1989; Portelli et al., 2011]
§ Honeybee dynamics [Portelli et al., 2010]

++

§ Optic flow regulator [Franceschini et al., 2007] 

§ Neurons sensitive to translational optic flow 
[Ibbotson, 1991; Stone et al., 2017] 

§ Neurons sensitive to optic flow divergence [Bidwell and Goodman, 1993]

§ Self-oscillations [Kirchner and Srinivasan, 1989; Portelli et al., 2011]
§ Honeybee dynamics [Portelli et al., 2010]

[Bergantin et al., 2021]



SOFIa Simulations
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Estimation of the ground height

à (𝒉 can be used as a scaling factor

Estimation of the ground height with 
an Extended Kalman Filter (EKF)

19[Bergantin et al., 2021]



The SOFIa odometer model

(Self-scaled Optic Flow Integration) 

8𝑋)*+,- = &𝜔!
./-0 ⋅ 8ℎ d𝑡 (8)

Final % error ((𝐗𝑺𝑶𝑭𝑰𝒂 − 𝐗𝐠𝐭) 
odometry of example:
§ 0,69% tail wind
§ -1,8% head wind

20[Bergantin et al., 2021]



Comparison of models

[Bergantin et al., 2021] 21

n = 630 traj. 
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Banc expérimental

Reliability of the odometer in different winds
Head wind

Tail wind

9𝑋*+,-. = ;𝜔/
01.2 ⋅ 9ℎ d𝑡

SOFIa results for head and tail wind

Modifed from Bergantin et al. (2021) Interface



Fusion strategy with 4 optic flow sensors

§ 3 translational optic flow cues
§ 2 optic flow divergence cues 

30[Bergantin et al., 2023]
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SOFIa onboard a flying robot

[Bergantin et al., 2023]



Test outdoors

[Bergantin et al., 2023]
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Embracing wobble to control attitude without 
IMU
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de Croon et al., Nature, 2022 



de Croon et al., Nature, 2022 



de Croon et al., Nature, 2022 



Flapper drone flying with optic-flow-based attitude

de Croon et al., Nature, 2022 



State update equation

Observation model 

de Croon et al., Nature, 2022 

Nonlinear observation analysis based on taking 
subsequent Lie derivatives ℒ*. ℎ, which lead to an 
“observability mapping”



The common way to proceed with (nonlinear) observability analysis is then to
perform a local analysis by differentiating H 𝒙 with respect to the state to obtain
the observability matrix 𝒪:

To find all conditions in which the matrix 𝒪 is not full rank, we solve for its 
determinant being zero. We find several solutions. Most are impossible physically.
But, the state is not strictly locally observable, as 𝑝 = 0 and 𝜑 = 0 lead to a range 
of solutions.
=> Since 𝑝 is a control input and can be set nonzero, and 𝜑 = 0 will be a transient 
state for nonzero 𝑝, the system is likely globally observable.
=> We have proved the stability of the feedback loop based on this estimate

de Croon et al., Nature, 
2022 



de Croon et al., Nature, 2022 



de Croon et al., Nature, 2022 
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Biorobotics Lab.


