How optic flow based state estimation may explain the insects' wobbles and their ups & downs?

Franck Ruffier

CNRS Research Director Institute of Movement Sciences

CNRS / Aix-Marseille University, France

franck.ruffier@univ-amu.fr

www.ism.univ-amu.fr/ruffier

Thanks to :

Lucia Bergantin (PhD student)

Xavier Daïni (PhD student)

Charles Coquet (Postdoc)

José Castillo (Postdoc)

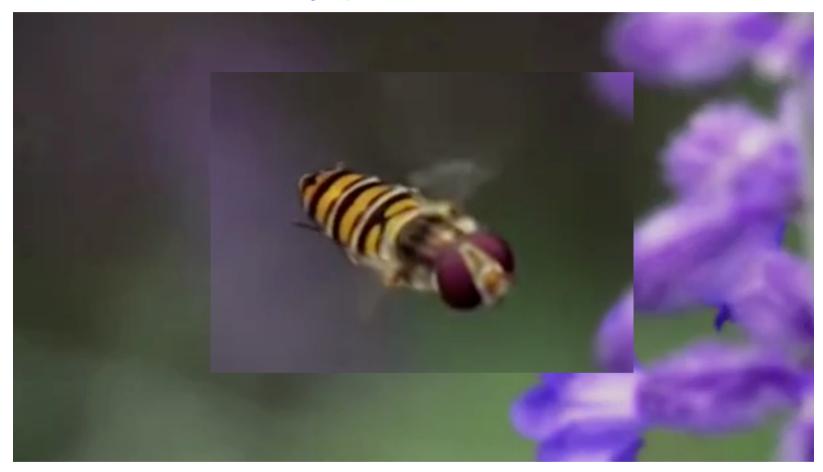
J.-M. Ingargiola (Staff Engineer)

Insects oscillations

• Flying insects' attitude wobbles

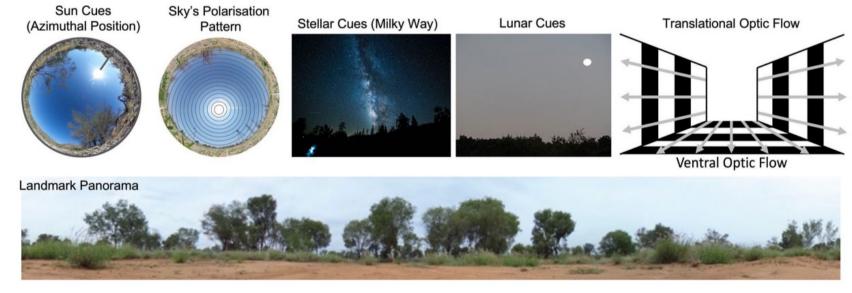
• Flying insects' ups & downs

Syrphid flies



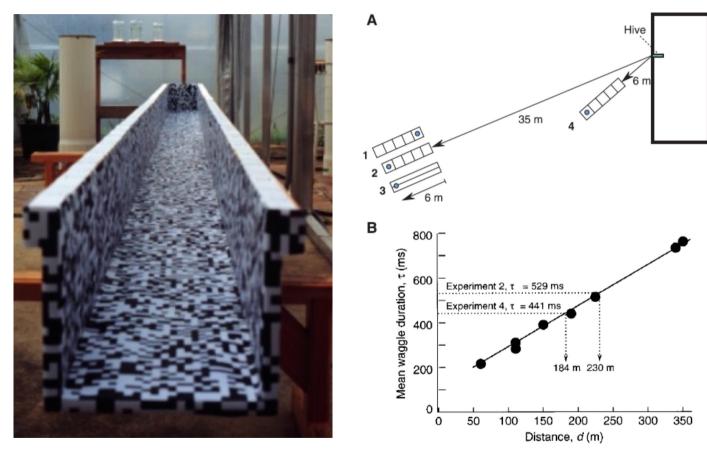
Conquest of the skies (BBC)

Insects navigate by vision



[Freas and Spetch, 2022]

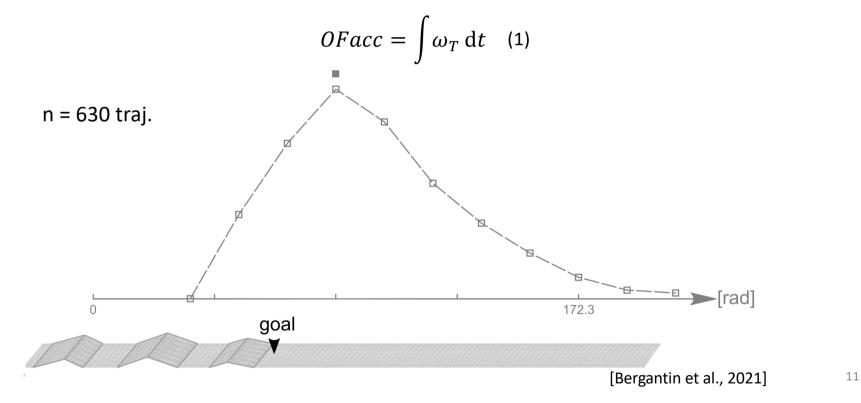
Honeybees perceive their distance travelled



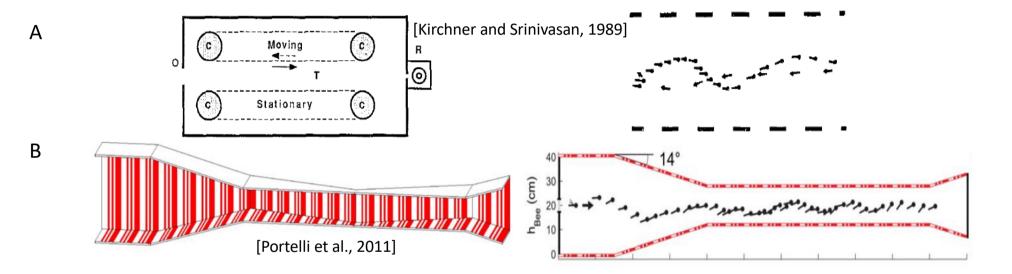
[Srinivasan et al., 2000]

Measuring the distance travelled

In the literature: accumulation of raw translational optic flow ω_T (OFacc model)



Oscillations in flying insects



Optic flow cues

Translational optic flow:

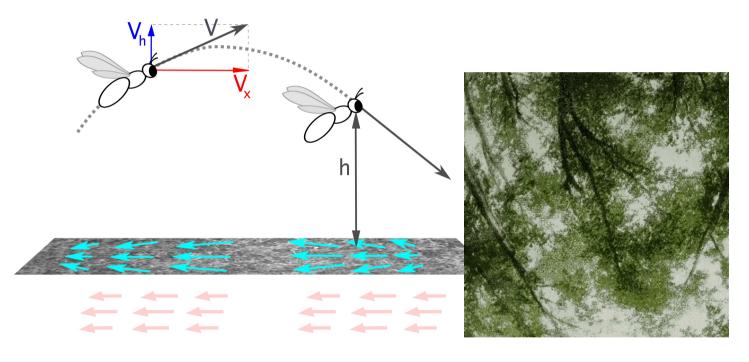
 $\omega_T^{th} = \frac{v_x}{h} \tag{2}$

Optic flow divergence:

$$\omega_{div}^{th} = \frac{v_h}{h} \tag{3}$$

used to observe the state Vector [Ho et al., 2017]

$$X = [h; v_h] \qquad (4)$$



Optic flow cues

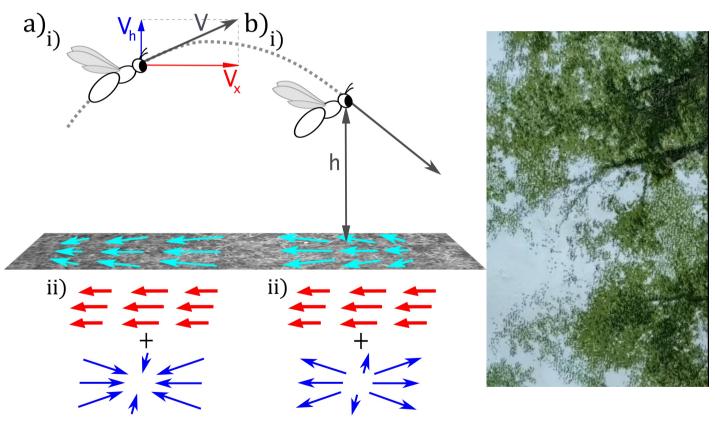
Translational optic flow:

$$\omega_T^{th} = \frac{v_x}{h} \qquad (2$$

Optic flow divergence:

$$\omega_{div}^{th} = \frac{v_h}{h} \qquad (3)$$

used to observe the state vector [Ho et al., 2017] $X = [h; v_h]$ (4)



Observability analysis

Simplified honeybee vertical dynamics [Portelli et al., 2010]:

Observability matrix:

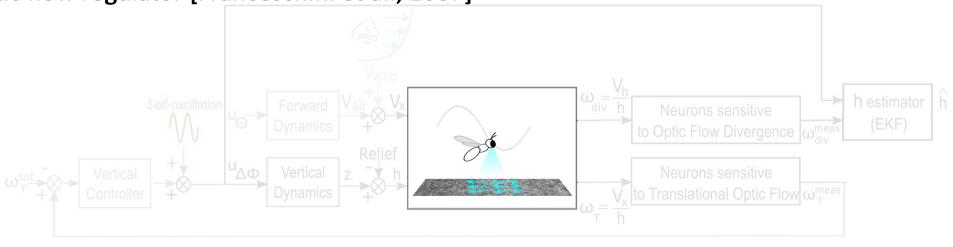
 $0 = \begin{bmatrix} L_f^0(g(x(t)) \\ L_f^1(g(x(t))) \end{bmatrix} \xrightarrow{} \text{Locally observable if} \\ u \neq 0, h \neq 0, v_h \neq 0 \\ as \text{ in [Ho et al., 2017]} \end{bmatrix}$

SOFIa Simulations

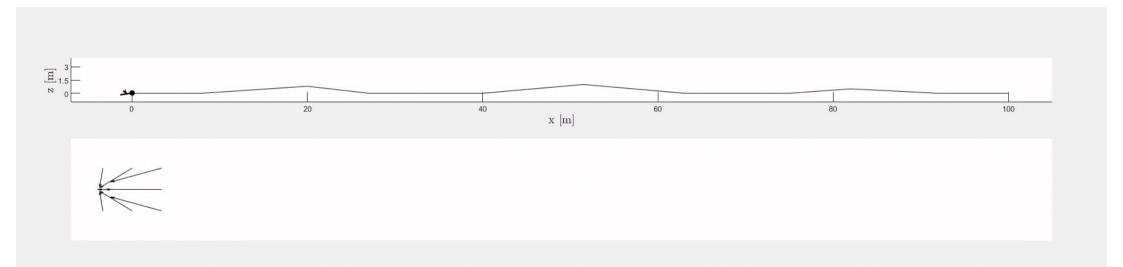
- Self-oscillations [Kirchner and Srinivasan, 1989; Portelli et al., 2011]
- Honeybee dynamics [Portelli et al., 2010]
- Neurons sensitive to translational optic flow [Ibbotson, 1991; Stone et al., 2017]

 $\begin{cases} \dot{x}(t) = f(x(t), \Delta \Phi(t)) = \begin{bmatrix} \dot{h}(t) \\ \dot{v}_{h}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{1}{\tau_{z}} \end{bmatrix} \begin{bmatrix} h \\ v_{h} \end{bmatrix} + \begin{bmatrix} 0 \\ K_{z} \\ \tau_{z} \end{bmatrix} \Delta \Phi$ (6)

- Neurons sensitive to optic flow divergence [Bidwell and Goodman, 1993]ⁱ
- Optic flow regulator [Franceschini et al., 2007]

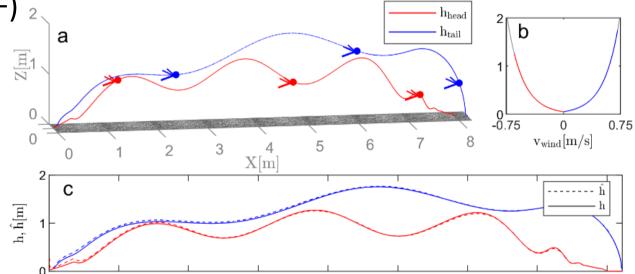


SOFIa Simulations



Estimation of the ground height

Estimation of the ground height with an **Extended Kalman Filter** (EKF) 2



$\rightarrow \hat{h}$ can be used as a scaling factor

[Bergantin et al., 2021]

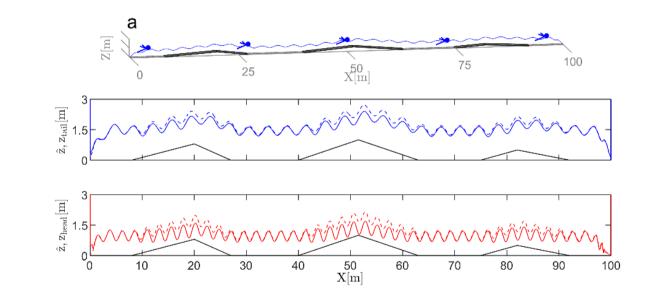
19

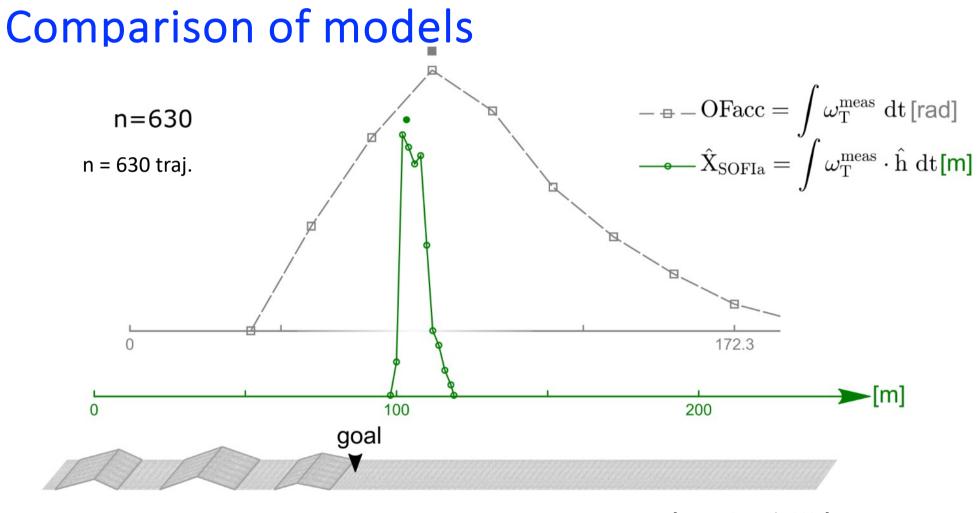
The SOFIa odometer model (Self-scaled Optic Flow Integration)

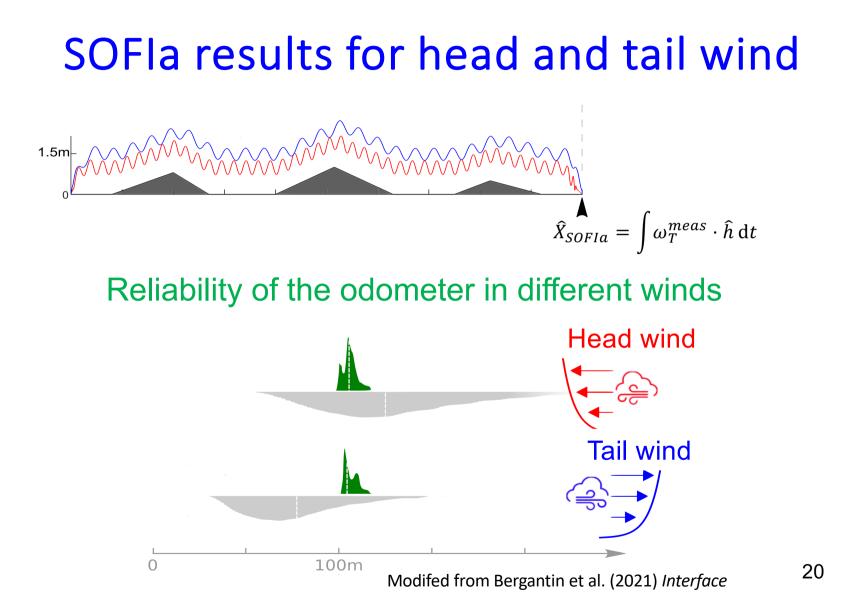
$$\hat{X}_{SOFIa} = \int \omega_T^{meas} \cdot \hat{h} \, \mathrm{d}t \quad (8)$$

Final % error ($\widehat{X}_{SOFIa} - X_{gt}$) odometry of example:

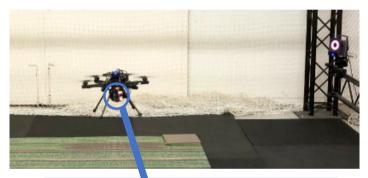
- 0,69% tail wind
- -1,8% head wind

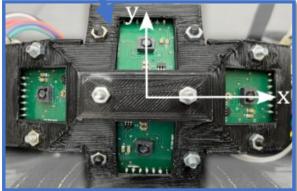




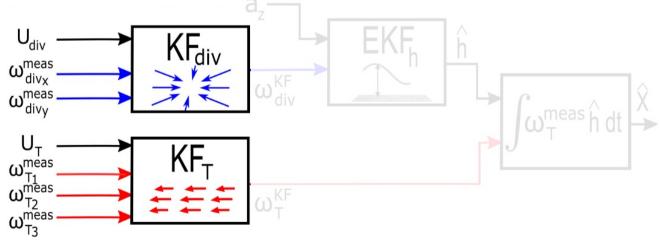


Fusion strategy with 4 optic flow sensors

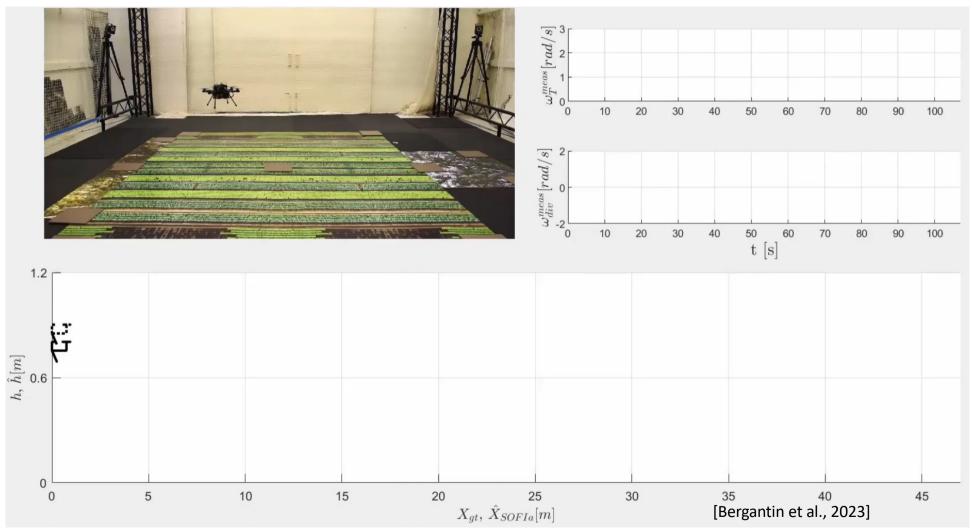




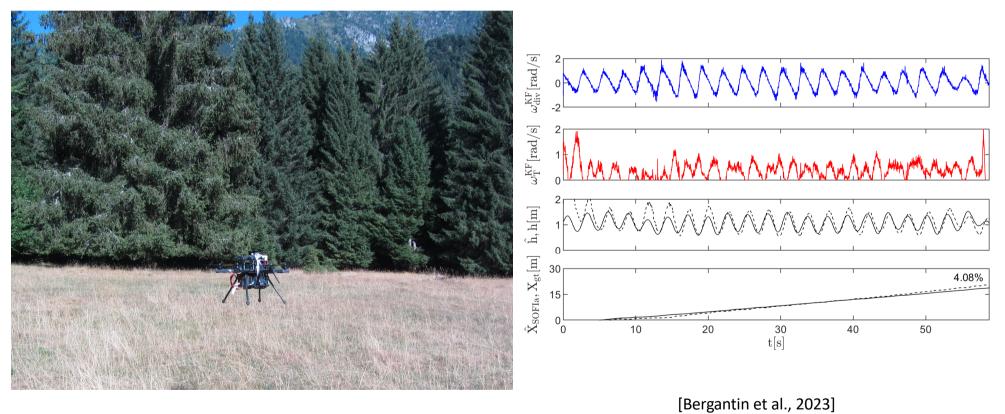
- 3 translational optic flow cues
- 2 optic flow divergence cues



SOFIa onboard a flying robot



Test outdoors

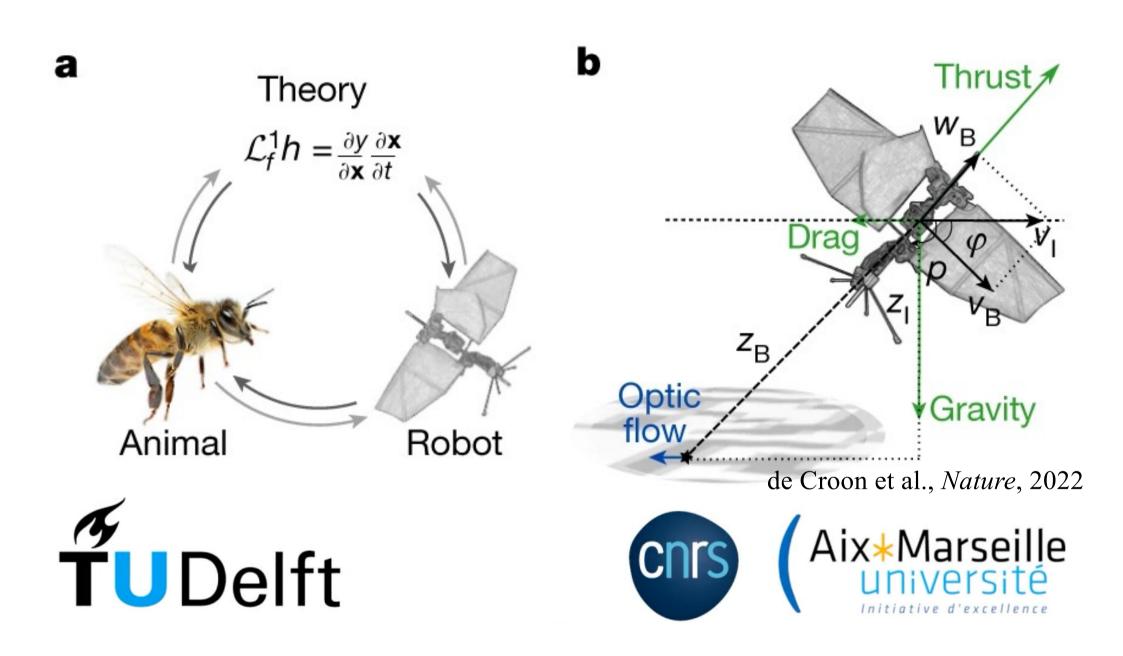


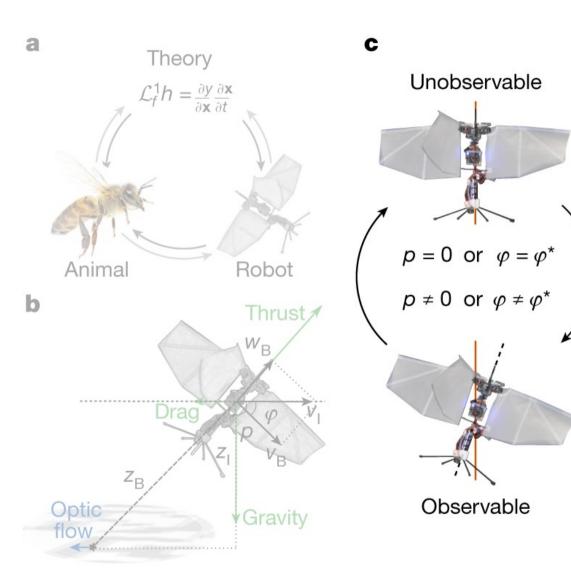
Embracing wobble to control attitude without IMU

G.C.H.E. de Croon¹, J.J.G. Dupeyroux¹, C. De Wagter¹, A. Chatterjee¹, D.A. Olejnik¹, F. Ruffier²

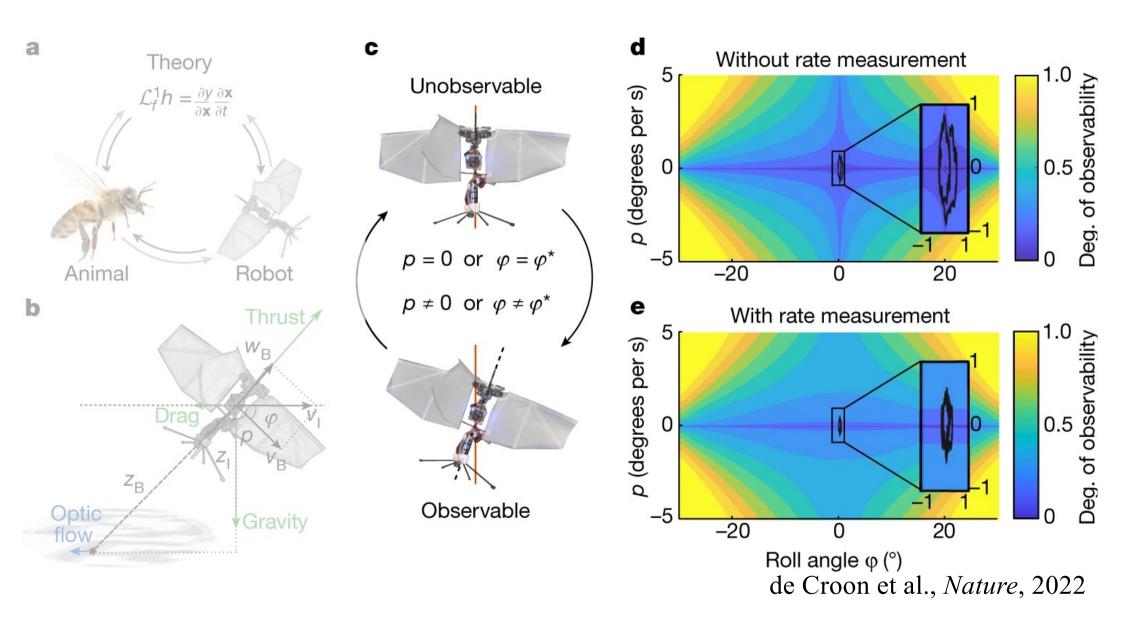
1. Micro Air Vehicle laboratory, Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands

2. Aix Marseille Univ, CNRS, ISM, Marseille, France.

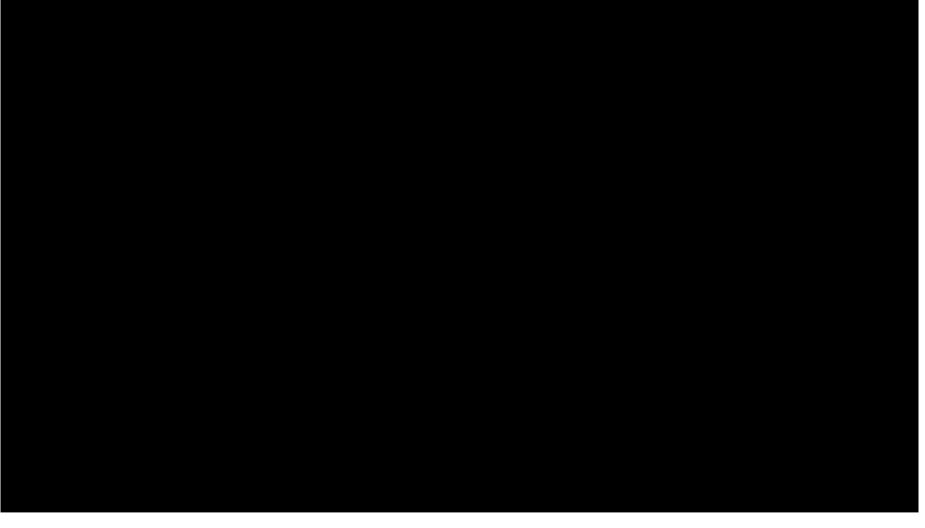




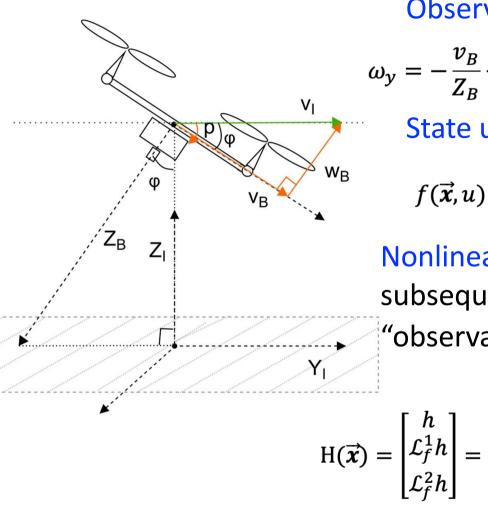
de Croon et al., Nature, 2022



Flapper drone flying with optic-flow-based attitude



de Croon et al., Nature, 2022



Observation model
=
$$-\frac{v_B}{Z_B} + p = -\frac{\cos^2(\varphi)v_I}{Z_I} + p$$

State update equation

$$f(\vec{x}, u) = \begin{bmatrix} \dot{v}_I \\ \dot{\phi} \\ \dot{Z}_I \end{bmatrix} = \begin{bmatrix} g \tan(\varphi) \\ p \\ 0 \end{bmatrix}$$
(Eq. 2)

Nonlinear observation analysis based on taking subsequent Lie derivatives $\mathcal{L}_{f}h$, which lead to an "observability mapping"

$$H(\vec{x}) = \begin{bmatrix} h\\ \mathcal{L}_{f}^{1}h\\ \mathcal{L}_{f}^{2}h \end{bmatrix} = \begin{bmatrix} y\\ \dot{y}\\ \ddot{y} \end{bmatrix} = \begin{bmatrix} -\frac{\cos^{2}(\varphi)v_{I}}{Z_{I}} + p\\ \frac{(2pv_{I} - g)\sin(2\varphi)}{2Z_{I}}\\ p\frac{2(pv_{I} - g)\cos(2\varphi) + g}{Z_{I}} \end{bmatrix}$$
(Eq. 5)
$$y = \omega_{y} = h(\vec{x})$$

de Croon et al., Nature, 2022

(Eq. 1)

The common way to proceed with (nonlinear) observability analysis is then to perform a local analysis by differentiating $H(\vec{x})$ with respect to the state to obtain the observability matrix O: $\left[\begin{array}{c} \cos^2(\varphi) \\ p \sin(2\varphi) \end{array} \right] \stackrel{p \sin(2\varphi)}{=} 2p^2 \cos(2\varphi)$

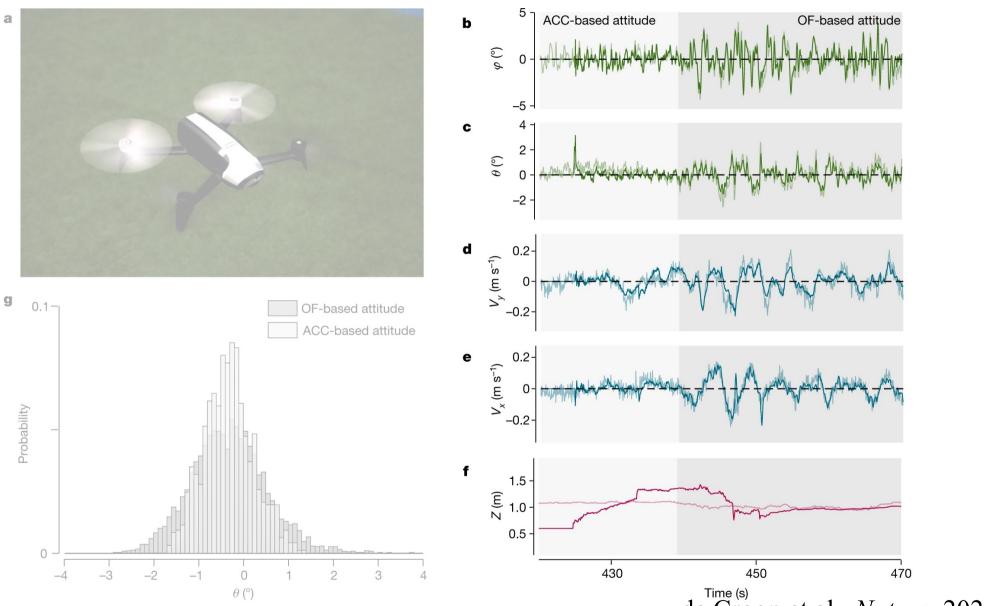
$$\mathcal{O} = \frac{\partial H(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial y}{\partial \vec{x}} & \frac{\partial \dot{y}}{\partial \vec{x}} & \frac{\partial \ddot{y}}{\partial \vec{x}} \end{bmatrix} = \begin{bmatrix} \frac{-\frac{1}{Z_{I}}}{Z_{I}} & \frac{-\frac{1}{Z_{I}}}{Z_{I}} & \frac{-\frac{1}{Z_{I}}}{Z_{I}} \\ \frac{\sin(2\varphi)v_{I}}{Z_{I}} & \frac{(2pv_{I} - g)\cos(2\varphi)}{Z_{I}} & 4p\frac{(g - pv_{I})\sin(2\varphi)}{Z_{I}} \\ \frac{\cos^{2}(\varphi)v_{I}}{Z_{I}^{2}} & \frac{(g - 2pv_{I})\sin(2\varphi)}{2Z_{I}^{2}} & -p\frac{2(pv_{I} - g)\cos(2\varphi) + g}{Z_{I}^{2}} \end{bmatrix}$$

(Eq. 6)

To find all conditions in which the matrix O is not full rank, we solve for its determinant being zero. We find several solutions. Most are impossible physically.

But, the state is not strictly locally observable, as p = 0 and $\varphi = 0$ lead to a range of solutions.

=> Since *p* is a control input and can be set nonzero, and $\varphi = 0$ will be a transient state for nonzero *p*, the system is likely globally observable. de Croon et al., *Nature*, => We have proved the stability of the feedback loop based on this estimate 2022



de Croon et al., *Nature*, 2022

