How optic flow based state estimation may explain the insects' wobbles and their ups \& downs?
 Franck Ruffier

CNRS Research Director
Institute of Movement Sciences
CNRS / Aix-Marseille University, France

Thanks to :

Lucia Bergantin (PhD student)

Insects oscillations

- Flying insects' attitude wobbles
- Flying insects' ups \& downs

Syrphid flies

Conquest of the skies (BBC)

Insects navigate by vision

[Freas and Spetch, 2022]

Honeybees perceive their distance travelled

[Srinivasan et al., 2000]

Measuring the distance travelled

In the literature: accumulation of raw translational optic flow ω_{T} (OFacc model) oFacc $=\int \omega_{T} \mathrm{~d} t \quad$ (1)

Oscillations in flying insects

A

B

Optic flow cues

Translational optic flow:

$$
\begin{equation*}
\omega_{T}^{t h}=\frac{v_{x}}{h} \tag{2}
\end{equation*}
$$

Optic flow divergence:

$$
\begin{equation*}
\omega_{d i v}^{t h}=\frac{v_{h}}{h} \tag{3}
\end{equation*}
$$

used to observe the state Vector [Ho et al., 2017]

$$
\begin{equation*}
X=\left[h ; v_{h}\right] \tag{4}
\end{equation*}
$$

Optic flow cues

Translational optic flow:

$$
\begin{equation*}
\omega_{T}^{t h}=\frac{v_{x}}{h} \tag{2}
\end{equation*}
$$

Optic flow divergence:

$$
\begin{equation*}
\omega_{d i v}^{t h}=\frac{v_{h}}{h} \tag{3}
\end{equation*}
$$

used to observe the state vector [Ho et al., 2017]

$$
\begin{equation*}
X=\left[h ; v_{h}\right] \tag{4}
\end{equation*}
$$

Observability analysis

Simplified honeybee vertical dynamics [Portelli et al., 2010]:

Observability matrix:

$$
o=\left[\begin{array}{l}
L_{f}^{0}(g(x(t)) \\
L_{f}^{1}(g(x(t))
\end{array}\right] \quad \begin{gathered}
\text { Locally observable if } \\
\\
u \neq 0, h \neq 0, v_{h} \neq 0 \\
\\
\text { as in [Ho et al., 2017] }
\end{gathered}
$$

SOFIa Simulations

- Self-oscillations [Kirchner and Srinivasan, 1989; Portelli et al., 2011]
- Honeybee dynamics [Portelli et al., 2010]
- Neurons sensitive to translational optie flow [lbbotson, 1991; Stone at ali, 2017]

$$
\left\{\dot{x}(t)=f(x(t), \Delta \Phi(t))=\left[\begin{array}{l}
\dot{\hat{c}}(t) \tag{6}\\
\dot{\nu}_{h}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
0 & -\frac{1}{\tau_{z}}
\end{array}\right]\left[\begin{array}{c}
h \\
v_{h}
\end{array}\right]\left[\begin{array}{c}
0 \\
\frac{K_{z}}{\tau_{z}}
\end{array}\right] \Delta \Phi\right.
$$

- Optic flow regulator [Franceschini et al., 2007]

SOFIa Simulations

Estimation of the ground height

Estimation of the ground height with an Extended Kalman Filter (EKF)

$\rightarrow \widehat{h}$ can be used as a scaling factor

The SOFIa odometer model

(Self-scaled Optic Flow Integration)

$$
\begin{equation*}
\hat{X}_{\text {SoFIa }}=\int \omega_{T}^{\text {meas }} \cdot \hat{h} \mathrm{~d} t \tag{8}
\end{equation*}
$$

Final \% error ($\widehat{\mathbf{X}}_{\text {SOFIa }}-\mathbf{X}_{\mathbf{g t}}$) odometry of example:

- 0,69\% tail wind
- - $1,8 \%$ head wind

Comparison of models

[Bergantin et al., 2021]

SOFla results for head and tail wind

Reliability of the odometer in different winds

Fusion strategy with 4 optic flow sensors

- 3 translational optic flow cues
- 2 optic flow divergence cues

[Bergantin et al., 2023]

SOFIa onboard a flying robot

Test outdoors

[Bergantin et al., 2023]

Embracing wobble to control attitude without IMU

G.C.H.E. de Croon ${ }^{1}$, J.J.G. Dupeyroux ${ }^{1}$, C. De Wagter ${ }^{1}$,
A. Chatterjee ${ }^{1}$, D.A. Olejnik ${ }^{1}$, F. Ruffier ${ }^{2}$

1. Micro Air Vehicle laboratory, Control and Simulation, Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands
2. Aix Marseille Univ, CNRS, ISM, Marseille, France.

THDelft
Aix $*$ Marseille
universite
Initiative d'excellence
a
Theory

Animal

THDelft

b

Robot

de Croon et al., Nature, 2022
Cirr) (Aix Mavasille

de Croon et al., Nature, 2022

Flapper drone flying with optic-flow-based attitude

Observation model

$$
\begin{equation*}
\omega_{y}=-\frac{v_{B}}{Z_{B}}+p=-\frac{\cos ^{2}(\varphi) v_{I}}{Z_{I}}+p \tag{Eq.1}
\end{equation*}
$$

State update equation

$$
f(\overrightarrow{\boldsymbol{x}}, u)=\left[\begin{array}{c}
\dot{v}_{I} \tag{Eq.2}\\
\dot{\varphi} \\
\dot{Z}_{I}
\end{array}\right]=\left[\begin{array}{c}
g \tan (\varphi) \\
p \\
0
\end{array}\right]
$$

Nonlinear observation analysis based on taking subsequent Lie derivatives $\mathcal{L}_{f} h$, which lead to an "observability mapping"

$$
\begin{aligned}
& \mathrm{H}(\overrightarrow{\boldsymbol{x}})=\left[\begin{array}{c}
h \\
\mathcal{L}_{f}^{1} h \\
\mathcal{L}_{f}^{2} h
\end{array}\right]=\left[\begin{array}{c}
y \\
\dot{y} \\
\ddot{y}
\end{array}\right]=\left[\begin{array}{c}
-\frac{\cos ^{2}(\varphi) v_{I}}{Z_{I}}+p \\
\frac{\left(2 p v_{I}-g\right) \sin (2 \varphi)}{2 Z_{I}} \\
p \frac{2\left(p v_{I}-g\right) \cos (2 \varphi)+g}{Z_{I}}
\end{array}\right] \\
& y=\omega_{y}=h(\overrightarrow{\boldsymbol{x}})
\end{aligned}
$$

$$
\text { de Croon et al., Nature, } 2022
$$

The common way to proceed with (nonlinear) observability analysis is then to perform a local analysis by differentiating $\mathrm{H}(\overrightarrow{\boldsymbol{x}})$ with respect to the state to obtain the observability matrix $\mathcal{O}: \quad\left[-\frac{\cos ^{2}(\varphi)}{Z_{I}} \quad \frac{p \sin (2 \varphi)}{Z_{I}} \quad \frac{2 p^{2} \cos (2 \varphi)}{Z_{I}}\right.$

$$
\mathcal{O}=\frac{\partial \mathrm{H}(\overrightarrow{\boldsymbol{x}})}{\partial \overrightarrow{\boldsymbol{x}}}=\left[\begin{array}{lll}
\frac{\partial y}{\partial \overrightarrow{\boldsymbol{x}}} & \frac{\partial \dot{y}}{\partial \overrightarrow{\boldsymbol{x}}} & \frac{\partial \ddot{y}}{\partial \overrightarrow{\boldsymbol{x}}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\sin (2 \varphi) v_{I}}{Z_{I}} & \frac{\left(2 p v_{I}-g\right) \cos (2 \varphi)}{Z_{I}} & 4 p \frac{\left(g-p v_{I}\right) \sin (2 \varphi)}{Z_{I}} \tag{Eq.6}\\
\frac{\cos ^{2}(\varphi) v_{I}}{Z_{I}^{2}} & \frac{\left(g-2 p v_{I}\right) \sin (2 \varphi)}{2 Z_{I}^{2}} & -p \frac{2\left(p v_{I}-g\right) \cos (2 \varphi)+g}{Z_{I}^{2}}
\end{array}\right]
$$

To find all conditions in which the matrix \mathcal{O} is not full rank, we solve for its determinant being zero. We find several solutions. Most are impossible physically. But, the state is not strictly locally observable, as $p=0$ and $\varphi=0$ lead to a range of solutions.
\Rightarrow Since p is a control input and can be set nonzero, and $\varphi=0$ will be a transient state for nonzero p, the system is likely globally observable. de Croon et al., Nature, $=>$ We have proved the stability of the feedback loop based on this estimate

g

b

c

f

de Croon et al., Nature, 2022

Many Thanks !!

