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Collective motion in groups of organisms

Sturnus vulgaris

How do individuals coordinate their movements?
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Collective motion in fish schools

Milling
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Lopez, U. et al., Interface Focus (2012)

Collective states emerging from social interactions between fish



Collective motion in fish schools
Schooling manoeuvres in response to predator attacks  



Collective motion in fish schools

What are the interactions rules and behavioral mechanisms 
involved in the coordination of collective motion?

Swarming Schooling

Milling Bait ball

Collective patterns emerging from interactions between fish

Identify the 
information 

exchanged during 
interactions

Analyze the effects 
of interactions on 

individuals’ behavior

Study how 
individuals integrate 
multiple interactions



Pérez-Escudero, A. et al., Nat. Methods (2014)
Lecheval, V. et al., Proc. R. Soc. B (2018)

Hemigrammus rhodostomus

How do group-level properties emerge?
Automated tracking of animal movement and behaviour
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 Hemigrammus rhodostomus performs  
burst and coast swimming

 Each monotonous increase of velocity 
higher than 1cm/s is identified as a 
« kick »

Characterization of individual swimming behavior

Calovi, D.S. et al., PloS Comp. Biol. (2018)

kicks

gliding
phase



Duration and distance traveled by a fish between two kicks
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Duration between two kicks

Distance travelled between two kicks

Single fish
Pair of fish

Single fish
Pair of fish

Characterization of individual swimming behavior

Calovi, D.S. et al., PloS Comp. Biol. (2018)



Reconstructing the stimulus-response functions

df

rw

qw

Reaction of fish to the wall

Measuring and modeling fish interaction with the wall
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Escobedo, R. et al., Phil. Trans. R. Soc. B (2020)

 The heading variations of a fish 
result from the product of two 
decoupled functions of qw et rw



Extraction of interactions functions from trajectory data
Reaction of fish as a function

of the distance to the wall
Reaction of fish as a function

of its relative orientation to the wall

Measuring and modeling fish interaction with the wall

Calovi, D.S. et al., PloS Comput. Biol. (2018)



 1. Fish randomly select an initial velocity and gliding time
from the experimental distribution and define

 2. Change the direction of the fish by an angle          with

 3. Move over a distance of length in the new direction

 4. Accept the move if the fish is still in the tank 

 5. If not redraw

Model description
Modeling single fish behavior and wall avoidance

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Spatial distribution and motion of a fish swimming alone
Simulations of the model

Distances of fish to the wall

Model

Experiment

100 simulations 
(106 kicks each)

30 experiments
(3.105 kicks)

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Model

Experiment

Spatial distribution and motion of a fish swimming alone

Data
Model Heading 

changes of 
fish in the 353 
mm diameter 
arena

Data
Model

Relative 
orientation of 
the fish to 
the wall 

Simulations of the model

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Attraction and alignment between two fish

Measuring and modeling social interactions

Distance Angular position Relative heading 

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Attraction and alignment between two fish

Measuring and modeling social interactions

Distance 

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Attraction and alignment between two fish

Measuring and modeling social interactions

Distance Angular position Relative heading 

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Distance Angular position Relative heading 

Attraction and alignment between two fish

Measuring and modeling social interactions

 The fish aligns its heading to that its neighbor

 The intensity of attraction increases with the relative 
size of the neighbor

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Modeling the interactions between two fish

Measuring and modeling social interactions

Distance Angular position Relative heading 

Calovi, D.S. et al., PloS Comput. Biol. (2018)



 In the presence of another fish, the total heading angle change is 
the sum of the variations induced by the environment of the focal 
fish

 The angle change due to the social interactions is expressed in 
terms of decoupled functions of the instantaneous state of the fish: 
the distance (d), relative orientation (ψ) and alignment (φ) with its 
neighbor

Modeling the interactions between two fish

Measuring and modeling social interactions

Calovi, D.S. et al., PloS Comput. Biol. (2018)



ModelExperiment

Modeling interactions between pairs of fish

Distance of fish to the wall
and distance between fish

Relative angle to the wall

 The model qualitatively and quantitatively 
reproduces the key features of the motion and 
spatial distributions of fish observed in 
experiments

Leader
Follower

Experiment
Model

Experiment
Model

Comparison between experiments and simulations

Calovi, D.S. et al., PloS Comput. Biol. (2018)



 How do fish combine the 
interactions with multiple 
neighbors when swimming in a 
school? 

 What is the amount of 
information needed by fish 
about their environment to 
coordinate their motion?

Hemigrammus rhodostomus

Combining interactions with multiple neighbors
Determining the influential neighbors

Lemasson, B.H., J. Theor. Biol. (2009)
Lei, L. et al., PloS Comput. Biol. (2020)
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Aoki I. Bull Japan Soc Sci Fish. (1982)
Vicsek T. et al. Phys. Rev. Lett. (1995)

Couzin, I. et al., J. theor. Biol. (2002)

Aoki-Couzin Model
Repulsion, orientation
and attraction zones

Vicsek Model
Alignment interaction with 

neighbors inside a metric range R0

Phenomenological models of schooling and flocking

Combining interactions with multiple neighbors



Ballerini, M. et al., PNAS (2008)
Gautrais, J. et al., PloS Comput. Biol (2012)

Sturnus vulgaris Khulia mugil

Data-driven flocking and schooling models

Combining interactions with multiple neighbors

 Each bird interacts on average with a fixed  
number of neighbors (6 – 7)



The selective attention of fish to their neighbors

 To coordinate their 
movements rummy nose 
tetras only interact with the 
most or the two most 
influential neighbors

 These most influential 
neighbors are those that 
have the strongest 
contribution to the heading 
variation of the focal fish

Combining interactions with multiple neighbors

Jiang et al., PloS Comput. Biol. (2017)
Lei et al., PloS Comput. Biol. (2020)



Identifying influential neighbors

Jiang et al., PloS Comput. Biol. (2017)
Lei et al., PloS Comput. Biol. (2020)

 The influence exerted 
by one neighbor on a 
focal fish is calculated 
from the analytical 
expression of the 
pairwise interaction 
functions derived from 
experiments in groups 
of two fish

Combining interactions with multiple neighbors

Pairwise interaction
functions

Ranking of neighbors 
according to their influence 

on a focal fish

Focal fish



 Experiments with groups of 5 
fish moving freely in a circular 
tank

 Modeling different strategies for 
combining pairwise interactions 
between fish and analyze their 
impact on collective motion

Local interactions strategies

Combination 
of pairwise
interactions

Lei, L. et al., PloS Comput. Biol. (2020)

Combining interactions with multiple neighbors

k = 1
Most influential 

neighbor
k = 2

Most influential 
neighbors

k = 2

•••



Impact of the intensity of the attraction and alignment 
interactions on collective states

Wang, W. et al., PloS Comp. Biol. (2022)

Collective states in the fish school model

Attraction intensity

Alignment intensity



Impact of the intensity of the attraction and alignment 
interactions on collective states

Wang, W. et al., PloS Comp. Biol. (2022)

Collective movement in a 
school of 100 fish

Each fish interacts 
with its most influential neighbor
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Collective states in the fish school model

Dispersion



State 1 
(« milling »)

Wang, W. et al., PloS Comp. Biol. (2022)

Impact of the intensity of the attraction and alignment 
interactions on collective states

Collective movement in a 
school of 100 fish

Each fish interacts 
with its most influential neighbor
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Collective states in the fish school model

Sphyraena barracuda 

Milling



State 2
(« schooling »)

Wang, W. et al., PloS Comp. Biol. (2022)

Impact of the intensity of the attraction and alignment 
interactions on collective states

Collective movement in a 
school of 100 fish

Each fish interacts 
with its most influential neighbor

Attraction intensity
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Collective states in the fish school model

Schooling



State 3
(« swarming »)

Wang, W. et al., PloS Comp. Biol. (2022)

Impact of the intensity of the attraction and alignment 
interactions on collective states

Collective movement in a 
school of 100 fish

Each fish interacts 
with its most influential neighbor
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Collective states in the fish school model

Swarming
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Impact of the intensity of the attraction and alignment 
interactions on collective states

Collective movement in a 
school of 100 fish

Each fish interacts 
with its most influential neighbor

State 2

State 1

State 3

Attraction intensity

Al
ig

nm
en

t i
nt

en
si

ty

Collective states in the fish school model

Critical state

Collective response to predator attack



 In many species, the 
interactions between 
individuals lead the 
group to a state that is 
neither too disorderly 
nor too rigidly 
organized, while 
being endowed with 
extreme sensitivity.

 Being in a critical 
state enhances the 
collective adaptive 
capacity of a group

Swarms, schools, flocks and herds are in « critical state » 

Attanasi, A . et al., PloS Comp. Biol. (2014); Bialek, W. et al., PNAS (2014) Calovi, D. et al., J. R. 
Soc. Interface (2015); Ginelli et al., PNAS (2015); Gómez-Nava; L. et al., Nature Physics (2023)

Sturnus vulgaris Corynoneura scutellata

Trachurus picturatus Ovis aries
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Collective motion in groups of organisms



 An incremental approach to build a fish 
behavior model completely based on 
interactions with the physical 
environment and neighboring fish

 A continuous balancing between 
attraction and alignment behavior as a 
function of the distance between fish and 
their relative positions and orientations 

Hemigrammus rhodostomus

Conclusions

Coordination mechanisms in fish schools 

Calovi, D.S. et al., PloS Comput. Biol. (2018)



Conclusions

 In vertebrates the midbrain continuously 
monitors the environment for the relevant 
stimuli and the forebrain selects those 
stimuli on which the fish focuses its 
attention

 Fish do not have to pay attention to all 
their neighbors to ensure the coordination 
of swimming

 In the frontier state between milling and 
schooling, the state of the fish school 
becomes critical and the responsiveness 
of the school to perturbations is maximum Lei, L. et al., PloS Comput. Biol. (2020)

Knudsen, E.I. Trends Neurosci. (2018) 

 Each fish must acquire only a minimal 
amount of information about the 
behavior of its neighbors for coordination 
to emerge at the group level

Coordination mechanisms in fish schools 

Se
ns

iti
vi

ty
Interaction strength

Milling
state

Schooling
state

Critical state

Hemigrammus rhodostomus



Verdoucq, M. et al., ICUAS (2022)
Verdoucq, M. et al., IROS (2023)

 This model was adapted into a 3D 
UAV flocking model.

 A lot of modifications for safety, 
continuity, and 3D motion were made.

 Agents interact with:

- Their most influential agent

- The arena wall and vertical 
border

- Operational orders

Application to UAV Control Model



Verdoucq, M. et al., ICUAS (2022)
Verdoucq, M. et al., IROS (2023)

 Two interactions were added:

A longitudinal speed interaction

A vertical speed interaction

 The agent then calculates a speed 
vector, and a yaw rotation speed

 A function of influence is used to 
designated the most influential agent
regarding every interactions.

Application to UAV Control Model



Verdoucq, M. et al., ICUAS (2022)
Verdoucq, M. et al., IROS (2023)

 As made with the fish model, we can 
plot a phase diagram, depicting the 
collective patterns issued from the 
tuning of the two main interactions 
intensities.

Application to UAV Control Model

 Three patterns emerge in 3D, being 
the schooling state (I), the swarming 
state (II), and the milling state (III). 
When envisioning operational 
applications of the model, each phase 
can be useful.

Dispersion Polarization Milling



Verdoucq, M. et al., ICUAS (2022)
Verdoucq, M. et al., IROS (2023)

Milling Swarming

Schooling

Application to UAV Control Model



Verdoucq, M. et al., ICUAS (2022)
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 When focusing about operational 
purposes, alignment to a direction 
and attraction to a desired altitude is 
implemented

 Equilibrium is found with and without 
a specified altitude. Phases are 
enhanced to 3D, allowing the operator 
to shape the fleet to any needs.

 Recent results show that when faced 
to perturbations (repulsion with an 
enemy), the fleet is more efficient, 
separate less, and follow a direction
better when the state is close to the 
critical state.

Application to UAV Control Model



Verdoucq, M. et al., ICUAS (2022)
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 The adapted model is capable of 
displaying collective patterns without 
losing fleet integrity

 It can be adapted to fixed-wing UAVs
and enhance their coordination 
capabilities

 The collective patterns obtainable are 
useful and their transition is quick, 
allowing their switch by an operator or 
an operational scenario.

 The critical state between schooling 
and swarming state is also very useful 
when dealing with perturbations.

Application to UAV Control Model
Conclusions
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