Introduction	Fully-Actuated Hex

rotor (FAH) Model

Optic Flow-Based Navigation Strategy

From Biology to Robotics: The Role of Mathematics in Imitating Behavior. De la biologie à la robotique : le rôle des mathématiques dans l'imitation du comportement [1].

José Castillo¹

¹ Aix-Marseille Université, ISM CNRS

November 23, 2023

Introd	duction
00	

ully-Actuated Hexarotor (FAH) Mode

Optic Flow-Based Navigation Strategy

Concluding Remarks

About patters in nature

Figure: Fibonacci's sequence in nature

The Fibonacci sequence:

$$F_{n} = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$
(1)

Introd	luction
00	

Ily-Actuated Hexarotor (FAH) Mode

Optic Flow-Based Navigation Strategy

Concluding Remarks

On the motion of bees...

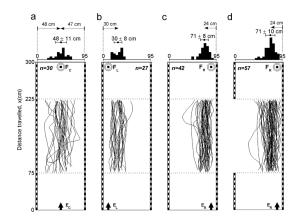


Figure: Bees in a corridor[2]

Introduction 00 Illy-Actuated Hexarotor (FAH) Mode

Optic Flow-Based Navigation Strategy

Concluding Remarks

On the motion of flies...

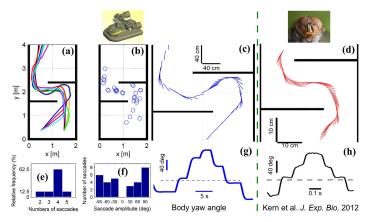


Figure: Robot vs Fly in a challenging environment[3]

Optic Flow Based Navigation

Optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene:

$$\omega = \frac{V_X}{d_{y,z}} \tag{2}$$

The condition to follow:

$$\begin{bmatrix} \max(\omega_{u} + \omega_{d}, \omega_{l} + \omega_{r}) \\ \max(\omega_{l}, \omega_{r}) \\ \max(\omega_{u}, \omega_{d}) \end{bmatrix} = \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix}$$
(3)

l = left, r = right, u = upwards and d = downwards

Outline

1 Introduction

- 2 Fully-Actuated Hexarotor (FAH) Model
 - FAH Dynamics
 - Unit Quaternion Representation
 - Under-Actuated Hexarotor (UAH) Dynamics
- 3 Optic Flow-Based Navigation Strategy
 - Attitude Stabilization
 - Triple Optic Flow Regulation

4 Results

- Simulation Parameters
- Simulation Results

5 Concluding Remarks

Introduction	Fully-Actuated Hexarotor (FAH) Model	
•0	0000000000	

Introduction

Introduction

Problem Statement

- Co-planar multirotors need bulky gimbal systems to stabilize their vision.
- The usage of Fully-Actuated Multi-rotors may improve Optic Flow-based tasks, improving its own navigation capabilities.

Proposal

- Development of Adaptive Integral Sliding Mode Controllers (AI-SMCs) for a Fully-Actuated Hexarotor and the Optic Flow regulation in a 3D environment.
- Bio-inspired corridor navigation strategy, granting the hexarotor a bee-like behavior.

Introd	luction
00	

Fully-Actuated Hexarotor (FAH) Model

Introduction 00	Fully-Actuated Hexarotor (FAH

FAH Dynamics

1 Introduction

2 Fully-Actuated Hexarotor (FAH) Model

FAH Dynamics

- Unit Quaternion Representation
- Under-Actuated Hexarotor (UAH) Dynamics

) Model

3 Optic Flow-Based Navigation Strategy

- Attitude Stabilization
- Triple Optic Flow Regulation

4 Results

- Simulation Parameters
- Simulation Results

5 Concluding Remarks

Introd	luctior	
00		

Fully-Actuated Hexarotor (FAH) Model

Optic Flow-Based Navigation Strategy

Concluding Remarks

FAH Dynamics

Fully-Actuated Hexarotor (FAH) Model

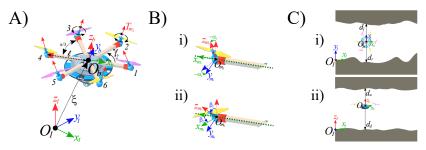


Figure: A) FAH geometrical description. B) Angles of the fixed tilted rotors. C) FAH in a corridor.

ISM

FAH Dynamics

Fully-Actuated Hexarotor (FAH) Model

Newton-Euler Equations

$$m\ddot{\boldsymbol{\xi}} + m\mathbf{g} = \boldsymbol{\tau}_{\boldsymbol{\xi}} + \boldsymbol{\rho}_{\boldsymbol{\xi}} \tag{4}$$

$$/\dot{\Omega} + \Omega \times (/\Omega) = \tau_{\Omega} + \rho_{\Omega}$$
(5)

m > 0 is the mass, $I = \text{diag}(I_x, I_y, I_z) \in \Re^{3 \times 3}$ is the inertia matrix. $\mathbf{g} = [0 \ 0 \ g]^T$ and $\boldsymbol{\rho}_{\boldsymbol{\xi}}, \ \boldsymbol{\rho}_{\boldsymbol{\Omega}} \in \mathbb{R}^3$ represent external disturbances.

 $\boldsymbol{\xi} = [x \ y \ z]^T \in \Re^3$ denotes the position. $\boldsymbol{\tau}_{\boldsymbol{\xi}}, \boldsymbol{\tau}_{\boldsymbol{\Omega}} \in \Re^3$ are the vector of external forces and moments.

The attitude of the vehicle is defined by the Euler angles $\boldsymbol{\eta} = [\phi \ \theta \ \psi]^T \in \Re^3$. The angular velocity $\boldsymbol{\Omega} = [\rho \ q \ r]^T \in \Re^3$ is related to the Euler rates $\dot{\boldsymbol{\eta}}$:

$$\mathbf{\Omega} = W_{\boldsymbol{\eta}} \, \boldsymbol{\dot{\eta}} \; ; \; W_{\boldsymbol{\eta}} = \begin{bmatrix} 1 & 0 & -S_{\theta} \\ 0 & C_{\phi} & S_{\phi} C_{\theta} \\ 0 & -S_{\phi} & C_{\phi} C_{\theta} \end{bmatrix} \in \mathfrak{R}^{3 \times 3} \tag{6}$$

INSTITUT ////////

DES SCIENCES ETIENNE

Aix*Marseille

Optic Flow-Based Navigation Strategy

Concluding Remarks

FAH Dynamics

Fully-Actuated Hexarotor (FAH) Model

Translational Actuation

$$\boldsymbol{\tau}_{\boldsymbol{\xi}} = \begin{bmatrix} \tau_{\boldsymbol{x}} \\ \tau_{\boldsymbol{y}} \\ \tau_{\boldsymbol{z}} \end{bmatrix} = R_{\boldsymbol{\eta}} \sum_{i=1}^{6} R_{\boldsymbol{\eta}_{m_i}} \begin{bmatrix} 0 \\ 0 \\ T_{m_i} \end{bmatrix}$$
(7)

Forces of the rotors: $T_m^u \ge T_{m_i} \ge 0$ (with i = 1, 2, ..., 6 and T_m^u an upper bound). $\boldsymbol{\eta}_{m_i} = [\alpha_i \ \beta_i \ \gamma_i]^T \in \Re^3$ comprises the fixed tilted angles α_i and β_i , and $\gamma_i = (i-1)\pi/3$.

Introduction

Fully-Actuated Hexarotor (FAH) Model

Optic Flow-Based Navigation Strategy

Concluding Remarks

FAH Dynamics

Fully-Actuated Hexarotor (FAH) Model

Rotational Actuation

$$\boldsymbol{\tau}_{\boldsymbol{\Omega}} = \begin{bmatrix} \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = \sum_{i=1}^{6} T_{m_i} \left\{ \zeta R_{\boldsymbol{\eta}_{m_i}} \begin{bmatrix} 0 \\ 0 \\ (-1)^{i-1} \end{bmatrix} + \ell \left(R_{3,\gamma_i} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \times \left(R_{\boldsymbol{\eta}_{m_i}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) \right\}$$
(8)

 $\ell > 0$ is the arm length and $\zeta > 0$ is a proportionality constant such that $\tau_{m_i} = \zeta T_{m_i}$.

Unit Quaternion Representation

Outline

1 Introduction

2 Fully-Actuated Hexarotor (FAH) Model

- FAH Dynamics
- Unit Quaternion Representation
- Under-Actuated Hexarotor (UAH) Dynamics

3 Optic Flow-Based Navigation Strategy

- Attitude Stabilization
- Triple Optic Flow Regulation

4 Results

- Simulation Parameters
- Simulation Results

5 Concluding Remarks

Optic Flow-Based Navigation Strategy

Concluding Remarks

Unit Quaternion Representation

Fully-Actuated Hexarotor (FAH) Model

Rotation Matrix

$$R_{\mathbf{v}} = R_{3,v_3}R_{2,v_2}R_{1,v_1} = \begin{bmatrix} C_{v_3} & -S_{v_3} & 0\\ S_{v_3} & C_{v_3} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{v_2} & 0 & S_{v_2}\\ 0 & 1 & 0\\ -S_{v_2} & 0 & C_{v_2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & C_{v_1} & -S_{v_1}\\ 0 & S_{v_1} & C_{v_1} \end{bmatrix}$$
(9)

The rotation matrix can be rewritten in terms of the unit quaternion $\mathbf{q} = \left[q_0 \ \mathbf{q}_{\nu}^{T}\right]^{T} \in \mathbb{R}^4$:

$$R_{\mathbf{q}} = I_{3\times3} + 2\left(q_0[\mathbf{q}_{\nu}^{\times}] + [\mathbf{q}_{\nu}^{\times}]^2\right)$$
(10)

ISM

Introduction Fully-Actuated Hexarotor (FAH) Model

Optic Flow-Based Navigation Strategy

Concluding Remarks

Unit Quaternion Representation

Fully-Actuated Hexarotor (FAH) Model

Unit Quaternion Representation

The rotation of O_b w.r.t. O_l can be parameterized in terms of a rotation $\vartheta \in \mathbb{R}$ about a fixed axis $\mathbf{e}_v \in \mathbb{S}^2$ by the mapping $\mathscr{U}(\vartheta, \mathbf{e}_v) = I_{3 \times 3} + S_\vartheta [\mathbf{e}_v^{\times}] + (1 - C_\vartheta) [\mathbf{e}_v^{\times}]^2$. Hence, $\mathbf{q} = \begin{bmatrix} C_{\vartheta/2} \ S_{\vartheta/2} \mathbf{e}_v^T \end{bmatrix}^T$ and:

$$\dot{\mathbf{q}} = \begin{bmatrix} \dot{q}_0 \\ \dot{\mathbf{q}}_\nu \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -\mathbf{q}_\nu^T \\ I_{3\times3}q_0 + [\mathbf{q}_\nu^X] \end{bmatrix} \mathbf{\Omega} = \frac{1}{2} \Xi_{\mathbf{q}} \mathbf{\Omega}$$
(11)

Under-Actuated Hexarotor (UAH) Dynamics

Outline

1 Introduction

- 2 Fully-Actuated Hexarotor (FAH) Model
 - FAH Dynamics
 - Unit Quaternion Representation
 - Under-Actuated Hexarotor (UAH) Dynamics

3 Optic Flow-Based Navigation Strategy

- Attitude Stabilization
- Triple Optic Flow Regulation

4 Results

- Simulation Parameters
- Simulation Results

5 Concluding Remarks

Concluding Remarks

Under-Actuated Hexarotor (UAH) Dynamics

Fully-Actuated Hexarotor (FAH) Dynamics

UAH Dynamics

Two different hexarotors for comparison:

- 1 a FAH
- 2 an UAH

The UAH dynamics can be derived from Eqs. (4) - (8) considering $\alpha_i = \beta_i = 0^\circ$.

Underactuation

$$\phi_{d} = \operatorname{atan}\left(\frac{\tau_{x}S_{\psi} - \tau_{y}C_{\psi}}{\sqrt{\tau_{z}^{2} + (\tau_{x}C_{\psi} + \tau_{y}S_{\psi})^{2}}}\right)$$
(12)
$$\theta_{d} = \operatorname{atan}\left(\left(\tau_{x}C_{\psi} + \tau_{y}S_{\psi}\right)/\tau_{z}\right)$$
(13)

Introduction	Fully-Actuated Hexarotor (FAH) Mode
00	0000000000

Optic Flow-Based Navigation Strategy

Outline

1 Introduction

2 Fully-Actuated Hexarotor (FAH) Model

- FAH Dynamics
- Unit Quaternion Representation
- Under-Actuated Hexarotor (UAH) Dynamics

3 Optic Flow-Based Navigation Strategy

- Attitude Stabilization
- Triple Optic Flow Regulation

4 Results

- Simulation Parameters
- Simulation Results

5 Concluding Remarks

Optic Flow-Based Navigation Strategy

Translational Optic Flow

It is assumed that the vehicle attitude is stabilized at $\mathbf{q}_s = [1 \ 0 \ 0 \ 0]^T$ such the vehicle receive a purely translational OF:

$$\omega_j = \dot{x}/d_j \quad \text{with } j \in \{r, l, u, d\}$$
(14)

where \dot{x} is the forward speed if $\mathbf{q} \approx \mathbf{q}_s$, and d_j denotes the distance to the corresponding surface.

Optic Flow-Based Navigation Strategy

Attitude Stabilization: Quaternion Error

The hexarotor is meant to hold a constant attitude $\mathbf{q}_d = \left[q_{0_d} \mathbf{q}_{v_d}^T\right]^T$. The quaternion error and its derivative are:

$$\mathbf{q}_{e} = \mathbf{q}_{d}^{-1} \otimes \mathbf{q} = \begin{bmatrix} \mathbf{q}_{d}^{T} \\ \Xi \mathbf{q}_{d}^{T} \end{bmatrix} \mathbf{q} = \begin{bmatrix} q_{0e} \ \mathbf{q}_{\nu_{e}}^{T} \end{bmatrix}^{T}$$
(15)

$$\dot{\mathbf{q}}_{e} = \frac{1}{2} \mathbf{q}_{d}^{-1} \otimes \dot{\mathbf{q}} = \frac{1}{2} \begin{bmatrix} \mathbf{q}_{d}^{T} \\ \Xi_{\mathbf{q}_{d}}^{T} \end{bmatrix} \Xi_{\mathbf{q}} \mathbf{\Omega} = \begin{bmatrix} \dot{q}_{0_{e}} \ \dot{\mathbf{q}}_{v_{e}}^{T} \end{bmatrix}^{T}$$
(16)

Optic Flow-Based Navigation Strategy

Attitude Stabilization: Adaptive Integral Sliding Mode Controller

The sliding surfaces read as:

$$\boldsymbol{\sigma}_{\boldsymbol{\eta}} = \begin{bmatrix} \sigma_{\phi} & \sigma_{\theta} & \sigma_{\psi} \end{bmatrix}^{T} = \Upsilon_{\boldsymbol{\eta}} \dot{\mathbf{q}}_{v_{\theta}} + \Lambda_{\boldsymbol{\eta}} \mathbf{q}_{v_{\theta}} + \boldsymbol{\varepsilon}_{q_{v}}$$
(17)

$$\dot{\boldsymbol{\sigma}}_{\boldsymbol{\eta}} = \Upsilon_{\boldsymbol{\eta}} \ddot{\boldsymbol{\mathsf{q}}}_{\nu_{e}} + \Lambda_{\boldsymbol{\eta}} \dot{\boldsymbol{\mathsf{q}}}_{\nu_{e}} + \boldsymbol{\mathsf{q}}_{\nu_{e}} = 0 \tag{18}$$

with $\Upsilon_{\boldsymbol{\eta}} = \text{diag}\left(\upsilon_{\phi}, \upsilon_{\theta}, \upsilon_{\psi}\right), \Lambda_{\boldsymbol{\eta}} = \text{diag}\left(\lambda_{\phi}, \lambda_{\theta}, \lambda_{\psi}\right) \in \mathbb{R}^{3 \times 3}$ diagonal matrices containing the control gains $\upsilon, \lambda > 0$, and $\boldsymbol{\varepsilon}_{q_{V}} = \int \boldsymbol{q}_{V_{\theta}} dt$.

- The control input is defined by $\mathbf{U}_{\boldsymbol{\eta}} = \mathbf{u}_{\boldsymbol{\eta}_o} + \mathbf{u}_{\boldsymbol{\eta}_w} = \begin{bmatrix} U_{\phi} & U_{\theta} & U_{\psi} \end{bmatrix}^T \in \mathbb{R}^3.$
- To mitigate the nominal dynamics:

$$\mathbf{u}_{\boldsymbol{\eta}_{o}} = -I\Xi_{\boldsymbol{q}}^{\mathcal{T}} \left[\Xi_{\dot{\boldsymbol{q}}} \boldsymbol{\Omega} + 2\Xi_{\boldsymbol{q}_{d}} \Upsilon_{\boldsymbol{\eta}}^{-1} \left(\boldsymbol{\Lambda}_{\boldsymbol{\eta}} \dot{\boldsymbol{q}}_{v_{e}} + \boldsymbol{q}_{v_{e}} \right) \right] + \boldsymbol{\Omega} \times (I\boldsymbol{\Omega})$$

Optic Flow-Based Navigation Strategy

Attitude Stabilization: Adaptive Integral Sliding Mode Controller

To mitigate the external disturbances ρ_{Ω} :

$$\mathbf{u}_{\boldsymbol{\eta}_{W}} = -l\Delta_{\boldsymbol{\eta}} \tanh\left(\boldsymbol{\sigma}_{\boldsymbol{\eta}}/\wp_{\boldsymbol{\eta}}\right) \tag{19}$$

with $\Delta_{\eta} = \text{diag}\left(\delta_{\phi}, \delta_{\theta}, \delta_{\psi}\right)$ a matrix of adjustable control gains $\delta > 0$ and $\wp_{\eta} > 0$ being a small real constant.

 $\square \Delta_{\eta}$ dynamics::

$$\dot{\Delta}_{\boldsymbol{\eta}} = \mathcal{K}_{\boldsymbol{\eta}}^{-1} \mathfrak{A}_{\boldsymbol{\sigma}_{\boldsymbol{\eta}}} \tag{20}$$

with $K_{\eta} = \text{diag}\left(\kappa_{\phi}, \kappa_{\theta}, \kappa_{\psi}\right) \in \mathbb{R}^{3 \times 3}$ $(\kappa > 0)$ and $\mathfrak{A}_{\sigma_{\eta}} = \text{diag}\left(\left|\sigma_{\phi}\right|, \left|\sigma_{\theta}\right|, \left|\sigma_{\psi}\right|\right) \in \mathbb{R}^{3 \times 3}$.

Optic Flow-Based Navigation Strategy

Attitude Stabilization: Stability Analysis

■ Lyapunov candidate function $V_{\eta} \in \mathbb{R}$:

$$V_{\boldsymbol{\eta}} = \frac{1}{2} \boldsymbol{\sigma}_{\boldsymbol{\eta}}^{T} \boldsymbol{\sigma}_{\boldsymbol{\eta}} + \frac{1}{2} \mathbf{I}_{3}^{T} \left(\Delta_{\boldsymbol{\eta}} - \Delta_{\boldsymbol{\eta}_{d}} \right)^{T} \mathcal{K}_{\boldsymbol{\eta}} \left(\Delta_{\boldsymbol{\eta}} - \Delta_{\boldsymbol{\eta}_{d}} \right) \mathbf{I}_{3}$$
(21)

where $\mathbf{I}_3 \in \mathbb{R}^3$ is a vector of ones and $|\Delta_{\boldsymbol{\eta}_d}| > |\boldsymbol{\rho}_{\Omega}|$ the unknown terminal value reached by $\Delta_{\boldsymbol{\eta}}$, such that $\Delta_{\boldsymbol{\eta}} \rightarrow \Delta_{\boldsymbol{\eta}_d}$ as $t \rightarrow \infty$.

Lyapunov candidate function derivative:

$$\dot{V}_{\boldsymbol{\eta}} = \boldsymbol{\sigma}_{\boldsymbol{\eta}}^{T} \dot{\boldsymbol{\sigma}}_{\boldsymbol{\eta}} + \mathbf{I}_{3}^{T} \left(\Delta_{\boldsymbol{\eta}} - \Delta_{\boldsymbol{\eta}_{d}} \right)^{T} \mathfrak{A}_{\boldsymbol{\sigma}_{\boldsymbol{\eta}}} \mathbf{I}_{3}$$
(22)

It is evident that $V_{\eta} \geq 0$. Additionally, $\dot{V}_{\eta} \leq 0$ since $\sigma_{\eta}^{T} \dot{\sigma}_{\eta} \leq 0$ by definition, $\Delta_{\eta} \leq \Delta_{\eta_{d}}, |\Delta_{\eta_{d}}| > |\rho_{\eta}|$ and $\mathfrak{A}_{\sigma_{\eta}} \geq 0$. Thus, asymptotic local stability is guaranteed.

Outline

1 Introduction

2 Fully-Actuated Hexarotor (FAH) Model

- FAH Dynamics
- Unit Quaternion Representation
- Under-Actuated Hexarotor (UAH) Dynamics

3 Optic Flow-Based Navigation Strategy

- Attitude Stabilization
- Triple Optic Flow Regulation

4 Results

- Simulation Parameters
- Simulation Results

5 Concluding Remarks

Optic Flow-Based Navigation Strategy

Triple Optic Flow Regulation: Translational Control

- A forward speed control loop: Regulates \dot{x} in order to keep the maximum sum of the two diametrically opposed OFs constant and equal to $\omega_x = 4.57$ rad/s.
- A positioning control loop: Regulates the distance w.r.t. the walls and the ground or the roof such that $\max(\omega_l, \omega_r) \rightarrow \omega_y = 2.4$ rad/s and $\max(\omega_u, \omega_d) \rightarrow \omega_z = 2.4$ rad/s.

Triple Optic Flow Regulation: Optic Flow Errors

The OF errors are defined as:

$$\mathbf{e}_{\omega_{\xi}} = \begin{bmatrix} e_{\omega_{x}} \\ e_{\omega_{y}} \\ e_{\omega_{z}} \end{bmatrix} = \begin{bmatrix} \int (\max(\omega_{u} + \omega_{d}, \omega_{l} + \omega_{r}) - \omega_{x}) dt \\ \max(\omega_{l}, \omega_{r}) - \omega_{y} \\ \max(\omega_{u}, \omega_{d}) - \omega_{z} \end{bmatrix}$$
(23)

Optic Flow-Based Navigation Strategy

Triple Optic Flow Regulation: Adaptive Integral Sliding Mode Controller

The sliding surfaces are:

$$\boldsymbol{\sigma}_{\boldsymbol{\xi}} = \begin{bmatrix} \sigma_{\boldsymbol{x}} & \sigma_{\boldsymbol{y}} & \sigma_{\boldsymbol{z}} \end{bmatrix}^{T} = \Upsilon_{\boldsymbol{\xi}} \dot{\boldsymbol{e}}_{\omega_{\boldsymbol{\xi}}} + \Lambda_{\boldsymbol{\xi}} \boldsymbol{e}_{\omega_{\boldsymbol{\xi}}} + \boldsymbol{\varepsilon}_{\omega_{\boldsymbol{\xi}}}$$
(24)

$$\dot{\boldsymbol{\sigma}}_{\boldsymbol{\xi}} = \Upsilon_{\boldsymbol{\xi}} \ddot{\boldsymbol{e}}_{\omega_{\boldsymbol{\xi}}} + \Lambda_{\boldsymbol{\xi}} \dot{\boldsymbol{e}}_{\omega_{\boldsymbol{\xi}}} + \boldsymbol{e}_{\omega_{\boldsymbol{\xi}}} = 0$$
⁽²⁵⁾

with $\Upsilon_{\boldsymbol{\xi}} = \text{diag}\left(\upsilon_{x},\upsilon_{y},\upsilon_{z}\right), \Lambda_{\boldsymbol{\xi}} = \text{diag}\left(\lambda_{x},\lambda_{y},\lambda_{z}\right) \in \mathbb{R}^{3\times3}$ diagonal matrices containing the control gains $\upsilon,\lambda>0$, and $\boldsymbol{\epsilon}_{\omega_{\boldsymbol{\xi}}} = \int \boldsymbol{e}_{\omega_{\boldsymbol{\xi}}} dt.$

Optic Flow-Based Navigation Strategy

Triple Optic Flow Regulation: Adaptive Integral Sliding Mode Controller

Since $\omega_j > 0$, an additional step must be considered to define the control input $\mathbf{U}_{\boldsymbol{\xi}} = \begin{bmatrix} U_x & U_y & U_z \end{bmatrix}^T \in \mathbb{R}^3$. The auxiliary control input $\mathbf{u}_{\boldsymbol{\xi}} = \begin{bmatrix} u_x & u_y & u_z \end{bmatrix}^T \in \mathbb{R}^3$ is:

$$\mathbf{u}_{\boldsymbol{\xi}} = -\Upsilon_{\boldsymbol{\xi}}^{-1} \left(\Lambda_{\boldsymbol{\xi}} \dot{\mathbf{e}}_{\omega_{\boldsymbol{\xi}}} + \mathbf{e}_{\omega_{\boldsymbol{\xi}}} \right) - \Delta_{\boldsymbol{\xi}} \tanh \left(\sigma_{\boldsymbol{\xi}} / \mathscr{O}_{\boldsymbol{\xi}} \right)$$
(26)

where $\wp_{\xi} > 0$ is a small real constant and $\Delta_{\xi} = \text{diag}(\delta_x, \delta_y, \delta_z) \in \mathbb{R}^{3 \times 3}$ is an adjustable control gain matrix whose dynamics is defined as:

$$\dot{\Delta}_{\boldsymbol{\xi}} = K_{\boldsymbol{\xi}}^{-1} \mathfrak{A}_{\boldsymbol{\sigma}_{\boldsymbol{\xi}}} \tag{27}$$

with $K_{\xi} = \text{diag}\left(\kappa_{x}, \kappa_{y}, \kappa_{z}\right) \in \mathbb{R}^{3 \times 3}$ (such that $\kappa > 0$) and $\mathfrak{A}_{\sigma_{\xi}} = \text{diag}\left(\left|\sigma_{x}\right|, \left|\sigma_{y}\right|, \left|\sigma_{z}\right|\right) \in \mathbb{R}^{3 \times 3}$.

Optic Flow-Based Navigation Strategy

Triple Optic Flow Regulation: Adaptive Integral Sliding Mode Controller

According to the largest of the OFs, $U_{\mathcal{E}}$ is written as:

$$\mathbf{U}_{x} = mu_{x}$$

$$\mathbf{U}_{\xi} = \begin{bmatrix} U_{x} \\ U_{y} \\ U_{z} \end{bmatrix} \quad \text{with} \quad \begin{array}{c} U_{y} = \begin{cases} mu_{y} & \omega_{l} > \omega_{r} \\ -mu_{y} & \text{else} \end{cases} \quad (28)$$

$$m(u_{z} + g) & \omega_{u} > \omega_{d} \\ -m(u_{z} - g) & \text{else} \end{cases}$$

To compute the forces T_{m_i} : $\boldsymbol{\tau}_{\boldsymbol{\xi}} = \boldsymbol{U}_{\boldsymbol{\xi}}$ and $\boldsymbol{\tau}_{\boldsymbol{\Omega}} = \boldsymbol{U}_{\boldsymbol{\eta}}$.

Optic Flow-Based Navigation Strategy

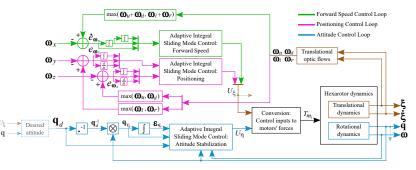


Figure: Control diagram including the triple OF regulation for FAH and UAH (faded elements are necessary for UAH).

Introduction	Fully-Actuated Hexarotor (FAH) Model
00	0000000000

Results

Simulation Parameters

Outline

1 Introduction

2 Fully-Actuated Hexarotor (FAH) Model

- FAH Dynamics
- Unit Quaternion Representation
- Under-Actuated Hexarotor (UAH) Dynamics

3 Optic Flow-Based Navigation Strategy

- Attitude Stabilization
- Triple Optic Flow Regulation

4 Results

Simulation Parameters

Simulation Results

5 Concluding Remarks

Introduction	Fully-Actuated Hexarotor (FAH) Model
00	0000000000

Simulation Parameters

Results

Table: Hexacopters parameters

Hexarotor platform		
Property/Parameter	FAH	UAH
<i>m</i> [kg]	0.05	
I_x, I_y, I_z [kg mm ²]	140, 197	, 250
ℓ [m]	0.04	
ζ [m]	0.3	
$lpha_i$ [deg]	(-1) ⁱ 25	0
eta_i [deg]	0	
T_m^u (T_{m_i} upper bound) [N]	0.015	
<i>g</i> [m/s ²]	9.81	

Introduction	Fully-Actuated Hexarotor (FAH) Model
00	0000000000

Simulation Parameters

Results

Table: Controllers parameters

Control gains		
Gains	FAH	UAH
$\upsilon_x, \ \lambda_x, \ \delta_{x_0}, \ \kappa_x$	1.1, 2, 0.15, 1000	
$v_y, \ \lambda_y, \ \delta_{y_0}, \ \kappa_y$	$0.5,\ 0.45,\ 0.05,\ 1000$	
$\upsilon_z, \lambda_z, \delta_{z_0}, \kappa_z$	0.5, 0.25, 2, 1000	
$\upsilon_{\phi},\ \lambda_{\phi},\ \delta_{\phi_0},\ \kappa_{\phi}$	0.01, 2, 1, 1	0.002, 0.075, 0.01, 1000
$\upsilon_{ heta}, \lambda_{ heta}, \delta_{ heta_0}, \kappa_{ heta}$		
$\upsilon_\psi,\lambda_\psi,\delta_{\psi_0},\kappa_\psi$		0.0005, 0.175,
		0.01, 1000
<i>Р</i> Ę, <i>Р</i> η	0.1, 0.01	

Simulation Results

Outline

1 Introduction

2 Fully-Actuated Hexarotor (FAH) Model

- FAH Dynamics
- Unit Quaternion Representation
- Under-Actuated Hexarotor (UAH) Dynamics

3 Optic Flow-Based Navigation Strategy

- Attitude Stabilization
- Triple Optic Flow Regulation

4 Results

- Simulation Parameters
- Simulation Results

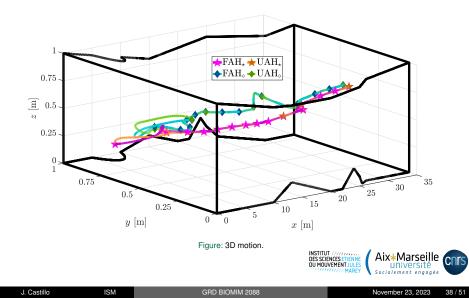
5 Concluding Remarks

Introduction	Fully-Actuated Hexarotor (FAH) Model	
00	0000000000	

Results

Concluding Remarks

Simulation Results

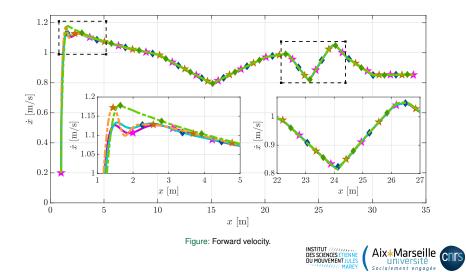


Introduction	Fully-Actuated Hexarotor (FAH) Model
00	0000000000

Results

Concluding Remarks

Simulation Results

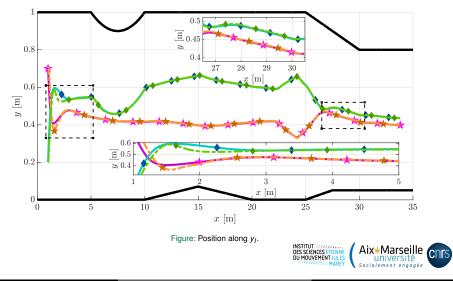


Introduction	Fully-Actuated Hexarotor (FAH) Model
00	0000000000

Results

Concluding Remarks

Simulation Results

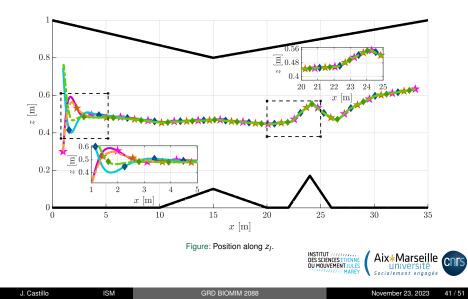


Introduction	Fully-Actuated Hexarotor (FAH) Model
00	0000000000

Results

Concluding Remarks

Simulation Results

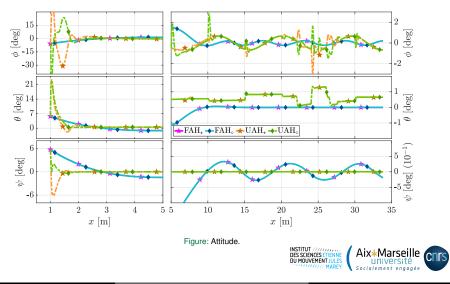


Introduction	Fully-Actuated Hexarotor (FAH) Mode	
00	0000000000	

Results

Concluding Remarks

Simulation Results



Introduction	Fully-Actuated Hexarotor (FAH) Model

Results

Simulation Results

Results

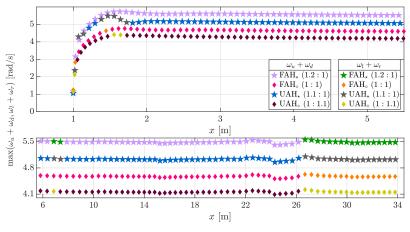


Figure: Maximum sum of the two diametrically opposed OFs (some OFs have been scaled). Aix*Marseille Cors

INSTITUT //////// DES SCIENCES ETIENNE DU MOUVEMENT IULES /////// MAREY

université

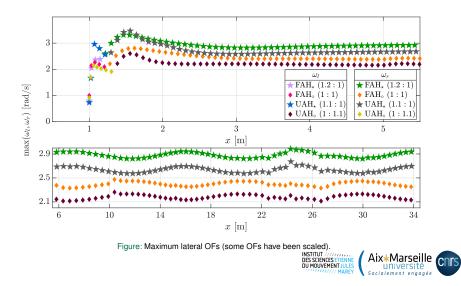
Socialement engagée

Introduction	Fully-Actuated Hexarotor (FAH) Model	
00	0000000000	

Results

Concluding Remarks

Simulation Results

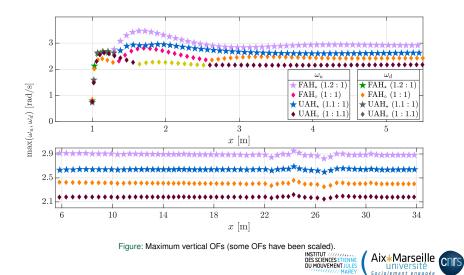


Introduction	Fully-Actuated Hexarotor (FAH) Model

Results

Concluding Remarks

Simulation Results



Introduction	Fully-Actuated Hexarotor (FAH) Mode	
00	0000000000	

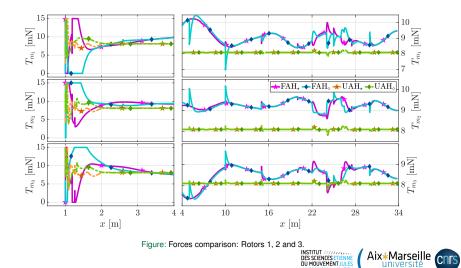
Results

····//// MAREY

Concluding Remarks

Simulation Results

Results



Socialement engagée

Introduction	Fully-Actuated Hexarotor (FAH) Mode	
00	0000000000	

Results

Concluding Remarks

Simulation Results

Results

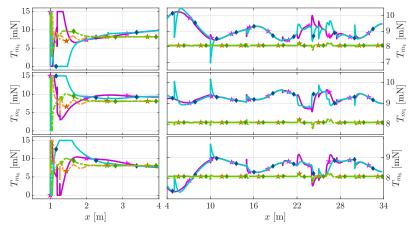


Figure: Forces comparison: Rotors 4, 5 and 6.

Introduction	Fully-Actuated Hexarotor	(FAH) Mode
00	00000000000	

Concluding Remarks

Concluding Remarks

Concluding Remarks and Future Work

- A corridor honeybee-inspired navigation strategy based on OF has been adapted to a FAH.
- Vehicles navigate through a straight corridor while reacting actively to the irregularities of the surfaces.
- Future works:
 - Rotational optic flow perturbation
 - Different control techniques
 - Bio-inspired data fusion and odometry
 - Real experimentation in more complex scenarios

Concluding Remarks

Concluding remarks

THANK YOU FOR YOUR ATTENTION

References I

- J. J. Castillo-Zamora, L. Bergantin, and F. Ruffier, "Corridor 3d navigation of a fully-actuated multirotor by means of bee-inspired optic flow regulation," in 2022 26th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2022, pp. 318–324.
- J. R. Serres, G. P. Masson, F. Ruffier, and N. Franceschini, "A bee in the corridor: centering and wall-following," Naturwissenschaften, vol. 95, pp. 1181–1187, 2008.
- J. R. Serres and F. Ruffier, "Optic flow-based collision-free strategies: From insects to robots," Arthropod structure & development, vol. 46, no. 5, pp. 703–717, 2017.

