
HAL Id: hal-04320964
https://hal.science/hal-04320964

Submitted on 4 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intrinsic weaknesses of IDSs to malicious adversarial
attacks and their mitigation

Hassan Chaitou, Thomas Robert, Jean Leneutre, Laurent Pautet

To cite this version:
Hassan Chaitou, Thomas Robert, Jean Leneutre, Laurent Pautet. Intrinsic weaknesses of IDSs to
malicious adversarial attacks and their mitigation. Communications in Computer and Information
Science, 2023, Communications in Computer and Information Science, 1849, pp.122-155. �10.1007/978-
3-031-45137-9_6�. �hal-04320964�

https://hal.science/hal-04320964
https://hal.archives-ouvertes.fr


Intrinsic weaknesses of IDSs to malicious adversarial attacks and
their mitigation

Hassan Chaitou, Thomas Robert, Jean Leneutre, and Laurent Pautet

LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
{hassan.chaitou, thomas.robert, jean.leneutre, laurent.pautet}@telecom-paris.fr

Abstract. Intrusion Detection Systems (IDS) are essential tools to protect network security from ma-
licious traffic. IDS have recently made significant advancements in their detection capabilities through
deep learning algorithms compared to conventional approaches. However, these algorithms are vulner-
able to meta-attacks, also known as adversarial evasion attacks, which are attacks that improve already
existing attacks, specifically their ability to evade detection. Deep learning-based IDS, in particular, are
particularly susceptible to adversarial evasion attacks that use Generative Adversarial Networks (GAN).
Nonetheless, well-known strategies have been proposed to cope with this threat. However, these coun-
termeasures lack robustness and predictability, and their performance can be either remarkable or poor.
Such robustness issues have been identified even without adversarial evasion attacks, and mitigation
strategies have been provided. This paper identifies and formalizes threats to the robustness of IDSs
against adversarial evasion attacks. These threats are enabled by flaws in the dataset’s structure and con-
tent rather than its representativeness. In addition, we propose a method for enhancing the performance
of adversarial training by directing it to focus on the best evasion candidates samples within a dataset.
We find that GAN adversarial attack evasion capabilities are significantly reduced when our method is
used to strengthen the IDS.

Keywords: Adversarial machine learning · GAN · Intrusion Detection System · Sensitivity analysis.

1 Introduction

A network intrusion detection system (NIDS) plays an important role in protecting networks by monitoring
the state of the network activity. A NIDS can be designed in two ways: signature-based IDS and machine
learning (ML)-based IDS. In the first one, an expert identifies solutions to common problems by collecting
a large database of signatures for well-known attacks, and then the IDS scans the network traffic to see
whether it matches one of the attack signatures or not. This approach, however, has a number of downsides,
including a large number of rules to handle, limited detection capabilities, and high maintenance costs.
Therefore, many researchers have focused on designing IDSs that rely on machine learning techniques to
address the above problems (ML-based IDS). It is generally accepted that such IDSs perform better in
detecting variations of known attacks and, in some cases, unknown attacks.
We focus on IDSs that monitor network activity by observing packets, events, or connections. As a result,
whenever such observations are made, the IDS is expected to determine whether it is an attack or normal
activity (its class). Such IDS have a parametric model that must be optimized to predict the class of the
observed activity with the highest attack detection rate and the lowest false alarm rate.
This optimization process is divided into three stages: collecting field data, extracting features, cleaning and
preprocessing them to make them usable by the model, and iteratively modifying model parameters to im-
prove detection and false positive rates. The collected field data should contain labelled examples of both
attacks and normal activities in a low-level representation that combines scalar and categorical values. The



2 H. Chaitou et al.

second step, network data analysis, consists of packet preparation and feature extraction up to the feature
conversion to scalar types only (called preprocessing). Eventually, it converts the low-level representation
of network activities into vectors of values known as "samples," a term borrowed from the general Machine
Learning community. The last step is the actual training step, which aims to find the best model parameters
for the highest detection rate and lowest false alarms based on the training data. Therefore, the quantity and
quality of data used to train the parametric function are critical factors in determining IDS detection perfor-
mance. Many works highlight the quality of datasets that may require to be sufficiently representative [13].
The studied system consists of two sides, the attacker and defender sides, with the attacker responsible for
performing attacks and attempting to evade detection and the defender responsible for training and deploy-
ing an efficient IDS. In this context, an attacker can benefit from "evasion attack," a well-known approach
to evade detection for IDSs. The evasion attack makes the above mentioned training pipeline vulnerable
to adversarial samples. [30]. Crafting adversarial attack samples consists of transforming attacks that are
unaware of an IDS being used into attacks specifically designed to avoid the IDS while having a malicious
impact. Such transformations are possible using Generative Adversarial Networks [9] among other genera-
tive approaches. On the other hand, a defender employs countermeasures against evasion attacks mainly by
injecting adversarial samples into the IDS’s training dataset. Consequently, the training pipeline is extended
by this training dataset enhancement. Interestingly, the literature shows that such a dataset enhancement
is typically based on the same method, namely "adversarial training." However, despite the fact that the
method appears to be similar at first glance, in practice, the result of this enhancement can vary a lot in terms
of countermeasure performances. In the literature, it has been hypothesized that this variation can be partly
explained by how the defender and attacker define and use the extent to which attack can be altered [4].
In this work, we reuse and extend the dataset issues of regular training pipelines to analyze adversarial train-
ing ones on well-understood models [10] and datasets. Moreover, it allows us to understand why some
approaches perform perfectly on some datasets but not on others or even exhibit rather unpredictable behav-
ior on the same dataset.
Processes and criteria for improving and assessing the quality of training pipelines and the datasets on which
they rely have been defined, according to [8]. Three criteria can be retained: i) If one wants to predict their
class accurately, they should avoid underrepresented types of activities, ii) Train distinct binary models to
separate pairs of classes if possible (e.g., normal type vs. attack type, for each attack class), iii) Avoid dataset
issues with the same sample associated with different classes.
One example of the point iii issue is storing the incorrect class in the collected data. However, a more
complicated situation arises when the dataset appears to contain the same sample associated with two distinct
classes. It would result in a dead end in terms of determining whether or not a sample is an attack without
impairing false alarms or detection capabilities.
To the best of our knowledge, such criteria are not taken into account when expanding the training dataset
with examples of evasion attacks. Therefore, the following are our research objectives:

Question 1 Can the dataset consistency issue intuitively introduced above be relevant as it is for adversarial
training datasets? If not, why not, and what should be done about it?

Question 2 Can consistency issues for adversarial training datasets be responsible for IDS performance
issues against evasion attacks (qualitatively)?

Question 3 What are the potential solutions to consistency issues on adversarial training datasets?
Question 4 To what extent, quantitatively, do these issues really pose threats to IDS performance without

or with countermeasures applied?

Section 2 describes the system architectures as well as the IDS regular training pipelines. Section 3 explains
and formalizes the notion of the adversarial neighborhood of attack. Section 4 formally defines the main



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 3

consequence of being able to generate adversarial samples that remain attacks without testing. Furthermore,
it introduces the threats this situation entails and presents mitigation strategies. Section 5 presents the evalua-
tion metrics besides the experimentation descriptions. Sections 6 and 7 present the experimental assessment
of the threats we identified and the performance of the mitigation strategies.
This paper is an extension of the one published in the SECRYPT proceedings [5].
In [5], we only considered one adversarial neighborhood definition, assuming that a single perfect definition
exists. This paper, on the other hand, assumes that each attack generator has its own definition of neigh-
borhood. This is demonstrated by examining two datasets, the NSL-KDD, and the CIC-IDS2017, with three
adversarial neighborhood definitions. Furthermore, this paper refined the measures on the best evasion attack
candidate (BEAC) to demonstrate quantitatively that the BEAC set elements poses a severe threat to the IDS
detection performance.

2 Systems under review and regular training pipelines

This section recalls the system architecture described in this paper as well as the main steps in the IDS
training pipeline. It recalls the vocabulary and formalizes the concepts needed to describe IDS training
pipeline and the consistency issue mentioned above in its training dataset.

2.1 Systems architecture

Fig. 1. Overview of the system architecture

As shown in figure 1, an attacker is interested in sending to the system packets with malicious payload to
bypass the defense mechanism (e.g., IDS) and ensure that the malicious payload has the intended impact on
the targeted system behind the IDS. However, when the defense mechanism detects the malicious activity, it
drops the attacker’s packets.



4 H. Chaitou et al.

In this case, the attacker can launch a meta-attack, which consists in modifying the given malicious
activity detected by the IDS into an activity that can bypass the defense system. The authors of [21] propose
a meta-attack approach that aims to modify a malicious activity so that it is different to the IDS leading it to
consider it as a normal activity. This meta-attack is exactly an evasion attack. In order to automate evasion
attacks, an "attack generator" (AG) is defined. It is a function, denoted ag that should select for an attack the
best changes to apply. The result of those changes on the activity is usually called a mutation.
The defender, on the other hand, relies on ML-based IDS to protect its network from packets with malicious
payloads and potentially evasion capabilities. Set of examples of normal and attack activities contains usually
no example of evasion. Then an IDS train with such data cannot a priori detect the attack on which the
meta-attack, the evasion attack, has been applied. In this situation, the defender must also employ an ag
to generate several mutations of the malicious activities in order to have examples of evasion attacks. This
dataset enhancement aims to improve the efficiency of IDS detection against attacks without and with evasion
capabilities without compromising other important IDS performance metrics. For instance, it should not
reduce the availability of the normal activity.
In the next subsection, we formalize and explain the different procedures and phases of the training pipeline
in detail.

2.2 Regular training pipeline in details

In order to explore the potential issues with the quality of datasets, we need to start by understanding the
regular training pipeline for ML-based IDS.
The first step in the training pipeline is to collect the network raw data. The network raw data refers to
data provided by network sensors, as depicted in Figure 2. The network sensors represent the observation
capabilities of network activity from routers, firewalls or host machines. This data is organized and merged
into observation units corresponding to an element of network activity, called a sample. An IDS incorporating
a classifier for attack detection is fed with samples of data collected by sensors. As depicted in figure 2, the
sample goes through various processes before being processed by a classifier that determines for each sample
whether it belongs to a normal or attack class.

Definition 1 (Raw sample). A raw sample is a tuple of n values respectively of types T1, ..., Tn. The raw
sample type TR is TR = T1× ...×Tn.

The PCAP format is the type of raw sample usually used: it is detailed enough that the activity can even
be replayed from the raw sample. Basically, raw samples are expected to be enough detailed to be able
to decide whether a sample corresponds to normal activity or attack. Let L be the set of possible labels:
L = {normal,attack}.

Definition 2 (Raw labeled sample and dataset). A raw labeled sample is a couple (x,y) where x ∈ Tr and
y ∈ L. A raw labeled dataset is a set of raw labeled samples.

The raw sample type often relies on non-numeric types to capture metadata about packets or application be-
haviors. Therefore, the values of raw samples can be of very diverse types (e.g., binary, categorical, numeric,
strings). It is extremely difficult to feed a classifier with such data without first transforming all these types
into scalar normalized values. This step is called pre-processing. Let call prep the function that produces
IDS scalar inputs from raw samples R. Therefore, prep function takes elements of TR and produces a vector
of values q in [0,1], we now use TP such that TP = [0,1]q.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 5

Definition 3 (Preprocessed samples and labeled dataset). For any raw sample x, prep(x) is a prepro-
cessed sample, and for any raw labeled dataset D, prep(D) = {{(prep(xi),yi)|(xi,yi) ∈ D}}, is the corre-
sponding preprocessed labeled dataset.

To apply prep to a labeled dataset, one has to apply it to the raw sample portion of each labeled sample. In
the Machine Learning community, a dimension of a sample is called a feature in the feature space. A labeled
sample is said to be an attack sample if its label is attack, and a normal sample if it is normal. Each labeled
dataset can be split in two subsets respectively called normal traffic and attack traffic.

Definition 4 (Normal and attack traffic of D). Given a labeled dataset D (raw or preprocessed), the nor-
mal traffic of D denoted N(D), and the attack traffic of D denoted A(D) are defined as follow:

N(D) = {(xi,yi)|(xi,yi) ∈ D,yi = normal}
A(D) = {(xi,yi)|(xi,yi) ∈ D,yi = attack}

A labeled dataset is necessary when training a classifier, or defining its parameters; such a dataset is called a
training dataset.

As stated in section 1, the most important quality criteria are the absence of label issues on a sample and
the balance in the proportion of sample types (i.e., to avoid under-representation of large sample classes).

Datasets may contain problematic samples due to sample collection problems or too high-level obser-
vations. Beyond wrongly labelled samples, we point out another type of labelling issues that affect also the
IDS.

Definition 5 (Contradictory samples). Two labelled samples (x1,y1) and (x2,y2) are contradictory sam-
ples if and only if (iff) x1 = x2 and y1 6= y2.

Such pairs of samples if present in a training dataset are problematic as they contradict each other.

Definition 6 (Contradictory set of D). The contradictory set of D, denoted CS(D) is the set of all contra-
dictory samples contained in D.

A classifier is a parametric model that must be configured, and the training process is responsible for deter-
mining the appropriate parameters. Usually it relies on minimizing the gap between the label produced by
the model (predicted one) and the label stored in the dataset. Yet, in case of contradictory samples, one can
consider that there is no good answer for such samples. Indeed, the class predicted by the IDS contradicts at
least one of the samples. In such a case, the IDS is always partly wrong.
The regular training pipeline is vulnerable to adversarial evasion attacks. Therefore, the following section
shows how malicious adversarial samples can evade detection and how enriching the dataset with adversarial
samples affects the IDS training pipeline.

3 Detailed analysis of attack generators

This section explains how attack generators found in the literature appear at first sight to rely on the same
principles. Then, it presents the internal details of their design and highlights two elements that are often
redefined for each application and dataset. The first of these parameters is formalized with the notion of an
attack sample’s adversarial neighborhood. As the attack generator also relies deeply on a random seed, we
explain how it can affect its performances. Finally, the section presents a list of such neighborhoods used in
the security community.



6 H. Chaitou et al.

Fig. 2. Deployed architecture of classifier based IDS

3.1 Adversarial samples generator

Given a set a classifier cla that predicts classes from samples, let s be a sample for which the class sc has been
correctly predicted by t. A successful adversarial sample s′ derived from s is a sample obtained modifying
s so that ids would not predict the class sc for s′ despite both samples should be seen as "equivalent" (eg.
in image processing, one criteria would be "a human do not see the change" or "a human interpret both
images the same way"). This is the basics of adversarial samples theory. In order to ensure both samples are
"equivalent", many criteria have been proposed.

The result of an evasion attack on sample is in practice an adversarial attack sample. Indeed, if the
adversarial attack sample is successfully crafted, it will be not classified as an attack and thus evade the IDS.
In the remainder of the paper, we reason about adversarial samples defined in Tp (the space of preprocessed
samples) but only for attack samples.

A malicious adversarial sample (MAdv) is an adversarial sample derived only from attack samples. In the
case of attack samples, the adversarial sample is considered "equivalent" if it yields the same consequences
on the systems, ie. it has the same malicious impact. Malicious adversarial samples are basically a synonym
of evasions attacks against IDSs built upon a classifier.

Let us now depict the usual generic approach followed to generate those samples. A function is used to
represent this process. Its first input parameter is the sample to alter. For each input sample, many adversarial
samples could be proposed. Then this function takes another input that helps exploring these alternatives.
This second parameter is called a "noise" parameter as it has no particular meaning except to ensure that
with the same function, one can obtain many adversarial samples for the same input sample.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 7

Definition 7 (Adversarial sample generator). An adversarial sample generator ag is a function with pa-
rameters (x,d) of type (Tp) (a sample) and [0,1]k (a value used to explore possible changes) and returns x′ a
sample (a member of Tp)

One has to recall that this function is intended to be used only on samples that correspond to attacks (e.g.
only samples that labels would be attack). Recall that Tp corresponds to vectors of scalars for which + and
− have the usual meaning, then the perturbation introduced by ag on x with z is ag(x,z)− x.

This function is almost never used only once, it is used to produce most often huge amount of adversarial
samples. These samples are either used as means to assess the likelihood of generating a successful malicious
adversarial sample. It can also be used as means to improve the training pipeline of the IDSs. We will discuss
it later. Such a function is often dedicated to certain kinds of attack and normal activities, e.g. a dataset and
thus incidentally an IDS. Let us explains the constraints and best practices when generating such sets.

3.2 Adversarial sample generation and its usage

In this subsection section, we discuss what are the objectives behind producing those sets and their properties.
Adversarial attack samples could be required either for training IDSs or assessing their performances. In

the second case, the IDSs are tested against a large number of adversarial samples to capture the likelihood of
success of these meta-attacks. Yet, the problem is the following: the attack generator can be applied several
times to the same attack, and nothing guarantees that it will necessarily produce distinct adversarial samples.
Yet, most of the time set of samples are considered as approximation of the distribution of possible samples.
Therefore, counting how many times such samples evade detection is sufficient to estimate the likelihood of
undetected attacks.

In the case many adversarial samples are generated for the same sample, it might be important to recall
(i.e. store) how much time the same adversarial sample is produced (possible). For this reason, we consider
generating bags of adversarial samples instead of simply sets. Picking at random an element from the bag
would mimic the distribution of generated adversarial samples. To differentiate bags from sets, bags would
be denoted with brackets. [[1,1,2,2,3]] is thus the bag that contains 5 integers, twice 1 and twice 2.

We introduce a notation to denote bags corresponding to i adversarial samples generated for each attack
sample of a dataset. Whenever an adversarial sample is generated, the noise input is assumed to be drawn at
random in the set of noise values. The distribution of noise values picked that way is assumed to follow a
uniform distribution.

Let ag be an attack generator, D a dataset made only of attack samples.

Definition 8 (Bags of adversarial samples of D). We denote Uni f orm(i,ag,D) a bag defined as follow

Uni f orm(i,ag,D) = [[ag(a,z j)|a ∈ D, 1≤ j ≤ i, z j uniform i.i.d. random variables over [0,1]k]]

Counting the occurrence of an element in such a bag for high values of i provide an approximation of
the likelihood that this attack sample is actually produced if the noise element is picked actually at random.
Notice that the set of possible images of ag for a fixed attack sample could be far smaller than the set of
possible noise vectors (it is even expected).

This situation is illustrated in figure 3. For simplicity, we consider a simplified example of sample type
with only three dimensions. The noise value is defined over [0,1]2 and the attack generator ags is defined as
follows:

ags((a1,a2,a3),(z1,z2)) =

 (0,a2,a3) i f z1 > 0.5
(a1,0,a3) i f z2 < 0.5, z1 ≤ 0.5

(a1,a2 + z1,a3) otherwise



8 H. Chaitou et al.

ag 

x1

(0.1,0.4,0.2)

z1

z2

z3

(0.55, 0.2)

(0.4, 0.7)

(0.9, 0.7)

ag 

ag 

Noise values Generated Adversarial Samples

x1’

x1’’

(0,0.4,0.2)

(0.1,0,0.2)

Fig. 3. Malicious adversarial samples generated for one attack and multiple noise values

This function applied on the same sample but for different noise values can produce exactly the same
adversarial example. The values (0.55,0.2) and (0.9,0.7) illustrate this claim: they lead to the same result
on x as shown in the figure 3. In such a situation, if we compute Uni f orm(100,ags,(0.1,0.4,0.2)) it is very
likely that we obtain more than 40 times (0.1,0,0.2) because the probability for a noise value uniformly
distributed to have z2 < 0.5 is 0.5.
Deep neural network models are known to be vulnerable to MAdvs [10]. Hopefully, efficient adversarial
defense approaches have been proposed to prevent these attacks, and are surveyed in [24]. Adversarial
training consist in adding sets of adversarial samples to the training dataset of an IDS.

Definition 9 (Adversarial Training pipeline for IDSs). The adversarial training of an IDS is a training
pipeline that uses a training dataset containing malicious adversarial samples generated from an attack
generator ag.

Basically, if the attack generator is not available, one has first to train an IDS as defined previously and then
propose a relevant attack generator for this IDS. Finally, a new IDS is trained using the first training dataset
to which adversarial samples generated with ag are added (for instance using the Uni f orm procedure).
Adversarial training or its extensions remain the most effective approaches to improve the robustness of
classifiers against MAdvs [25]. The purpose of using ag is to inject samples into the training dataset to make
the IDS robust compared to ag without having to execute anything on the real system. Otherwise, extending
the dataset would be too expensive.
As said in section 3.1, the adversarial attack samples need to remain "equivalent" as much as possible i.e.
still entail a malicious impact on the system. Finding a good attack generator remains challenging mainly
because the extent to which a sample can be modified remains hard to evaluate. Next section discusses this
situation and highlights the role of the set of allowed sample modifications in the performances of attack
generator.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 9

3.3 Adversarial neighborhood and a catalog of its various types

Adversarial sample generation is based on the assumption that an attack generator (AG) can only generate
relevant adversarial attack samples. Section 7 highlights that it is possible to generate a large number of
adversarial attack samples from a single attack sample. Hence, the question become what is the complete set
of samples that can be obtained from an attack sample x through an attack generator. We introduce a notation
to describe more easily this set. As this set can change for each attack, we need a function to designate for
each attack this set.

Definition 10 (Adversarial neighborhood of attacks (ANA)). An adversarial neighborhood of attacks ana
is a function that returns for each attack sample x a set of sample denoted ana(x) such that each element of
ana(x) is declared equivalent to x according to ana

This notation facilitates the describe the possible outputs of an attack generator. Defining the adversarial
neighborhood is the starting point of any attack generator design. However, choosing the neighborhood is
always a very complex and challenging task in any constrained domain, specifically in the network security
domain. As the ANA identifies to what extent attack sample can change and yet have a similar malicious
impact on the system. It clearly means that the ANA depends on the attacks considered, in the kind of data
that are collected on network activities.

This notion of neighborhood seems mostly related to cases where all the dimension of some subspace of
the sample space Tp = [0,1]q can be freely modified.

Let review the different approaches

– The first approach allow to change everything in sample as in [3] and [29]. Such a neighborhood is
far from realistic as it can hardly guarantee the malicious impact of these samples. On the other hand,
it requires no particular knowledge on attacks at first sight. Yet, it might generate sample that are no
longer malicious.

– The second group of approaches rely on their knowledge of the practical backgrounds that accompanied
the construction of the dataset (e.g., tools used to generate the attacks, the network heterogeneity in terms
of devices and systems). The dataset designers define the neighborhood the subset of sample features
(e.g. dimension) that can be modified as in [16].

– The third group of approach still aim to determine which dimension in the same can be modified and
how. Statistical criteria such as SHAP [18], LIME [26] on sample features are used to define the sample
feature that can be modified freely. Other approaches have been applied such as singular value decompo-
sition (SVD) [14] in order to extracting the important features that can preserve the impact of an attack
class during sampling generation as done also in in [28], [27], [6], and [36].

– The last group of approaches relies on the domain experts. As cited in [11], and [31]. An expert analyzes
the dataset to specify the features that can be modified for adversarial sample generation.

Many works focus on better exploring these ANAs as it can help to find successful malicious adversarial
samples. Other studied how to improve the way noise is picked, or the attack generator built so that with less
sample we can sufficiently improve the robustness of the defense mechanism [22]. The next section details
the role of the ANA in creating contradictory samples with respect to a dataset containing both normal and
attack samples (e.g. the training dataset of an IDS). Then, it explains how such samples can threaten the
quality of an IDS trained with such a dataset, and how to mitigate those threats.

4 Contradictory adversarial sample, threat and mitigation

Attack generator are used on both sides, attack and defense. Thus, one has to be careful that their definition
might be an issue for the defender either because it facilitates too much the task of the attacker to evade



10 H. Chaitou et al.

detection, or because it might impair the quality of the trained IDS on non malicious adversarial samples.
This section presents the contribution that motivated this paper, it explains why the notion of contradictory
sample in section 2.2 needs first to be extended to capture the full consequences of choosing the ANA of an
attack generator.

4.1 Revisiting the labelling issues for adversarial training datasets

In previous sections we highlighted the importance for the defender to ensure a training pipeline of good
quality and to have samples that are label error free, as much as possible. In particular, we highlighted
the case of contradictory samples. Recall that the adversarial training process basically consists in adding
to a dataset called original dataset OD a set of adversarial samples called AD (adversarial dataset), OD is
assumed to contain both normal and attack samples. Conversely AD contains only malicious adversarial
attack samples.

We identified the following issue: even if two labelled dataset OD and AD have separately no contradic-
tory samples, their union OD∪AD can have some contradictory samples. Actually, the pairs of contradictory
samples would involve a normal sample of OD and some attack sample of AD. From the defender point of
view, this situation would be the worst as an attack adversarial sample could not be distinguished from nor-
mal samples present in the original training dataset. The question become, is it sufficient not to use these
samples in adversarial training dataset. Our claim is that it is not sufficient. In order to explain why it is
not sufficient, we extends the notion of contradictory set to capture potential contradictions: contradictions
between normal samples, and possible adversarial samples.

Definition 11 (Extended Contradictory set of OD). Given an adversarial neighborhood ana, and a dataset
OD, the Extended Contradictory set of OD with respect to the adversarial neighborhood ana is the set of all
contradictory samples contained in OD∪ana(A(OD)) and is noted EC(ana,OD), more formally:

EC(ana,OD) =
⋃

(x,normal)∈N(OD)

{(x,normal),(x,attack)|(x,attack) ∈ ana(A(OD))}

If this set is not empty it means that given the adversarial neighborhood ana, the content of OD make it
possible to define an attack generator ag from ana, and an attack x such that ag(x) is a sample that matches
perfectly a normal sample from the training set OD. For Attacks samples from OD for which this is possible,
it is thus very likely to be able to perform a successful evasion attack. Indeed, an IDS trained on OD is
trained with the normal sample from the extended contradictory set and would most likely not contradict the
class of the training sample, e.g. normal.

Definition 12 (Best Evasion Attack Candidates (BEAC)). Best evasion attack candidate set is the set of
attack samples in OD whom adversarial neighborhood do include a normal sample from OD.

BEAC(ana,OD) = ana−1(N(OD))∩A(OD)}

This notion could be seen as a clue to the attacker whose sample could best evade the IDS after applying
the attack generator. It should be noted that to have a non empty BEAC set, the attacker must have a good
knowledge of normal samples. Let now illustrate all these concepts on a simplified dataset.

Figure 4 depicts a simplified dataset Dsimple with four elements including two labelled attack samples,
(x1,attack) and (x2,attack), and two normal ones (n1,attack) and (n2,attack)(the detailed values are pro-
vided later). The sample space is [0,1]2 and the noise space is [0,1]. We consider ag defined as follow:

ag((a1,a2),z) =
{
(0.1,a2) if z≤ 0,5
(a1,0.8) Otherwise



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 11

Samples Labels

x1=(0.6, 0.2)
x2=(0.7,0.4)

Dsimple{ normal
normal

attackA(Dsimple)

N(Dsimple) n1=(0.1, 0.2)

n2=(0.05, 0.9)

(0.6,0.8)

(0.1,0.2)

(0.1,0.8)

(0.7, 0.4) 

attack

attack
attack
attack
attack

EC(ana1,Dsimple)={(n1,normal)(n1,attack)} 
=> BEAC(ana1,Dsimple)={(x1,attack)}

ag(x1,]0.5,1])ag(x1,[0,0,5])

ana1({x1}) {
ana1({x2}) {

ana1(A(Dsimple)){
Fig. 4. Relation between ANA, BEAC and EC

We consider the following values for the samples: x1 = (0.6,0.2), x2 = (0.7,0.4), n1 = (0.1,0.2), n2 =
(0.05,0.9). Let ana1 be the neighborhood used for ag, then ana1({x1})= {(0.1,0.2),(0,6,0.8)}, ana1({x2}=
{(0.1,0.4),(0.7,0.8)}. In this example, please notice that in fact n1 belongs to ana1({x1}). In this context,
EC(ana1,Dsimple) = {(n1,normal),(n1,attack)} an that the attack from which the adversarial sample n1 can
be obtained is x1. Therefore, an IDS trained on Dsimple has a high likelihood to predict the adversarial sample
ag(x1,0) as a normal sample (as it equals to n1).

From the attacker’s point of view, applying the attack generator on samples that are transformed into
elements of EC(ana1,Dsimple) could represent its best chance of success. In this case, the BEAC set is the
singleton: {(x1,attack)}. In this section, we have shown why the adversarial neighborhood of attack need to
be known in order to anticipate for an IDS trained on a dataset the adversarial sample that if labelled attacks
would contradicts normal sample from it training set. Ignoring such a situation is shown in the next section
to be the source of several weaknesses for IDSs with or without adversarial training applied.

4.2 Threat to IDS robustness due to misuse of Attack Generators

In this subsection, we investigate how the knowledge of the ANA of an Attack Generator should be consid-
ered with care. Otherwise, retraining an IDS would either not provide the expected robustness to evasion
attacks, or impair the system availability due to higher false positive detection rates. Those two events are
the major issues that need to be taken care of when refining an IDS.

In section 3.3, we pointed out that several ANA have been considered for adversarial training. Moreover,
in [23] authors insist on the fact that ANA definition could be difficult to capture in so call feature space (i.e.
after preprocessing the raw observation of the system activity). In particular, they emphasize the difficulty
of guaranteeing for ANA that the neighborhood contains only actual attacks, i.e. activities that produce a
malicious impact.

Definition 13 (Impactful Neighborhood of Attacks). An adversarial Neighborhood of attacks is said to
be an Impactful Neighborhood of Attacks if it contains only samples for which a network activity could be
observed in a case it yields a malicious impact on the system.



12 H. Chaitou et al.

A first issue is related to the difficulty to ensure that all the samples generated for adversarial training
belong to some impactful neighborhoods of attacks. The first trivial case of such an issue can be found in the
literature in early years of adversarial attack sample generation. This situation lead to a risk of generating
adversarial samples labelled as attacks in the training process while they became simply normal sample after
the attack sample is altered.

Definition 14 (Poisoning threat (Thr1)). If adversarial training is performed for an IDS using an AG for
which it cannot be proved that AG(w,z) ∈ INA(w), then this training procedure is said to poison the IDS
training dataset.

Intuitively this situation would raise the rate of false positive on the IDS side without any action of the
attacker. The use of Attack Generator for adversarial training aims at not paying the cost of carrying out the
network activity on an actual system to capture observations of this activity. Yet, a workaround of the first
threat could be to "execute" the adversarial sample against an actual network. Yet, recall that the number of
needed samples remain unclear. Hence, it can lead to unbearable overhead to perform this dataset extension.

Definition 15 (Testing cost threat (Thr2)). An adversarial training process is said to be subject to the
testing cost threat if the adversarial attack samples are tested against an actual network to determine whether
they remain attacks or not.

Both threats could be simply disabled using only impactful neighborhood when designing an attack generator
for generating an adversarial training dataset.

Let now assume the defender only considers an impactful neighborhood. Hence, the neighborhood of
each attack only contains attacks. Now assume that OD, the original dataset available to train the IDS, has a
non empty Extended Contradictory set, ECANA(OD) 6= /0. This means that in this dataset, the defender knows
a normal sample n and an attack a so that the observation of normal behavior, n, cannot be distinguished
from at least a contradictory sample of a. Samples such as the normal sample n that belong to ECANA(OD)
are a weakness in the dataset used to form the IDS.

Definition 16 (Confusing normal sample threat (Thr3)). An adversarial training dataset AD built from
OD and neighborhood ana exhibits the confusing normal sample threat iff N(AD)∩EC(ana,OD) 6=∅

Even if AT does not contain contradictory sample, it does offer the opportunity for the attacker to exploit the
presence of "weak" normal samples that allow more efficient evasion attacks.

Finally the last threat is much more classic, attackers have a better evasion rate on underrepresented
classes. Still, one would expect BEAC to be poorly represented (otherwise the detector’s performance would
be poor and the IDS not deployed). Yet this particular class is even worse because it is a class for which
escape is a priori easier.

Definition 17 (Best evasion attack threat). The best evasion attack threat corresponds to the situation
where an attacker focuses on applying evasion attacks only for elements of BEACANA(OD) for an IDS trained
on OD extended through adversarial training relying on neighborhood ANA.

We now propose different mitigation strategies for these threats either based on fixing the ANA or the adver-
sarial training pipeline.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 13

4.3 Mitigation strategy

We identified four threats to an efficient usage of adversarial training related to the adversarial neighborhood.
Note that the first two threats cannot be mitigated; they represent situations in which adversarial training is
either too costly or risky as it may significantly reduce the system’s availability. Here are mitigation strategies
to deal with the two last threats.

Definition 18 (Sample removal). This mitigation strategy consists in removing normal samples from D that
belong to EC(ana,D).

This method is aimed at removing from training set the normal sample that are part of the extended
contradictory set. Yet, the IDS might not have the forcefully be trained to output the attack class for such
samples. In order to reduce the likelihood of evasion, we can change their label in D instead of removing
them.

Definition 19 (Pessimistic relabelling). Relabel any normal sample from D∩EC(ana,D) as attacks.

We now introduce mitigation approaches for the last threat. The selection of attack samples on which
the attack generator is applied is called the attack sampling. The attack sampling is almost never discussed
on the attack side and is assumed to be uniform on defense one. Yet, attackers that restrict themselves to
BEAC(ana,D) elements would be less likely to be detected as too few training samples are available to
the IDS for these elements or because it use an attack generator that creates an element of EC(ana,D).
Our mitigation strategy would be to change the proportion of BEAC(ana,D) elements when sampling A(D)
during adversarial training.

Definition 20 (Oversampling of BEAC). This strategy consists in increasing the likelihood of generating
MAdvs from elements of BEAC.

As the attacker might only apply evasion attack on BEAC set elements, the IDS need to be train in priority on
this set. It thus need far more examples in this set because normal and malicious adversarial attack samples
generated from this set can be very similar (and even equal if the first mitigation strategies are not applied).

First, the impact of confusing normal samples and best evasion attack candidates related threats need
to be assessed on IDSs without mitigation. Secondly, it is also necessary to check to what extent the pro-
posed mitigation approaches actually limit these threats. Next section details the experimentation campaign
conducted to assess all these aspects on a dataset for which the ANA concept is defined.

5 Assessment method and architecture

This section presents the metrics and experiments used to asses both the threats identified previously and the
effects of the proposed mitigation. It recall how GAN can be used as attack generator for a given neighbor-
hood against IDSs. Finally, it details datasets targeted during our experiments.

5.1 Assessment objectives and selected metrics

As said above, we are interested in assessing the impact of non empty extended contradictory set. A first
step is to find metrics to capture the performance of evasion attacks and adversarial training. Two basics
expected properties of the IDS need to be measured: to what extent does the IDS detect actual attacks, and to
what extent does it designate normal activities as attacks. The "abc" of classifier assessments relies on sets



14 H. Chaitou et al.

of labelled test samples called test datasets to compute the so called confusion matrix [35]. The confusion
matrix indicates for each kind of labels (normal or attack) the output of the IDS on the samples of this kind. In
our case, we have a binary classification with "positive" and "negative" classes (positive stands for detected
attack, negative stands for detection normal activity). Hence, true positives (TP) are actual attacks that are
detected, false negatives (FN) are undetected attacks, true negatives (TN) are normal activities considered
as legit activities by the IDS and false positives (FP) are normal activities identified as attacks. Different
metrics can be derived from this confusion matrix [35]. The table recalls the main metrics used here based
on counts taken from a confusion matrix (TP,TN,FP,FN) and explain how it can use to assess the IDS.

Table 1. Basic performance metrics and their description

Metric Name Formula Intuition from risk management point of view
Recall, R R = T P

T P+FN Ratio of detected attacks, meaningful if all attacks are equivalent
Precision, P P = T P

T P+FP Ratio of samples signaled as attacks that are actual attacks, useful if
detection handling is costly

Accuracy, A A = T P+T N
T P+T N+FP+FN Ratio of correctly classified samples by the IDS, can be misleading if

normal samples are far more present in the test set than attack samples.
F1-score, F1 F1 = R∗P

R+P Combined assessment of precision and recall. A high value means al-
most no attack evaded the detection and also almost no false positives
among samples classified as attacks.

In the reminder, the notation for each metric is extended with the name of the dataset used as a test set,
and the IDS it is submitted to when it is not obvious. Assume we compute the confusion matrix for the IDS
ids1 using the test dataset T D then the recall would be denoted as R(ids1,T D).

Additionally, metrics to assess how the evasion capability of an attack changed after applying an attack
generator or IDS are required. Thus, we can compute the expectation (E) of the recall, precision and other
metrics on bags of adversarial samples generated through the Uni f orm(i,ag,D) function.

We define Evasion Increase Rate for an IDS ids1 and an attack generator ag and a set of attacks D as
follows (for non null R(ids1,D)):

EIR(ids1,ag,D) = E
(

R(ids1,D)−R(ids1,Uni f orm(1,ag,D))

R(ids1,D)

)
Hence, an EIR very close to 1 means the attack generator ag almost manages to make all attacks undetected
by the IDS among those that were originally detected. A negative value means the attack generator makes it
worse in terms of evasion, and a null value means it does not change anything in the average case.

The last metric helps to compare two IDSs against attacks generators. We introduce the evasion reduction
rate that compares the EIR of two IDSs against two attack generators taking the same initial test dataset.
Basically, it is used to see how two IDS work against the same type of evasion attacks.
The evasion reduction rate (ERR) compares EIR for the same attack generator but against different IDSs.

ERR(ids2, ids1,ag2,ag1,D) = 1− EIR(ids2,ag2,D)

EIR(ids1,ag1,D)

Hence, assume ids2 is a more robust than ids1 against ag1, ERR(ids2, ids1,ag1,ag1,D) is expected to be
strictly positive and as close as possible to 1. It is still important to check that the recall of both IDS is



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 15

similar to avoid false conclusion : a more robust IDS with a significantly lower recall on D is not necessarily
better. If the value is negative, it means the second IDS is strictly less robust. Now we need to explain
how attack generators are obtained in our experiments and how we do use them to generate test sets and
adversarial training datasets.

5.2 Adversarial dataset design using Generative Adversarial Network (GAN)
In this section, we recall how one can obtain an attack generator using Generative Adversarial Networks
(GAN). Then, we explain how we use it to generate the collection of adversarial samples used either for
testing purpose of an IDS (mimicking an attack), or for adversarial training.

We assume a black-box training strategy for the GAN as it allows us to exploit it on both attacker and
defender sides. Such generators are built to specifically target one IDS. The GAN is made of two compo-
nents: the Generator and the Discriminator. The GAN-based attack generator targets one pre-trained IDS
model and repeatedly updates the parameters of its components: the Generator and the Discriminator. We
only consider neighborhoods that are subspaces (i.e. identified by a set of features that can be changed). The
Generator only modifies the features of the attacks that are part of the selected ANA for the attack generator
and generate MAdvs. The generator input is made of an attack sample concatenated with a random vector
The Generator is trained to evade the detection from the Discriminator component. The Discriminator com-
ponent concurrently is trained to match as much as possible the behavior of the IDS. This architecture aims
at avoiding to have a Generator that cannot be progressively be optimized due to an IDS that is too efficient
in terms of detection in the first step of the training.

Each component has its own loss function: Discriminator is penalized when it outputs a different class
for a sample than the targeted IDS, and the generator is penalized when it generates adversarial samples
that do not evade the Discriminator detection (ie. they are classified as attacks by the Discriminator). Thus,
among the key parameters of the Generator and Discriminator, there is the number of update iterations
called epochs. We consider GAN trained here either on 20, 100 or 1000 epochs which are typical values
when training GAN to attack IDSs. A generator of type GAN−N would denote a generator trained in N
epochs. As the Generator keeps changing during the training, we only retain the best Generator when tested
against the target IDS (and not the Discriminator this time). This point is important to avoid oddities as the
optimization process is not guaranteed to be monotonous in terms of performances of the Generator against
the IDS.

Let us now detail how the datasets are named and built in our experiments. First, the amount of BEAC
samples in a dataset of adversarial samples for a given attack generator depend only on the dataset and the
neighborhood considered in the generator definition. As we want to see how this ratio affects training and
testing, we will generate datasets of adversarial samples in two steps (assuming the generator is trained). Let
q in general denote the desired ratio of desired adversarial samples directly derived from BEAC samples for
a dataset D and attack generator ag. For simplicity, we assume q is a fraction (i/p) with i, p two integers.

Then, we define AdvDataset(N,q,D,ag) a set of N samples drawn uniformly from Uni f orm((p− i) ∗
dN/pe,ag,A(D))∪Uni f orm(i∗dN/pe,ag,A(D)). This union of bags contains at least N elements, the pro-
portions of adversarial samples derived from BEAC samples is in the average q, and all those samples are
adversarial attack samples derived from D.

The adversarial training datsets consist of the union of the dataset OD, that needs to be extended, with
a set of adversarial samples. This set is obtained applying AdvDataset on OD with a selected generator, a
size parameter, and a ratio of BEAC elements (if omitted the ratio is assumed unchanged compared to the
proportion of such element in OD). We focus in our experimentation only on adversarial training dataset
sizes that are multiples of the size of the dataset they extend. Let AdvTrainDateset be the procedure applied
to generate these datasets. Its parameters are OD, s, ag, and q such that:



16 H. Chaitou et al.

– OD is the dataset to be extended.
– s defines the size of the set of adversarial sample to be added as a multiple of the size of OD (ie. s times

the cardinal of the original dataset)
– ag is the attack generator used to produce the adversarial samples
– q is the rate of BEAC elements of OD used as seed to generate the adversarial samples (considering the

ANA of ag).

The adversarial training datasets obtained by AdvTrainDateset are built using the generated sample from
AdvDataset.

We rely for dataset extension of OD using GANs specifically trained to attack IDSs trained on OD as it
is. In addition to the above mentioned parameters, we need a parameter to tell the number of epochs during
which the generator is trained. Moreover, there could be variability in GAN training performances because
the training process rely on sampling uniformly the noise domain to generate adversarial samples. Hence,
training the GAN could yield very distinct results. For each vector of parameters, we always train 50 attack
generators of the same kind and use each of them to generate the collections of adversarial samples used as
test sets. It provides us a mean to capture the average behavior the identified threats and mitigations. It gives
us also a mean to determine how stable are our conclusions. Hence, when it is not specifically said the value
depicted are the average value over experiments carried out with each of these 50 GANs. For adversarial
datasets, we train attack generators as long as needed against an IDS trained on the original dataset so that
they achieve an EIR higher than a threshold. If this threshold is not met, the process is fully restarted as it
might be the hint that the Discriminator became too good too early. Since IDS training datasets are generally
highly vulnerable to adversarial attack samples, we chose a very high threshold (0.99).

In an integrated process, we generate many artifacts given an IDS trained only on non adversarial samples
and its training set.

Algorithm 1 IDS Adversarial training
Input: OD (an original dataset), ids (an IDS trained on OD), s (extension size factor), q (rate of added adversarial
sample obtained from BEAC samples, ep the number of epochs to be considered (if 0, the threshold is applied);
Output: ag the attack generator targetting ids, at corresponding to AdvTrainSet(s,ag,q), idsat the IDS trained on ad;

1: procedure ADV-TRAIN(OD, ids,s,q)
2: Train a GAN over ep epochs or as long as the threshold is not met if ep = 0 against ids. Identify the Generator

with the best performances against ids and store it into ag.
3: Apply AdvTrainData(OD,s,ag,q) to obtain one adversarial training dataset, let ad be this dataset.
4: train an IDS on ad and store it into idsat ; {A}t the end of this process idst contains the new ids, ag the attack

generator use for this, and ad contains the adversarial training dataset.
5: end procedure

We explained the kind of dataset we need to generate and how we do obtain the related attack generator.
Let us now discuss the "original datasets" on which we focused, and what are theirs possible ANAs, and

related BEAC rates. This will give us basic clues about the reality of the situation of a non-empty extended
contradictory set.

5.3 Datasets in use

This section describes the datasets used to evaluate the impact of adversarial neighborhoods on IDSs and
attacks and discuss the neighborhood that can be found in the literature for these datasets.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 17

NSL-KDD dataset To our knowledge, NSL-KDD is the only dataset that provides a clear definition of the
ANA based on the dataset creator criteria (section 3.3). Since it does not cover recent attacks, NSL-KDD
is considered an out-of-date dataset. Many papers, however, used it and overlooked the threat identified in
section 4.2. Therefore, we assessed NSL-KDD because it provides a clear definition of ana1. The NSL-KDD
attacks are classified as Denial of Service (DoS), User to Root (U2R), Root to Local (R2L), and Probe. Each
record in the NSL-KDD training dataset has 41 features and class identifiers. For NSL-KDD, the concept
of ana1 is defined by the concept of functional features: the dimension that maintains the attack malicious
impact [16]. Hence, the ANA is obtained by changing the non-functional features of an attack class. NSL-
KDD features are split into four groups: Intrinsic, Time-based, Content, and Host-based. Not surprisingly,
the functional features are different for each attack category:

– DoS attacks: Intrinsic and Time-based
– U2R attacks: Intrinsic and Content
– R2L attacks: Intrinsic and Content
– Probe attacks: Intrinsic, Time-based and Host-based

We concentrate in this work on the normal, DoS, and probe classes because R2L and U2R have few samples.
It should be noted that after searching for the BEAC set on the training dataset of NSL-KDD restricted to
DoS and Probe attacks. We found that BEAC(ana1,D) contains only DoS samples that represent 3.74%
of DoS samples. In this dataset, the samples contain categorical attributes, such as protocol type or flags.
As a result, we used the standard pre-processing approach on the dataset samples to obtain fully numerical
attributes [17].

CIC-IDS2017 dataset As previously indicated, identifying the perfect neighborhood is very challenging.
It might not even be unique conversely to NSL-KDD. In order to study this aspect, we selected CIC-
IDS2017 [28], a dataset that is a good trade-off between a recent dataset and a mature one (one that is
well understood).
CIC-IDS2017 contains fourteen types of attack traffic, including DoS and infiltration, along with normal
traffic. Each sample of the dataset consists of more than 80 features. We found different definitions of neigh-
borhood that can be considered as "relevant neighborhoods" for this dataset. It should be noted, however,
that all of the neighborhoods defined in this dataset correspond to selecting a subspace of the feature space
that can be freely modified. It means that to define these ANAs, we simply need to idetify which features
can be freely modified. We identified two different ANAs. The first one is based on statistical criteria [27],
while the second is based on expert knowledge [11].

– In [27], the authors of CIC-IDS2017 define ana2 by recognizing the most 28 relevant features associated
with DoS attacks using the SVD approach. Their approach assume these features should remain as is.
Hence, the adversarial neighborhood is provided by modifying all features except the 28 relevant ones.

– [11] follows security expert criteria and define ana3. They identified the relevant attack features as
the one that cannot be modified by an attacker without losing the malicious impact of these network
activities. This analysis results in the identification of 42 relevant features for DoS attacks. ana3 is
obtained freely modifying the non relevant features again.

As done for the NSL-KDD dataset, we compute the proportion of BEAC elements for each neighborhood.
For the first definition of ANA it reachs 9.3% of DoS samples, while the BEAC set in the second definition
represents 5.2% of the DoS samples. The pre-processing approach to convert the value of the attributes in
this dataset into fully numerical attributes is based on [7].



18 H. Chaitou et al.

6 Assessing the threats on IDS training pipeline

This section measures the threat level of identified issues in IDS training pipeline before and after adversarial
training. We are especially interested in examining how well IDS performs on the non-empty BEAC set and
whether or not this set is problematic for IDS detection performances before even considering adversarial
training.

In our experiments, we train IDS on multiple datasets to test adversarial training with and without mit-
igations. We use the following notation to identify those IDSs: ids−N−X−an−sr−opt where an, sr and
opt are optional variables.

– N denotes the name of the dataset. Mainly, nsl for NSL-KDD and cic for CIC-IDS2017.
– X denotes the size of dataset considered for training. (detailed later).

The parameter an specifies the type of adversarial neighborhood in use for a dataset. Mainly, ana1 for the
NSL-KDD neighborhood, while ana2 and ana3 represent the statistical and expert neighborhoods for CIC-
IDS2017, as described in section 5.3. The parameter sr specifies the sampling rate used by BEAC(an,X) if
applied (not provided if unchanged). The opt parameter indicates whether the confusing normal samples are
removed (noted as wn for without normal) or relabeled as attacks (noted as na for normal as an attack).

6.1 Assessment of detection performance of IDSs with adversarial training

This subsection examines how well regular adversarial training with different adversarial neighborhoods
performs without using the proposed mitigation strategies.

NSL-KDD As previously stated, probe and DoS attacks illustrate two distinct situations. When we compute
the NSL-KDD BEAC set, we find that it contains no probe attack samples but only DoS samples. Thus, we
train two IDSs, one for Probe and one for DoS attacks, and observe how they behave. The dataset to train the
IDS to detect DoS attacks contains normal and DoS samples from the NSL-KDD training dataset noted as
odDoS. The second data set, denoted as odPr, contains normal and Probe samples only from the NSL-KDD
training dataset.
We train two batches of 50 GANs, following the architecture of GAN−100 against ids−nsl−odPr and
ids−nsl−odDoS. We observe that evasion attacks reach an average EIR of above 0.99 for ids−nsl−odDoS and
is 0 for ids−nsl−odPr. These results suggest that our claim that the content of the BEAC set is correlated
to the success of the evasion based on malicious adversarial samples is likely. Note that the trained IDSs
have shown usual performances on non adversarial samples, e.g. as in [34], of ML-based IDSs. Hence,
we have a 0.85 recall (ability to detect attacks) for ids−oddos on non adversarial samples. The next step is
to understand how efficient is the adversarial training for different size factor parameters. Here, we test an
adversarial training for size factors of 2, 5, and 10, leading to extended datasets for at2, at3, and at4. Each
dataset is used to train an IDS without certain mitigations of the identified threats.
These IDSs have been tested against strong attack generators of type GAN−1000 to better understand their
performances, and results are presented in Figure 5. We notice that the risk of the adversarial evasion attacks
drops significantly from 100% EIR on ids−nsl−od to reach 9% EIR on a very costly IDS in terms of
training, which is ids−nsl−at4−ana1. Adversarial training performs well but at the expense of scaling
factors that are 5 or 10 times the size of the original dataset. Training an IDS on 10 times larger datasets,
despite a linear effect on the training cost, might not be accepted as the training time also depends on the
number of epochs(i.e for large epochs parameter 10 times larger is perhaps too large). Note that applying
adversarial training has not impaired the performance of IDSs when no evasion attack is applied, as shown
in the first three lines of Table 5.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 19

CIC-IDS2017 The ids−cic−od is trained to detect CIC-IDS2017 DoS samples and has a recall of 0.94 on
non-adversarial samples, consistent with the literature [7]. However, a GAN−20 attack completely evaded
IDS detection. We investigated the efficiency of enhanced CIC-IDS2017-based IDSs with adversarial train-
ing for a different size factor, namely on at2, at3, and at4, as we did for IDSs trained on NSL-KDD. We also
trained two groups of IDSs on the extended datasets by using two different adversarial neighborhoods ana2
and ana3 as noted in section 5.3. After testing these two groups of IDSs against an attack generator of type
GAN−100, the group of IDSs using ana2 systematically failed to detect the adversarial samples regardless
the size of the adversarial training used. Note the IDSs in the ana3 group performed better against this type
of attack, as depicted in figure 5. This result is consistent with our intuition that the larger is the ANA for
adversarial sample generation the harder is the adversarial training and the larger is the BEAC set.
Even if the detection rate on non-adversarial samples is not degraded before and after adversarial training,
as shown in the first three rows of table 2, it is clear that adversarial training is less efficient in CIC-IDS2017
than in NSL-KDD.

Fig. 5. The average EIR of ids−at2, ids−at3 and ids−at4 for NSL-KDD and CIC-IDS2017

Table 2. Performance metrics of idss for different adversarial training dataset based on CIC-IDS2017

IDSs Precision Accuracy F1 Score Recall
ids−cic−od 95.3 94.7 94.3 94.0

ids−cic−at2−ana3 95.9 95.4 95.0 94.7
ids−cic−at4−ana3 96.7 96.2 96.0 95.8

ids−cic−od−na 96.9 94.9 96.3 97.7
ids−cic−at2−ana3−25 96.2 95.4 95.5 95.5



20 H. Chaitou et al.

6.2 Assessing BEAC set threat on IDSs without mitigation

We need to determine whether the existence of a non-empty BEAC set is problematic for the IDS detection
performance.

IDS reinforced by adversarial training requires at least twice the size of the original dataset to have good
detection performance against evasion attacks. This improvement comes at a very high cost in terms of com-
putational training time, as training on larger datasets has a linear effect on the training cost, as illustrated
in figure 5. However, comparing the detection performance of different sample categories within a dataset,
while focusing on the BEAC set adversarial samples, and other adversarial samples, reveals that even the
most expensive and robust IDSs are highly vulnerable to the BEAC set samples. Figure 3 depicts this obser-
vation on the IDSs trained with the NSL-KDD dataset. We observed a significant difference in detection per-
formance between adversarial samples inside and outside the BEAC set. For instance, ids−nsl−at4−ana1
is trained on an adversarial dataset that is 10 times larger than the original dataset. This IDS has a very
good detection performance on the non-BEAC adversarial samples, with a R of 82%. However, detection
performance on the BEAC set adversarial samples dropped dramatically to 15%. Furthermore, the same
observation is noticed on a different dataset, the CIC-IDS2017 which follows ana3 neighborhood as shown
in figure 4. Although the detection capabilities in this situation are lower than in the NSL-KDD case. On
the other hand, ids−cic−at4−ana3 still has good detection performance on adversarial samples that do not
belong to the BEAC set, with a R of 52%. Yet, its detection performance on the BEAC set is too low, with a
detection rate of around 8%.

These results demonstrate how risky adversarial samples generated from the BEAC set are for IDSs. It
can be observed whatever systematically considering different neighborhood definitions in the adversarial
sampling strategy. Therefore, in the next section, we perform experiments to evaluate the mitigation proposed
in section 4.3 to improve the IDS detection against the adversarial sample generated from the BEAC set. The
the detection performance on non-adversarial attacks or other evasion attacks that differ from the BEAC set
are also assessed to check the overall performance are not impacted.

Table 3. Measurement of adversarial detection rate
for BEAC and non-BEAC samples for various IDSs
trained and tested on NSL-KDD.

Table 4. Measurement of adversarial detection rate for
BEAC and non-BEAC samples various idss trained
and tested on CIC-IDS2017 with ana3.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 21

7 Assessing the impact of the mitigation strategies

We want to evaluate the effectiveness of the proposed mitigation strategies (4.3). In particular, we have
to assess the impact of various adversarial training sampling strategies on IDS detection capabilities on
adversarial samples.

7.1 Confusing samples mitigation

This subsection evaluates the impact on performances when applying both regular and robust IDS of sample
removal and sample pessimistic relabeling strategies defined in section 4.3.

Effect on regular IDS performances As pointed out, confusing samples can make it harder for the IDS
to resist attack generators. We train two IDSs to see how the normal sample threat affects the resilience of
regular IDSs. The first is called (ids−nsl−od−wn), and was trained on od without confusing normal samples
using the sample removal mitigation. The second is ids−nsl−od−na, and was trained on od. We relabeled
the confusing normal samples as attacks, as proposed in the sample pessimistic relabelling mitigation.

Table 5. Performance metrics of various ids models trained on NSL-KDD dataset

IDSs Precision Accuracy F1 score Recall

ids−nsl−od 85.8 86.4 84.4 85.1

ids−nsl−at2−ana1 82.4 86.2 84.6 86.9

ids−nsl−at4−ana1 88.4 87.6 85.2 82.2

ids−nsl−od−na 88.1 87.9 85.7 83.4

ids−nsl−at2−ana1−25 87.6 87.3 84.9 82.5

These IDSs are not designed to be resilient to evasion attacks. Thus, we use the weaker attack generator. In
the case of NSL-KDD, we primarily use the generator of type GAN−100, and in the case of CIC-IDS2017,
we mainly use the generator of type GAN−20. Each attack generator was specifically trained against ids−od
and tested on ids−od−wn and ids−od−na.

NSL-KDD: We observe in the case of NSL-KDD that the attacks still manage to evade ids−nsl−od−wn
completely. However, the average ERR for ids−nsl−od−na is 0.5 in this case.

CIC-IDS2017: This set of experiments shows that even after applying the first two mitigation techniques,
the attack generator is still quite effective in the case of the second definition of neighborhood ana2, with an
ERR of nearly 0.
In the case of the third definition of neighborhood ana3, we observed that the detection performance of
the adversarial samples of the ids−cic−od−wn and the ids−cic−od−na have improved, with the ERR
increasing to 0.15 and 0.12, respectively.
Managing the confusion normal samples can help mitigate threats even on weak IDSs. These findings are
encouraging because relabeling is a low-cost adversarial training method. As a result, normal samples related
to EC(od) appear to be very useful for adversarial training.
Let now consider adversarial training with these mitigation strategies.



22 H. Chaitou et al.

Effect on robust IDS performance We examine the mitigation approaches for confusing samples com-
bined with IDS reinforced by regular adversarial training. We assess the performance using ids−at2, ids−
at2−wn, with sample removal mitigation and ids−at2−na using the sample pessimistic relabeling mitiga-
tion. This time, we use 50 GAN−1000 for NSL-KDD and GAN−100 for CIC-IDS2017 attack generators
against each of these idss.

NSL-KDD: The first row in table 6 summarizes the results of the case of IDSs trained with NSL-KDD.
The ERR of the ids without mitigation but with adversarial training on at2 remains low at 0.39. However,
the first mitigation strategy, sample removal, performs significantly better this time. It increased the ERR by
almost 50% to 0.57. Surprisingly, the relabelling strategy did not perform as expected, with a slight increase
in ERR.

Table 6. ERR of GAN attacks on idss trained and tested on NSL-KDD and CIC-IDS2017 with ana3

ids-at2 ids-at2-wn ids-at2-na

NSL-KDD (ana1) 0.39 0.57 0.43

CIC-IDS2017 (ana3) 0.16 0.36 0.33

CIC-IDS2017: When the first two mitigations were applied to ids−cic−at2−ana3, the ERR increased from
0.16 to approximately 0.36 on both IDSs. However, ids−cic−at2−ana2 appears to be very vulnerable to
evasion attacks, with ERR nearly equal to zero on all tested idss.
The first two mitigations manage to close the gap between IDSs trained using adversarial training of scaling
factor 2, i.e., 0.39, and scaling factor 5, 0.83 in the case of NSL-KDD by at least 50%. They also strengthen
the IDSs’ resistance to evasion attacks. However, we found that the larger the ANA space, the less effective
the adversarial training, as in the case of ids−cic−at2−ana2. This limitation is due to the complexity of
the sampling in the high dimensionality of the neighborhood. This issue is beyond the scope of this paper.
Moreover, while those two mitigations perform well against evasion attacks, removing a portion of normal
samples from the training dataset can impair IDS detection capabilities against regular attacks, especially if
this proportion of normal confusion samples is large.
In the next subsections, we examine the effect of the oversampling strategies on the BEAC set elements when
generating the adversarial samples. We compare it to adversarial training approaches in which this rate is
unchanged.

7.2 Adversarial training on BEAC set

In this section, we examine adversarial training datasets formed by controlling the sampling rate of samples
from the BEAC set.
This set of experiments compares the effect of the last proposed mitigation to sample removal and sample
relabeling. We consider BEAC sampling rates of {0.25,0.50,0.75}. The sr parameter value is used to repre-
sent percentages. Therefore, ids−at2−25 represents an adversarial training on a dataset with a size factor of
two and a sampling rate of 0.25. We use GAN−1000 on the NSL-KDD neighborhood and GAN−100 on the
CIC-IDS2017 that follows ana3 neighborhood against idss trained with an adversarial training set of size
factor of 2, e.g., ids−at2− j family.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 23

Fig. 6. Average ERR on 50 GAN against ids−at2− j for various j trained and tested with NSL-KDD and CIC-IDS2017
with ana3.

The results of the experiments on idss trained on NSL-KDD and CIC-IDS2017 with ana3 are shown in figure
6. The results reveal that adversarial evasion attacks are much less effective in most of these idss than ids−at2
but significantly more effective in ids−at2−75. However, this situation is expected because a high sampling
rate prevents the IDS from correctly detecting evasion attacks applied to attacks in A(D)−BEAC(D). A
sample rate of 25% to 50% seems similar for the NSL-KDD neighborhood, while the latter seems slightly
better for CIC-IDS2017.
Furthermore, using oversampling of BEAC mitigation narrows the margin with ids−at3 in both neighbor-
hoods by nearly dividing the difference in ERR by two.

7.3 Assessing the effect of the mitigations on BEAC set

Section 6.2 demonstrated that IDSs are sensitive to evasion attacks from the BEAC set, even after adversarial
training has increased overall detection performance on the whole population within the tested dataset.
Table 7 shows that the detection performance of IDS is improved drastically on evasion attacks that specif-
ically belong to BEAC set after applying the proposed mitigations. For instance, in the case of IDSs that
follow the NSL-KDD neighborhood, the results show that using the first two mitigations increase detec-
tion on BEAC by approximately 3 times compared to regular adversarial training, as the adversarial de-
tection rate increases from 6% on ids−nsl−at2−ana1 to nearly 20% on ids−nsl−at2−ana1−wn and
ids−nsl−at2−ana1−na. However, after applying the oversampling mitigation strategy, the adversarial de-
tection rate rose by 5, with ids−nsl−at2−ana1−25 and ids−nsl−at2−ana1−50 reaching nearly 40%.



24 H. Chaitou et al.

Nonetheless, implementing the mitigations increases detection on the BEAC set regardless of the chosen
neighborhood or adversarial sampling technique. This finding is backed by our experimental results: the
detection rate on BEAC samples is improved not only for IDSs defined for NSL-KDD neighborhood but
also for IDSs trained with respect to the second neighborhood defined for CIC-2017 (ana3). However, the
detection ratio differs from one ANA to the other. In addition, the oversampling mitigation outperforms
the two other mitigations proposed as it ensures good average detection on the full set of attacks but also
specifically on adversarial sample generated from BEAC set elements.

Table 7. IDSs detection performance on evasion attacks belonging to BEAC set

ids-at2 ids-at2-wn ids-at2-na ids-at2-25 ids-at2-50

NSL-KDD BEAC set on ana1 6 20.2 20 39.2 39.5

CIC-IDS2017 BEAC set on ana3 1.9 14.1 16.9 26.3 32.7

8 Related Work

[8] proposes criteria for better dataset sampling strategies and the use of diversification approaches to im-
prove the training of generic classifiers. However, they do not take into account the particularity of IDS
as a security classifier or even the specificity of adversarial samples. With the recent advances in Machine
Learning research, adversarial attacks have piqued the interest of researchers in a wide variety of domains.
Several studies have focused on the sampling strategy of MAdvs in order to achieve a reasonable balance
between IDS training performance and detection capabilities against adversarial evasion attacks.
In [3], [29] and [19] generated MAdvs by applying the mutation on the entire set of features on the CIC-
IDS2017 attack samples. While in [12], they generated MAdvs from NSL-KDD attack classes using two
methods, either by mutating all the dimensions of attack samples or by mutating the 16 principal components
obtained with Principal Component Analysis (PCA) as a dimensionality reduction technique. Other works
follow the same methodology in generating adversarial samples, such as in [37] and in [1]. In all these works,
there is no limit to the MAdv sampling subspace because the adversarial generator is applied to the entire
set of features in the feature space. However, not defining the adversarial neighborhood of the MAdvs can
increase the likelihood of generating a MAdv that successfully avoids IDS detection. But, the impact of those
MAdvs on the actual systems is not assured because there are no constraints on the adversarial generator;
thus the preservation of attack behaviors is not assured after the mutation process.
To the best of our knowledge, all approaches for the NSL-KDD dataset that take ANA into account define
attributes that divide attack samples as functional or non-functional features based on the categorization
given by [16]. Hence, the subspace of producing MAdvs is bounded by adjusting only the non-functional
features of any attack class while preserving attack behavior by leaving the functional features unchanged, as
in [17], [38] and [32]. However, choosing the adversarial neighborhood for MAdvs generation is a very chal-
lenging task in any constrained domain, specifically in the network security domain. Furthermore, selecting
ANA is critical for defining any adversarial sampling strategy because the subspace of sampling MAdvs de-
pends on the selected adversarial neighborhood. This difficulty of defining ANA is reflected in the literature
as many papers define different approximations of ANA even for the same attack class in the same dataset,
as in CIC-IDS2017.



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 25

To our knowledge, the choice of ANA is typically performed through statistical criteria or throughout a do-
main expert analysis. According to [28], the authors use RandomForestRegressor to determine the optimal
short feature set for each attack, which can then be used to detect those attacks. [20] and [36] use the [28]
method to define ANA in order to craft MAdvs with GAN attacks generator. [27] defines ANA as a dimen-
sional reduction technique based on singular value decomposition (SVD), which can provide insights into
the relationship of the selected features after dimension reduction. The SVD can then be used to determine
the most significant features for the adversarial neighborhood from the given feature set. [6] the authors
rely on the Shapley Additive Explanations (SHAP) to identify ANA that preserves the attack’s functionality
during the adversarial sampling. Other works rely on other statistical criteria, such as in [2] and in [33].
Nevertheless, using statistical approaches to explore the adversarial neighborhood can suffer from prob-
lems, such as the disagreement problem [15], in which different statistical criteria end up selecting different
functional features for the same type of attack inside the same dataset.
[11] offers systematic expert analysis to develop effective and efficient adversarial samples on the CIC-

IDS2017. In their work, they proposed the idea of categorizing the features of this dataset into four groups,
i.e., grouping flows based on whether they can be modified by an adversary and still yield correct flows. [31]
relies on [11] work to present their own definition of ANA. While in [39], the authors introduce a MACGAN
framework that is divided into two parts. In order to examine ANA, the initial part of MACGAN is used to
analyze the attack based on the author’s expertise. Then, in the second part, they use a GAN attack generator
to bypass the IDS.
In this paper, we examine the quality of the extended dataset after MAdvs mutations. In addition, this paper
aims to examine the threats linked to the generation process used in adversarial training. Furthermore, we
propose a new strategy to improve the IDS performance of adversarial training by changing adversarial
sampling strategies to account for confusing samples and BEAC samples in two datasets, the NSL-KDD,
and the CIC-IDS2017.

9 Conclusions

This paper examines how different adversarial sample generation approaches affect the quality of adversar-
ial evasion attack samples. In particular, this paper focuses on how the newly generated samples can affect
IDS’ robustness performance and the quality of IDS’s training pipeline. We revisited previous work on well-
understood models and datasets. This assessment aids in defining the notion of adversarial neighborhood
of an evasion attack sample (ANA), which helps to identify and formalize threats to the robustness of IDSs
against adversarial evasion attacks. These threats are enabled by flaws in the structure and content of the
dataset rather than its representativeness. We have demonstrated that even the most robust intrusion detec-
tion systems are vulnerable and perform poorly against a specific set of evasion adversarial attacks, the best
evasion attack candidates samples (BEAC). In addition, we have developed a method to improve adversarial
training performance by making it to focus on the BEAC set in the dataset. We found that this technique in-
creases the detection of BEAC samples and the detection of IDS on all adversarial evasion attacks, regardless
of the ANA used to generate the adversarial samples.
However, while the proposed mitigations improve the efficacy of adversarial training, this strategy has a
limit. This drawback comes from the complexity of covering the full dimensions in the feature space when
producing efficient adversarial samples (e.g., the limitation is severe when the dimensions of ANA are very
close to the full dimensions in the feature space).
In future work, we will investigate the adversarial neighborhood of attacks in the problem space domain to
determine how to overcome this limitation on proposed mitigations in the feature space domain [23].



26 H. Chaitou et al.

Acknowledgements This research is part of the chair CyberCNI.fr with support of the FEDER development
fund of the Brittany region.

References

1. Alahmed, S., Alasad, Q., Hammood, M.M., Yuan, J.S., Alawad, M.: Mitigation of black-box attacks on intrusion
detection systems-based ml. Computers 11(7) (2022)

2. Alhajjar, E., Maxwell, P., Bastian, N.: Adversarial machine learning in network intrusion detection systems. Expert
Syst. Appl (2021)

3. Ayub, M.A., Johnson, W.A., Talbert, D.A., Siraj, A.: Model evasion attack on intrusion detection systems using
adversarial machine learning. In: 2020 54th Annual Conference on Information Sciences and Systems (CISS) (2020)

4. Backes, M., Manoharan, P., Grosse, K., Papernot, N.: Adversarial perturbations against deep neural networks for
malware classification. CoRR (2016)

5. Chaitou., H., Robert., T., Leneutre., J., Pautet., L.: Threats to adversarial training for idss and mitigation. In: Pro-
ceedings of the 19th International Conference on Security and Cryptography - SECRYPT,. pp. 226–236. INSTICC,
SciTePress (2022)

6. Chauhan, R., Shah Heydari, S.: Polymorphic adversarial ddos attack on ids using gan. In: 2020 International Sym-
posium on Networks, Computers and Communications (ISNCC) (2020)

7. Faker, O., Dogdu, E.: Intrusion detection using big data and deep learning techniques. In: Proceedings of the 2019
ACM Southeast Conference. ACM SE ’19, Association for Computing Machinery (2019)

8. Gong, Z., Zhong, P., Hu, W.: Diversity in machine learning. IEEE Access (2019)
9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Gener-

ative adversarial nets. In: NIPS (2014)
10. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015)
11. Hashemi, M.J., Cusack, G., Keller, E.: Towards evaluation of nidss in adversarial setting. In: Proceedings of the

3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication
Networks. Big-DAMA ’19, Association for Computing Machinery (2019)

12. Khamis, R.A., Shafiq, M.O., Matrawy, A.: Investigating resistance of deep learning-based ids against adversaries
using min-max optimization. In: ICC (2020)

13. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets
and challenges. Cybersecur. (2019)

14. Klema, V., Laub, A.: The singular value decomposition: Its computation and some applications. IEEE Transactions
on Automatic Control 25(2), 164–176 (1980)

15. Krishna, S., Han, T., Gu, A., Pombra, J., Jabbari, S., Wu, S., Lakkaraju, H.: The disagreement problem in explainable
machine learning: A practitioner’s perspective. arXiv preprint arXiv:2202.01602 (2022)

16. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intrusion detection systems. ACM
TISSEC (2000)

17. Lin, Z., Shi, Y., Xue, Z.: IDSGAN: Generative Adversarial Networks for Attack Generation against Intrusion De-
tection. arXiv e-prints (2018)

18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. Curran Associates Inc. (2017)

19. Martins, N., Cruz, J.M., Cruz, T., Abreu, P.H.: Analyzing the footprint of classifiers in adversarial denial of service
contexts. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) Progress in Artificial Intelligence. pp. 256–267. Springer
International Publishing (2019)

20. Msika, S., Quintero, A., Khomh, F.: Sigma : Strengthening ids with gan and metaheuristics attacks (2019)
21. Papernot, N., Mcdaniel, P., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against

machine learning. ACM ASIACCS (2017)
22. Picot, M., Messina, F., Boudiaf, M., Labeau, F., Ayed, I.B., Piantanida, P.: Adversarial robustness via fisher-rao

regularization. ArXiv (2021)



Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation 27

23. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of adversarial ml attacks in the prob-
lem space. 2020 IEEE Symposium on Security and Privacy (SP) (2020)

24. Qiu, S., Liu, Q., Zhou, S., Wu, C.: Review of artificial intelligence adversarial attack and defense technologies.
Applied Sciences (2019)

25. Ren, K., Zheng, T., Qin, Z., Liu, X.: Adversarial Attacks and Defenses in Deep Learning. Engineering (2020)
26. Ribeiro, M.T., Singh, S., Guestrin, C.: "why should i trust you?": Explaining the predictions of any classifier. In:

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD
’16, Association for Computing Machinery (2016)

27. Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.A.: A detailed analysis of the cicids2017 data set. In: Mori, P., Fur-
nell, S., Camp, O. (eds.) Information Systems Security and Privacy. pp. 172–188. Springer International Publishing
(2019)

28. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion
traffic characterization. In: ICISSP (2018)

29. Shu, D., Leslie, N.O., Kamhoua, C.A., Tucker, C.S.: Generative adversarial attacks against intrusion detection sys-
tems using active learning. In: Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning.
WiseML ’20, Association for Computing Machinery, New York, NY, USA (2020)

30. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing properties of
neural networks. In: ICLR (2014)

31. Teuffenbach, M., Piatkowska, E., Smith, P.: Subverting network intrusion detection: Crafting adversarial examples
accounting for domain-specific constraints. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) Machine
Learning and Knowledge Extraction. pp. 301–320. Springer International Publishing (2020)

32. Usama, M., Asim, M., Latif, S., Qadir, J., Ala-Al-Fuqaha: Generative adversarial networks for launching and thwart-
ing adversarial attacks on network intrusion detection systems. IWCMC (2019)

33. Usama, M., Qayyum, A., Qadir, J., Al-Fuqaha, A.: Black-box adversarial machine learning attack on network traffic
classification. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)
(2019)

34. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A., Venkatraman, S.: Deep learning
approach for intelligent intrusion detection system. IEEE Access (2019)

35. Wang, Z.: Deep learning-based intrusion detection with adversaries. IEEE Access (2018)
36. Xuan Qui, C.P., Hong Quang, D., Duy, P.T., Thi Thu Hien, D., Pham, V.H.: Strengthening ids against evasion attacks

with gan-based adversarial samples in sdn-enabled network. In: 2021 RIVF International Conference on Computing
and Communication Technologies (RIVF) (2021)

37. Yang, K., Liu, J., Zhang, C., Fang, Y.: Adversarial examples against the deep learning based network intrusion
detection systems. In: MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM) (2018)

38. Zhao, S., Li, J., Wang, J., Zhang, Z., Zhu, L., Zhang, Y.: attackgan: Adversarial attack against black-box ids using
generative adversarial networks. Procedia Computer Science (2021)

39. Zhong, Y., Zhu, Y., Wang, Z., Yin, X., Shi, X., Li, K.: An adversarial learning model for intrusion detection in real
complex network environments. In: Yu, D., Dressler, F., Yu, J. (eds.) Wireless Algorithms, Systems, and Applica-
tions. pp. 794–806. Springer International Publishing (2020)


	Intrinsic weaknesses of IDSs to malicious adversarial attacks and their mitigation

