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UNIQUENESS AND CHARACTERISTIC FLOW FOR A NON STRICTLY

CONVEX SINGULAR VARIATIONAL PROBLEM

JEAN-FRANÇOIS BABADJIAN AND GILLES A. FRANCFORT

Abstract. This work addresses the question of uniqueness of the minimizers of a convex but not

strictly convex integral functional with linear growth in a two-dimensional setting. The integrand
– whose precise form derives directly from the theory of perfect plasticity – behaves quadratically

close to the origin and grows linearly once a specific threshold is reached. Thus, in contrast with

the only existing literature on uniqueness for functionals with linear growth, that is that which
pertains to the generalized least gradient, the integrand is not a norm. We make use of hyperbolic

conservation laws hidden in the structure of the problem to tackle uniqueness. Our argument

strongly relies on the regularity of a vector field – the Cauchy stress in the terminology of perfect
plasticity – which allows us to define characteristic lines, and then to employ the method of

characteristics. Using the detailed structure of the characteristic landscape evidenced in our

preliminary study [5], we show that this vector field is actually continuous, save for possibly two
points. The different behaviors of the energy density at zero and at infinity imply an inequality

constraint on the Cauchy stress. Under a barrier type convexity assumption on the set where the
inequality constraint is saturated, we show that uniqueness holds for pure Dirichlet boundary

data, a stronger result than that of uniqueness for a given trace on the whole boundary since

our minimizers can fail to attain the boundary data.
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1. Introduction

This work should be seen as a sequel to, and a culmination of our previous work [5], although
the viewpoint and the presentation will be different. We point out from the very beginning that the
setting is two-dimensional and that the methods we use will not generalize to higher dimensions.

Given a bounded connected open subset Ω of R2 with Lipschitz boundary, we partition ∂Ω into
the disjoint union of ∂Ω = ∂DΩ ∪ ∂NΩ where ∂DΩ is open in the relative topology of ∂Ω and
∂NΩ = ∂Ω \ ∂DΩ. For a Dirichlet boundary data w ∈ L1(∂DΩ) and a Neumann boundary data
g ∈ L∞(∂NΩ), we consider the following problem of the calculus of variations

inf

{ˆ
Ω

W (∇u) dx−
ˆ
∂NΩ

gu dH1 : u ∈W 1,1(Ω), u = w on ∂DΩ

}
, (1.1)

where the potential W : R2 → R is explicitly given by

W (ξ) =

{
1
2 |ξ|

2 if |ξ| ≤ 1,

|ξ| − 1
2 if |ξ| > 1.

(1.2)

Because of the linear growth of W at infinity, it is natural to seek u in W 1,1(Ω). However, it is by

W

Figure 1. The graph of W

now well-known (see e.g. [19, 9]) that this problem needs to be relaxed in the larger space BV (Ω)
of functions with bounded variation, and that the relaxed problem reads as

min

{ˆ
Ω

W (∇u) dx+ |Dsu|(Ω) +

ˆ
∂DΩ

|w − u| dH1 −
ˆ
∂NΩ

gu dH1 : u ∈ BV (Ω)

}
, (1.3)

where, for u ∈ BV (Ω), ∇u denotes the Lebesgue-absolutely continuous part of Du, Dsu the
Lebesgue-singular part of Du, and |Dsu| the variation measure of Dsu.

As a corollary, the relaxed minimization problem (1.3) has a solution inBV (Ω), at least provided
that minimizing sequences of (1.1) remain bounded in W 1,1(Ω). This will be the case for example
if the Neumann condition derives from a potential, e.g. there exists τ ∈ C0(Ω;R2) such that

div τ = 0 in Ω,

τ · ν = g on ∂NΩ,

‖τ‖L∞(Ω) ≤ α < 1

(1.4)

(with ν the exterior unit normal to Ω) as could be seen by observing (see e.g. [17, Remark 2.10])
that the boundary term in (1.1) can be replaced byˆ

∂NΩ

gu dH1 =

ˆ
Ω

τ · ∇u dx.
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Our ultimate goal, in both this and the previous paper [5], is to adjudicate the uniqueness
of such minimizers. Our main result is that uniqueness holds true in the pure Dirichlet case,
provided that a barrier type convexity condition on a well-defined set is satisfied: in essence that
set is those points where |∇u| ≥ 1 (see (1.8) below). When departing from the pure Dirichlet
case, uniqueness is false as explained further down in this introduction. See Theorems 3.7 and
6.1 for the precise statements of uniqueness and the example evidenced in our previous work ([5,
Subsection 1.2]) for the failure of uniqueness for mixed boundary conditions. Of course this result
does not completely solve the uniqueness question because of the convexity condition, even if we
do not know of any situation in which that convexity condition is violated. Moreover, we contend
that such a condition is inherent to the problem at hand, at least if we recall uniqueness results
on related problems available in the literature, as will be explained below. However, this result is
also quite different from those available in the literature, this on two main grounds.

First, the energy W is not a norm (a sub-additive, one-homogeneous function). Thus, we can-
not appeal to various uniqueness results (see [27]) derived for special classes of Lipschitz domains.
Those should be viewed in the footstep of a well-known result (see [32, Theorem 4.1]) that estab-
lishes existence and uniqueness of continuous minimizers with bounded total variation in the least
gradient setting, provided that a continuous trace is given.

Then, the result provides uniqueness for the Dirichlet problem, and not for the trace problem.
In other words, we do not assume that the trace of the test functions (BV -functions) coincides
with the Dirichlet datum. To our knowledge, the only result in that direction is [28, Theorem 1.2]
which asserts that there is at most one (but maybe no) solution for the Dirichlet problem with
continuous data in the class of uniformly continuous functions. Here, no regularity restriction is
imposed on the Dirichlet datum or on the solution.

As regards our convexity assumption, note that, in the least gradient setting (or the related
setting of a norm), a so-called barrier assumption – essentially a generalization of strict convexity
– is imposed on the topology of the domain, so as to attain the relevant uniqueness results (see
e.g. [32, 27]). The most general assumption known to us is [22, Theorem 1.1] which establishes
a partial uniqueness under simple convexity assumptions. Here, our energy W looks like a least
gradient energy provided that the norm of the gradient exceeds 1. It is thus hardly surprising
that we should impose a barrier-like condition on the set of points where the norm of the gradient
exceeds 1, which is not the whole domain but the set defined in (1.8) below. We emphasize that
that set, although not a priori known, is always uniquely determined.

To tackle uniqueness, we propose to rewrite (1.3) in a more palatable manner. This is done
by remarking that W is actually the infimal convolution of the convex functions ξ 7→ 1

2 |ξ|
2 and

ξ 7→ |ξ|, i.e.,

W (ξ) = min
p∈R2

{
1

2
|ξ − p|2 + |p|

}
. (1.5)

Consequently, by measurable selection type arguments, (1.3) reads as

min
(u,σ,p)∈Aw

{ˆ
Ω

1

2
|σ|2 dx+ |p|(Ω ∪ ∂DΩ)−

ˆ
∂NΩ

gu dH1

}
, (1.6)

where, referring to Section 2 regarding notation and functional spaces,

Aw := {(u, σ, p) ∈ BV (Ω)× L2(Ω;R2)×M(Ω ∪ ∂DΩ;R2) :

Du = σ + p in Ω, p = (w − u)νH1 on ∂DΩ}.

Remark 1.1. Formulation (1.6) can be interpreted in the setting of perfect Hencky plasticity,
our original underlying motivation for this investigation. In that framework, u is a scalar (anti-
plane) displacement, Du is the total strain which is additively decomposed as the sum of an elastic
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strain denoted by σ – here undistinguishable from the stress – and a plastic strain p. The stress
σ is constrained to remain in the closed unit ball. As long as σ leaves in the interior of the
ball no plastic strain appears (p = 0) and the material behaves elastically (the displacement u
is formally harmonic in the elasticity set {|σ| < 1}). Plastic strain lives in the set {|σ| = 1}
where the constraint is saturated. Note that, as usual in variational problems with linear growth,
the Dirichlet condition might fail to be satisfied, in which case the boundary jump is energetically
penalized. In the context of plasticity, it means that the plastic strain can also charge the boundary
at those boundary points where the displacement u does not match the prescribed Dirichlet data
w. The Neumann data g can be interpreted as a surface force and (1.4) corresponds to the so
called safe-load condition of classical plasticity.

As an aside, Hencky plasticity is itself a static version of Von Mises plasticity, the canonical
model of elasto-plasticity in solid mechanics. Elasto-plasticity, while a somewhat neglected field
in the mathematical community, is the solid equivalent of Navier-Stokes, in that it – and not a
viscosity driven model like visco-elasticity – is the template for dissipative behavior in crystalline
solids. In such a light, our result should be seen as a first step towards uniqueness of elasto-plastic
evolutions, a result of paramount importance in solid mechanics and materials science. ¶

A proof of the existence of a minimizer for (1.6) is trivial by the direct method in the calculus
of variations. This also provides an alternative proof of the relaxation of the functional

min

{ˆ
Ω

1

2
|σ|2 dx+

ˆ
Ω

|p| dx−
ˆ
∂NΩ

gu dH1 : ∇u = σ + p in Ω, u = w on ∂DΩ,

(u, σ, p) ∈W 1,1(Ω)× L2(Ω;R2)× L1(Ω;R2)
}

first obtained in [31] in a more general vectorial setting.
As far as uniqueness is concerned, formulation (1.6) splits the distributional gradient of u into

a part σ which is unique and a part p where non-uniqueness may occur. The uniqueness of σ is
straightforward by strict convexity of σ 7→ 1

2 |σ|
2 and sub-additivity of p 7→ |p|.

Unfortunately, we already know that uniqueness cannot hold in this general two-dimensional
setting. In [5, Subsection 1.2] we produced an example with drastic non-uniqueness for a trapezoidal
domain with both Dirichlet and Neumann (smooth) boundary conditions. Further the example
demonstrates that regularity beyond BV is false for the minimizers since their gradient can, for
example, have non-zero Cantor parts. This should be contrasted with the case of total variation
type minimization problems or, more generally, with one-homogeneous, strictly convex variational
problems with linear growth (see e.g. [30, 27, 8, 29]) for which some statement of regularity or
uniqueness can be vindicated.

Here, the necessary and sufficient Euler-Lagrange conditions read as

divσ = 0 in Ω,

σ · ν = g on ∂NΩ,

|σ| ≤ 1 in Ω,

Du = σ + p in Ω,

p = (w − u)νH1 on ∂DΩ,

|p| = σ · p in Ω ∪ ∂DΩ,

where, in the last equality, the duality pairing σ · p has to be interpreted in a suitable measure
theoretic way (see (2.1) below). Formally, the previous equations imply that p = σ|p| and thus,
that Du = σµ where µ = |p| + L2. A natural conservation law for µ arises by taking the curl of
the previous equality. It leads to the following continuity equation

div(σ⊥µ) = 0
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satisfied by µ. It suggests that hyperbolic methods should give information on the behavior of the
measure µ (hence on p and u), at least along characteristic lines which are solutions to the ODE

γ̇(t) = σ⊥(γ(t)), t ∈ R. (1.7)

One of the main issues is to lend a meaning to the concept of solution to the previous ODE
since the vector field σ is not regular. One can establish H1

loc-regularity for σ, a regularity that
takes us beyond the classical Cauchy-Lipschitz or Cauchy-Peano theories. In this Sobolev setting,
one could appeal to the more sophisticated Lagrangian flow theory originally initiated in [15] and
later developed in [1, 11]. Unfortunately, this theory does not apply either because of a lack
of control of the so-called compressibility constant which roughly corresponds to the quantity
‖curlσ‖∞ = ‖divσ⊥‖∞.

In our previous paper [5], we focussed on the set {|σ| = 1} assuming that it has non-empty
interior. In that case, an additional conservation law for σ, typical in micromagnetism, arises

divσ = 0, |σ| = 1.

The use of entropy methods as in [14, 26] allows one to exhibit characteristic line segments in
{|σ| = 1} along which both σ and u must remain constant at least locally. We also give a very
precise structure of that set, proving that any convex open subset Ω′ of {|σ| = 1} decomposes
into countably many pairwise disjoint open fans Fẑ – the intersection of an open cone with Ω′;
see (3.18) below for a precise definition – with an apex ẑ on ∂Ω on which σ behaves like a vortex
centered at ẑ, i.e.

σ(x) = ± (x− ẑ)⊥

|x− ẑ|
,

together with pairwise disjoint closed convex sets C on which σ is continuous except on exceptional
line segments S that must lie on the boundary of C. Assuming the convexity of the set {|σ| = 1}
we were able to provide a complete description of the distribution of those characteristic lines. See
[5, Theorem 1.3] or Theorem 3.14 below for a summary of these results.

In this paper, we adopt a more global viewpoint. We denote by Ωpl the interior of the set where

|σ| = 1 which we call the (possibly) plastic region, and by Ωel = Ω\Ωpl the elastic region (see (3.5)
and (3.6) for precise definitions). We additionally (and admittedly restrictively) assume that

{σ = 1} is convex, (1.8)

so that Ωpl is convex as well. Under those assumptions Ωpl, if not empty, is precisely the set to
which the results of [5] apply.

After quickly dispatching the case for which {|σ| = 1} is a convex set with empty interior (that
is a line segment) in Subsection 3.3 we address in Subsection 4.1 the continuity of the stress and
refine the results of [5], showing a global continuity result, namely that σ is continuous in Ω except
at at most two points at the interface Σ = (∂Ωpl ∩ ∂Ωel) ∩Ω between the elastic and plastic parts
(see Theorem 4.1). Thanks to this result we can define the characteristic curves globally on Ω
using the Cauchy-Peano theorem. Section 5 is devoted to a description of the geometry of those
characteristics. The results of Section 4 imply that they are well defined – while maybe not unique
– on the whole of Ω. We specifically investigate how such characteristics end up crossing, or not,
the boundary Σ between Ωel and Ωpl.

In the example of [5, Subsection 1.2] already alluded to, Ωpl = Ω which is indeed convex but
this might not always be true. We first exhibit in Section 3 two examples for which Ωpl is either
empty, or Ωpl is an open convex set strictly contained in Ω. In both cases, uniqueness holds in
contrast with the example of [5, Section 1]. That section also recaps results previously obtained in
[5] and establishes various technical results that will prove essential to our analysis. In Section 4,
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besides the continuity of σ, we establish a partial continuity result for u itself (see Theorem 4.9)
also essential to the subsequent analysis.

The last section, Section 6 is devoted to the proof of our main result, the uniqueness of the
minimizer of (1.3) in the case of purely Dirichlet boundary conditions, that is when ∂DΩ = ∂Ω,
this under the assumption of convexity of Ωpl and the additional restriction that Ω be convex and
C3,1. This is the object of Theorem 6.1. It is clear that the assumptions on Ω are of a technical
nature. Whether the convexity assumption on Ωpl is equally so is unclear to us at present, but,
as already alluded to, it conceptually fits the usual barrier assumptions for uniqueness in the least
gradient problem.

Summing up, the originality of this work is in our opinion twofold. On the one hand, new
regularity results for minimizers of (1.6) – or, equivalently, for solutions of the scalar Hencky
plasticity problem (1.3) – are derived; those go beyond the classical H1

loc-regularity of σ. In
Theorem 4.1, we establish the continuity of σ, except maybe at two single points in the interior of
Ω; those correspond to non-differentiability points of the interface Σ between the elastic and plastic
parts of the domain which are not crossed by characteristic line segments. For its part, Theorem
4.9 establishes the continuity of the minimisers u at all points of Ω swept by characteristic lines
intersecting Σ. Both results heavily rely on the hyperbolic structure undergirding the problem. On
the other hand, we prove the first generic uniqueness results in the case of pure Dirichlet boundary
data (Theorems 3.7 and 6.1); again, those go beyond related results in the least gradient setting.
Once more, spatial hyperbolicity is key, resulting in a surprising interplay between variational and
hyperbolic structures.

2. Notation and preliminaries

The Lebesgue measure in Rn is denoted by Ln and the s-dimensional Hausdorff measure by
Hs.

From here onward the space dimension is set to 2. If a and b ∈ R2, a · b denotes the Euclidean
scalar product, and |a| :=

√
a · a. The open (resp. closed) ball of center x and radius ρ is denoted

by Bρ(x) (resp. Bρ(x)).

By (a, b) we denote one of the line segments [a, b[, ]a, b] or [a, b].

In all that follows, Ω ⊂ R2 is (at the least) a bounded and Lipschitz open set, ∂DΩ ⊂ ∂Ω is
open in the relative topology of ∂Ω, and ∂NΩ := ∂Ω\∂DΩ. We use standard notation for Lebesgue
and Sobolev spaces. For X a locally compact set in R2, we denote by M(X;R2) (resp. M(X))
the space of bounded Radon measures in X with values in R2 (resp. R), endowed with the norm
|µ|(X), where |µ| ∈ M(X) is the variation of the measure µ. The space BV (Ω) of functions of
bounded variation in Ω is made of all functions u ∈ L1(Ω) such that their distributional gradient
Du ∈M(Ω;R2). Sobolev embedding shows that BV (Ω) ⊂ L2(Ω).

We recall that, if Ω is bounded with Lipschitz boundary and σ ∈ L2(Ω;R2) with div σ ∈ L2(Ω),
its normal trace, denoted by σ · ν, is well defined as an element of H−1/2(∂Ω). If further σ ∈
L∞(Ω;R2), then σ · ν ∈ L∞(∂Ω) with ‖σ · ν‖L∞(∂Ω) ≤ ‖σ‖L∞(Ω;R2) (see e.g. [3, Theorem 1.2]).

According to [3, Definition 1.4] and [17, Section 6], we define a generalized notion of duality
pairing between σ and a measure p as follows:

Definition 2.1. Let Ω be a bounded open set with Lipschitz boundary, ∂DΩ be a relatively open
subset of ∂Ω and ∂NΩ = ∂Ω \ ∂DΩ. For every σ ∈ L∞(Ω;R2) with div σ ∈ L2(Ω), (u, e, p) ∈
BV (Ω) × L2(Ω;R2) ×M(Ω ∪ ∂DΩ;R2) and w ∈ W 1,1(Ω) such that Du = e + p in Ω and p =
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(w − u)νH1 on ∂DΩ, we define the distribution [σ · p] ∈ D′(R2) by

〈[σ · p] , ϕ〉 =

ˆ
Ω

ϕσ · (∇w − e) dx+

ˆ
Ω

(w − u)σ · ∇ϕ dx

+

ˆ
Ω

(w − u)(div σ)ϕdx+

ˆ
∂NΩ

(σ · ν)(u− w)ϕdH1 for all ϕ ∈ C∞c (R2). (2.1)

By appropriate smooth approximation of σ through local translations and convolution (see e.g.
[17, Section 6] with the additional simplification that σ · ν ∈ L∞(∂Ω)), it could be shown that
[σ · p] is actually a bounded Radon measure in R2 satisfying

|[σ · p]| ≤ ‖σ‖L∞(Ω;R2)|p| in M(R2) (2.2)

and with total mass obtained by taking ϕ ≡ 1 in (2.1) (see [17]). Moreover, if σ ∈ C0(Ω;R2),

〈[σ · p] , ϕ〉 =

ˆ
Ω

ϕσ · dp =

ˆ
Ω

ϕσ · dp
d|p|

d|p| for all ϕ ∈ Cc(Ω),

where dp
d|p| stands for the Radon-Nikodým derivative of p with respect to its variation |p|. For all

of the above, see [17, Section 6] in the vectorial case.

Finally we establish the following result which will be used several times throughout. It is a
direct application of e.g. [25, Theorem 1].

Lemma 2.2. Let U ⊂ R2 be an open Lipschitz domain, and u be a 1-Lipschitz harmonic function
in U such that

|∂νu| = 1 H1-a.e. on Γ,

where Γ is a relatively open and connected subset of ∂U . Then u remains constant on Γ.

Proof. Because |∇u| ≤ 1 in U and |∂νu| = 1 on Γ, [25, Theorem 1]) implies that the tangential
derivative ∂τu, which exists H1-a.e. on ∂Ω because ∂Ω is a Lipschitz curve, is 0 H1-a.e. on Γ.
Indeed, we deduce from that theorem that, as ε→ 0,{

∂τu (x− εν(x))→ ∂τu(x)

∂νu (x− εν(x))→ ∂νu(x)
for H1-a.e. x ∈ Γ.

But, since Γ is a Lipschitz curve, the generalized area formula (see e.g. [2, Theorem 2.91]) implies
that H1(u(∂Ω)) = 0. Since u is continuous on Ω, hence on Γ, this cannot happen unless u is
constant on Γ. �

3. Statement of the problem

3.1. The minimization problem and the Euler-Lagrange equations. Assume that w ∈
W 1,1(R2) – so that its trace on ∂DΩ belongs to L1(∂DΩ) – and g ∈ L∞(∂NΩ) satisfying (1.4).
Recalling the introduction, we consider the following minimization problem

min
{1

2

ˆ
Ω

|σ|2 dx+ |p|(Ω ∪ ∂DΩ)−
ˆ
∂NΩ

gu dH1 : (u, σ, p) ∈ Aw
}

(3.1)

with

Aw := {(u, σ, p) ∈ BV (Ω)× L2(Ω;R2)×M(Ω ∪ ∂DΩ;R2) :

Du = σ + p in Ω, p = (w − u)νH1 on ∂DΩ}.

The direct method in the calculus of variations ensures the existence of solutions (u, σ, p) ∈ Aw
to the variational problem (3.1). Moreover, it is shown in [5, Section 3] that the Euler-Lagrange
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equations associated with the relaxed minimization problem (3.1) are the following necessary and
sufficient first order conditions:

divσ = 0 in H−1(Ω),

σ · ν = g a.e. on ∂NΩ,

|σ| ≤ 1 a.e. in Ω,

Du = σ + p in M(Ω;R2),

p = (w − u)νH1 in M(∂DΩ;R2),

|p| = [σ · p] in M(Ω ∪ ∂DΩ).

(3.2)

Further, σ is unique and, by [5, Theorem 4.1],

σ ∈ H1
loc(Ω;R2). (3.3)

Note that (3.2) and (3.3) have been derived in [5, Section 3] and [5, Theorem 4.1] respectively,
under the assumptions that ∂NΩ = ∅ and that w ∈ H1(R2). However, an inspection of that proof
shows that (3.2) holds in our present setting while [5, Theorem 4.1], hence (3.3), still holds true
since this result is local.

Remark 3.1. Observe that u is a solution of the original variational problem (1.3) if and only if
(u, σ, p) ∈ Aw is a solution of (3.1). Indeed, using the infimum convolution formula (1.5), together
with a measurable selection argument, for any v ∈ BV (Ω), the corresponding τ , q such that
(v, τ, q) ∈ Aw are obtained through

W (∇v(x)) = 1
2 |τ(x)|2 + |∇v(x)− τ(x)| L2-a.e. in Ω,

q = (∇v − τ)L2 Ω +Dsv + (w − v)νH1 ∂DΩ. ¶

For linguistic convenience and because, as explained in [5, Section 1], (3.1) can be viewed as a
problem of Hencky plasticity, we will refer to u as the displacement, σ as the stress and p as the
plastic strain throughout the rest of this paper. Hereafter, the last equation of (3.2) will be labeled
the flow rule and it will appear at various places in different forms.

Remark 3.2. The following holds true:
(i) Exactly as in [17, Lemma 3.8], if Γ ⊂ Ω is locally the graph of a Lipschitz function, then

σ · ν ∈ L∞(Γ) and

[σ · p] Γ = (σ · ν)(u+ − u−)H1 Γ,

where u+ and u− are the one-sided traces of u on Γ oriented by the normal unit vector ν, and σ · ν
is the normal trace of σ on Γ. Thus, the flow rule (the last equation of (3.2)) localized on Γ reads

(σ · ν)(u+ − u−) = |u+ − u−| H1-a.e. on Γ.

Since by definition u+ 6= u− on Ju, the jump set of u, we infer that σ · ν = ±1 H1-a.e. on Γ ∩ Ju.
This applies also if H1(Γ ∩ ∂DΩ) > 0, replacing u+ by w on that part of Γ.

(ii) Since σ ∈ H1
loc(Ω;R2), it admits a precise representative defined Capp-quasi everywhere for

any p < 2 hence Hs-almost everywhere in Ω for any s > 0 (see e.g. [16, Sections 4.7, 4.8]). In the
sequel we will identify σ with its precise representative which is thus defined outside a Borel set
N ⊂ Ω of zero Hausdorff dimension.

(iii) Note also that, if Γ ⊂ Ω is as in (i), the normal trace σ · ν coincides H1-a.e. on Γ with the
scalar product in R2 of (the trace of) σ with the normal ν to Γ since σ ∈ H1

loc(Ω;R2).
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(iv) Arguing as in [4, 12, 18, 6], it is possible to express the flow rule (the last equation of
(3.2)) by means of the quasi-continuous representative of the stress, still denoted by σ, which is
|p|-measurable. We get

σ(x) · dp
d|p|

(x) = 1 for |p|-a.e. x ∈ Ω (3.4)

or still p = σ|p| in M(Ω). ¶

3.2. The elastic and plastic regions. Let us define the saturation set as

Ω1 := {x ∈ Ω \ N : |σ(x)| = 1}, (3.5)

where N ⊂ Ω is the exceptional set of zero Hausdorff dimension of Remark 3.2-(ii). Because σ
is unique, this set is well defined. In the remainder of this paper we assume that Ω1 satisfies the
following

Hypothesis (H). The saturation set Ω1 is convex.

We next define

Ωpl := int(Ω1), Ωel := Ω \ Ω1. (3.6)

Under hypothesis (H), the set Ωpl is a (possibly empty) convex open set. It is henceforth
referred to as the (possibly) plastic set, although it is not to be confused with the the support
of the measure p (see e.g. Theorem 3.7 and Example 3.8 below). The open set Ωel is similarly
referred to as the elasticity set because, whenever it is not empty, all solutions are purely elastic
in Ωel. Indeed,

Lemma 3.3. If Ωel 6= ∅, then u ∈ C∞(Ωel) is harmonic, σ = ∇u and |∇u| < 1 in Ωel.

Proof. Observe that Ωel ⊂ N ∪ {x ∈ Ω \ N : |σ(x)| < 1}. Since H1(N ) = 0, then |p|(N ) = 0.
Moreover, using the flow rule (3.4), |p|({x ∈ Ω \ N : |σ(x)| < 1}) = 0. As a consequence,
|p|(Ωel) = 0 and thus Du = σL2 in Ωel. Since Ωel is a (nonempty) open set, we infer that
u ∈ H1(Ωel) with ∇u = σ a.e. in Ωel. Using the first equation in (3.2), we deduce that u is
harmonic in Ωel. In particular, u (and thus σ = ∇u as well) is smooth in Ωel, hence N ∩ Ωel = ∅
and |∇u| < 1 in Ωel. �

Remark 3.4. Independently of our convexity hypothesis (H), [20, Theorem 2.1.2], or, to be exact,
its scalar analogue, shows the existence of an open set Ω0 ⊂ Ω such that u ∈ C0,α(Ω0) for some
α ∈ (0, 1), |σ| < 1 in Ω0 and |σ| = 1 L2-a.e. in Ω \ Ω0. As a consequence of the flow rule (3.4)
expressed in a pointwise form, we get that |p|(Ω0) = 0 and thus,

p = 0 in Ω0,

Du = σL2 in Ω0,

∆u = 0 in Ω0.

The function u being harmonic in Ω0, we infer that u ∈ C∞(Ω0).
In view of assumption (H), the same conclusion is ensured in our setting without appealing to

that theorem. ¶

Remark 3.5. The generalized least gradient problem (see e.g. [27]) consists in minimizing func-
tionals of the form

u ∈ BV (Ω) 7→
ˆ

Ω

ϕ(∇u) dx

where ϕ is a given norm, say in R2, under a prescribed trace g ∈ C0(∂Ω). A natural condition
which ensures uniqueness of a minimizer with that trace is a so-called barrier condition. Roughly
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speaking this condition ensures the positivity of a generalized mean curvature of ∂Ω related to ϕ.
This condition is in turn related to the strict convexity of Ω.

In our case, the integrand W only behaves like a norm for |∇u| ≥ 1, that is where the inequality
constraint on σ is active, i.e. |σ| = 1. It is natural to expect some sort of convexity property of
Ω1. Unfortunately, in contrast with to [27] where the assumption is solely on the set Ω, our case
requires assumption (H) on the a priori unknown set Ω1. We do not know if (H) is satisfied in
general but do not have a counterexample. ¶

Although the stress σ is always unique, it is not in general so for the displacement u and the
plastic strain p. This has been evidenced in [5, Subsection 1.2] where infinitely many solutions are
constructed for a mixed boundary value problem for which Ωpl = Ω. We now complement this
example by producing a unique plastic strain (hence a unique solution (u, σ, p) to the minimization
problem (3.1)), but with a region Ωpl which is a convex open set strictly contained in Ω. Boundary
conditions can be picked to be pure Dirichlet, or of mixed type.

plastic region r = a

r = b

σ = ~e θ
2

uel = 2
√
ar sin θ

2

σ = ∇uel =
√
a/r(sin θ

2 , cos θ2 )

u ≡ 2a sin θ
2

∂u

∂θ
= 0 u = 0

u = 2
√
ab sin θ/2

O• θθ/2

Figure 2. The MacClintock example.

Example 3.6 (The modified MacClintock example). 1 Consider a half-disk of radius b with
boundary conditions as shown on Figure 2. Note that the boundary condition on θ = π switch from
homogeneous Neumann for a ≤ r ≤ b to homogeneous Dirichlet for r ≤ a. The solution is elastic
(|σ(x)| < 1) in the half-annulus a < r < b. Then the plastic region is r ≤ a and it corresponds
to a fan centered at (r = a, θ = π), so that the associated stress field is σ = ~e θ

2
in terms of the

angle θ. According to Remark 3.2-(i) there can be no jump at r = a because the normal ~er is not
alined with σ = ~e θ

2
. Further, u must remain constant along the characteristic line segment given

in polar coordinates by ](a, π), (a, θ)[ (see [5, Theorem 6.2]). Thus it is equal to 2a sin θ
2 along that

line segment. The solution is therefore unique.
Remark that we could have imposed a Dirichlet boundary condition on the line segment

](b, π), (a, π)[ in lieu of the Neumann boundary condition. That boundary condition should then
be w = 2

√
ar and there would thus be a jump in w at (r = a, θ = π). By Gagliardo’s theorem w

would still be the trace on ∂Ω of a W 1,1(R2) function so that our analysis equally applies to the
pure Dirichlet case. ¶

1This example is motivated by the solution given by F. A. MacClintock to the elasto-plastic field around the
crack tip of a semi-infinite straight crack in so-called mode III.
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3.3. When the saturation set has empty interior. In that case, the solution is purely elastic
inside the full domain Ω, except possibly on a segment separating Ω into two connected components.

Theorem 3.7. Let Ω be a convex domain in R2, w ∈ L1(∂Ω) and u ∈ BV (Ω) be a solution of
(1.3). Under hypothesis (H), if, further, Ω1 has empty interior in Ω, then

• either Ω1 = ∅ and u ∈ C∞(Ω) ∩ C0,1(Ω) satisfies
−∆u = 0 in Ω,

|∇u| < 1 in Ω,

∂νu = g on ∂NΩ,

(w − u)∂νu = |w − u| on ∂DΩ;

(3.7)

• or Ω1 = S for some open line segment S separating Ω into two connected components

denoted by Ω±. Then, u ∈ C∞(Ω±) ∩ C0,1(Ω
±

), and denoting by u± the one-sided traces
of u on S, it satisfies 

−∆u = 0 in Ω±,

|∇u| < 1 in Ω±,

u± are constant on S,

∂νu = g on ∂NΩ,

(w − u)∂νu = |w − u| on ∂DΩ.

(3.8)

In both cases, if in addition ∂DΩ = ∂Ω, then u is unique.

Proof. If Ω1 is a convex set with empty interior, there exists a line segment S such that Ω1 =
S ∩Ω. Without loss of generality, we assume that 0 ∈ S and denote by ν a (constant) unit vector
orthogonal to S. Let Ω± := {x ∈ Ω : ±x · ν > 0} and L := ν⊥R, so that S ⊂ L ∩ Ω ⊂ ∂Ω±.

By definition, Ωel = Ω \ S and, by Lemma 3.3, u ∈ C∞(Ω \ S) is harmonic in Ω \ S. Moreover,

Du = ∇uL2 + (u+ − u−)νH1 S,

where u± are the one-sided traces of u on L∩Ω according to this orientation. Further, by Remark
3.2-(i), the flow rule yields

(σ · ν)(u+ − u−) = |u+ − u−| H1-a.e. on S. (3.9)

Since u ∈ BV (Ω) ⊂ L2(Ω) and Du Ω± = σL2 Ω± with σ ∈ L2(Ω;R2), then u ∈ H1(Ω±) with
∇u = σ in Ω±, and u± ∈ H1/2(L ∩ Ω). Since Ω± ⊂ Ωel, Lemma 3.3 implies that |∇u| = |σ| < 1
in Ω±, hence u ∈W 1,∞(Ω±). Using next that Ω± are convex domains (hence Lipschitz), we infer

that u ∈ C0,1(Ω
±

). In particular, the traces u± of u are continuous on L ∩ Ω and thus, the set

J = {x ∈ L ∩ Ω : u+(x) 6= u−(x)},

which is included in S, is relatively open in L ∩ Ω, hence included in Ω1 = S ∩ Ω.

If J 6= ∅, J =
⋃
j∈N Jj where {Jj = ]αj , βj [}j∈N are pairwise disjoints open line segments and

the flow rule (3.9) yields |σ · ν| = 1 on Jj . Moreover, by definition (3.5) of Ω1, |σ| = 1 on Ω1. We

thus get that σ = ±ν on Jj . Since σ ∈ H1/2(Jj ;R2), [5, Lemma A.2] yields σ = ν or σ = −ν on
Jj . Then Lemma 2.2 ensures that u+ and u− are both constant on Jj . By continuity of u± on
L ∩ Ω and using that u+(αj) = u−(αj) and u+(βj) = u−(βj), this is possible only if J = L ∩ Ω
and u± = c± on L ∩ Ω, for some constants c± ∈ R with c+ 6= c−. Hence (3.8).
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If instead J = ∅, we get that u ∈ H1(Ω±) satisfies u+ = u− on L ∩ Ω. This ensures that
actually u ∈ H1(Ω). Moreover, since ∇u = σ ∈ H1

loc(Ω;R2), we deduce that u ∈ H2
loc(Ω). We thus

obtain from Green’s formula that for all ϕ ∈ C∞c (Ω),
ˆ

Ω

u∆ϕdx =

ˆ
Ω

ϕ∆u dx+

ˆ
S

(
u+(∂νϕ)− ϕ(∂νu)+

)
dH1

−
ˆ
S

(
u−(∂νϕ)− ϕ(∂νu)−

)
dH1 =

ˆ
Ω\S

ϕ∆u dx = 0.

We thus infer that u is actually harmonic in all of Ω, hence of class C∞ on that set.
Classical properties of harmonic functions show that |∇u|2 is subharmonic, i.e. −∆(|∇u|2) ≤ 0

in Ω. We already know that |∇u| < 1 in Ωel = Ω \ S. Let us now consider x0 ∈ S and r > 0 small
enough so that Br(x0) ⊂⊂ Ω. The mean value property yields that

|∇u(x0)|2 ≤
 
Br(x0)

|∇u|2 dx.

Since |∇u| < 1 L2-a.e. in Ω, we get that
ffl
Br(x0)

|∇u|2 dx < 1, hence |∇u(x0)| < 1. Thus |∇u| < 1

in all of Ω, Ω1 = ∅ and since Ω has Lipschitz boundary, we deduce that u extends to a Lipschitz-
continuous function in Ω. Hence (3.7).

It remains to show the uniqueness of u in the pure Dirichlet case ∂DΩ = ∂Ω. In the case where
Ω1 = ∅, we first notice that there exists an H1-measurable A ⊂ ∂Ω such that H1(A) > 0 and
|σ · ν| < 1 H1-a.e. on A. Else, using that σ = ∇u, we get that

|σ · ν| = |∂νu| = 1 H1-a.e. on ∂Ω, (3.10)

and according to Lemma 2.2, u must remain constant on ∂Ω. But then the maximum principle
implies that u is constant on the convex (hence connected) set Ω which contradicts the starting
assumption (3.10). So that case does not occur. Let u1 and u2 be two solutions of (3.2). By
uniqueness of σ = ∇u1 = ∇u2, there exists a constant c ∈ R such that u2 = u1 + c. As |σ · ν| < 1
H1-a.e. on A, the flow rule

(w − ui)σ · ν = |w − ui| H1-a.e. on A

ensures that u1 = u2 = w H1-a.e. on A, which yields c = 0 and u1 = u2 in Ω.
The second case Ω1 = S can be treated similarly, arguing separately on Ω+ and Ω− and using

that u± are constant on S = L ∩ Ω. �

The convexity assumption on Ω is actually not used in the proof of Theorem 3.7 when Ω1 = ∅,
and it shows the uniqueness of the displacement u, hence of the plastic strain p although the
Dirichlet boundary condition might fail to be satisfied. We now give an example of a plastic strain
concentrated on a set of 0-volume on the Dirichlet boundary, showing that such a situation can
indeed occur.

Example 3.8. Consider a circular annulus Ω of inner radius a and outer radius b subject to the
following Dirichlet boundary conditions:{

w(r = a) = α

w(r = b) = β

with |β − α| > a ln(b/a), and look for a radially symmetric stress in (3.2). The only possible
stress is of the form σ = d

r~er. Then, for |σ| to be less than or equal to 1 on Ω we must have
|d| ≤ a so that, if some plasticity is desired, |d| = a. For r > a, we have |σ| < 1, so σ = ∇u and
u(r) = ±a ln r+k(θ). The boundary condition u(r = b) = β must be met, so that k(θ) = β∓a ln b.
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According to Remark 3.2-(i), at r = a, ∓(α− u(r = a)) = |α− u(r = a)| where u(r = a) is the
value of the elastic solution at r = a, that is ±a ln a/b+ β. We get

±(β − α∓ a ln b/a) = |β − α∓ a ln b/a|.
If β − α > a ln(b/a), then d = a while, if β − α < −a ln(b/a), d = −a. In both cases u jumps at
r = a with an associated p = (u(a)− α)δr=a.

Summing up, we have

u = ±a ln r/b+ β, p = (u(a)− α)δr=a (3.11)

as a solution to (3.2). We claim that this is the only solution. Indeed, u(r), r > a is unique since
∇u is unique and its value at r = b is given. So, p must concentrate on r = a and, because of the
flow rule (the last equation in (3.2)), it must be given by its expression in (3.11).

3.4. When the saturation set has non empty interior. From now on, we assume that Ω1

has nonempty interior so that the set Ωpl is a nonempty convex open set. In the rest of this work,
we denote by

Σ := (∂Ωel ∩ ∂Ωpl) ∩ Ω (3.12)

the interface between the elastic and plastic parts.

Lemma 3.9. The sets Ωel, Ωpl and Σ satisfy

Ωel = Ω \ Ωpl, Ωpl = Ω \ Ωel, Σ = Ω ∩ ∂Ωpl = Ω ∩ ∂Ωel. (3.13)

Proof. Since Ω1 is convex, according to [7, Proposition 3.45] and (3.6), we have Ω1 = Ωpl, Ωpl =

int(Ωpl) and Ωel = Ω \ Ωpl.

First, as Ω \Ωel ⊂ Ωpl ∩Ω, then Ω \Ωel ⊂ int(Ωpl) = Ωpl. Moreover, if x ∈ Ω∩Ωel ∩Ωpl, there
exists r > 0 such that Br(x) ⊂ Ωpl and y ∈ Br(x) such that y ∈ Ωel. Then y ∈ Ωel ∩ Ωpl which is

impossible. This implies that Ωpl ⊂ Ω \ Ωel, hence Ωpl = Ω \ Ωel.

Recalling that Ω∩Ωpl = Ω\Ωel and Ω\Ωpl = Ω∩Ωel, we get that Ω∩∂Ωpl = Ω∩∂Ωel = Σ. �

According to Theorems 5.1 and 5.6 in [5] (applied to Ωp now denoted by Ωpl), the following
rigidity properties of u and σ hold true in Ωpl.

Theorem 3.10. The stress σ is locally Lipschitz in Ωpl and σ is constant along all line segments
Ly ∩ Ωpl, where, for y ∈ Ωpl,

Ly := y + Rσ⊥(y)

is called a characteristic line. Moreover, there exists an H1-negligible set Z ⊂ Ωpl such that
L2(Ωpl ∩ (

⋃
z∈Z Lz)) = 0 and u is constant along Lx ∩ Ωpl for all x ∈ Ωpl \ (

⋃
z∈Z Lz).

Remark 3.11. Since Ωpl is an open set with Lipschitz boundary and Σ is an open subset of ∂Ωpl
in the relative topology of ∂Ωpl, we infer that Σ is locally the graph of a Lipschitz function (see
Propositions 2.4.4 and 2.4.7 in [23]). Moreover, as σ ∈ H1

loc(Ω;R2), we get that

|σ| = 1 H1-a.e. on Σ.

Indeed, since σ ∈ H1
loc(Ω;R2) ∩ L∞(Ω;R2), |σ|2 ∈ H1

loc(Ω). Using that |σ| = 1 L2-a.e. in Ωpl
by definition of that set, and that Σ = Ω ∩ ∂Ωpl, we obtain that the trace of |σ| satisfies |σ| = 1
H1-a.e. on Σ.

In particular, at least when Σ is smooth enough, since ∆σ = 0 in Ωel, then |σ| ∈ C0(Ωel ∪ Σ)
(see [10, Theorem A3.3]). We will actually prove a stronger result, see Theorem 4.1, namely, that
σ (and not only its modulus) is continuous in Ω except possibly at two single points of Σ, and that
σ ∈ C0(Ω;R2), provided Σ has a well defined normal at these points. In particular, we will have,
in the notation of Theorem 4.1, that |σ(x)| = 1 for all x ∈ Σ \ Z. ¶
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We now further investigate the properties satisfied by u in the plastic zone Ωpl. First,

Lemma 3.12. The function u cannot be locally constant in Ωpl.

Proof. Assume by contradiction that u in constant in an open set U ⊂ Ωpl. As a consequence,
Du = 0 and p = −σL2 in U . The flow rule (stated in Remark 3.2-(iv)) yields in turn that

−|σ|2 = σ · p = |p| = |σ| in U

which is impossible since |σ| = 1 in U ⊂ Ωpl. �

As part of the proof of Theorem 6.1, we will be examining the superlevel sets {u > λ} of the
function u in Ωpl. It is known that the reduced boundary of the superlevel sets of solutions to least
gradient problem are minimal surfaces (see e.g. [27, 30, 32]). In our case, we demonstrate a much
stronger structure of the level sets of u in the plastic zone: they are characteristic line segments.
The following result states a kind of “monotonicity” property of u in Ωpl across the characteristic
line segments.

Proposition 3.13. Let λ ∈ R be such that

0 < L2({u > λ} ∩ Ωpl) < L2(Ωpl). (3.14)

Then there exists an open half-plane Hλ whose boundary is a characteristic line Lxλ , for some
xλ ∈ Ωpl, and {

u > λ L2-a.e. in Ωpl ∩Hλ,

u < λ L2-a.e. in Ωpl \Hλ.
(3.15)

In particular, the essential boundary of the sets {u > λ} (resp. {u ≥ λ}) in Ωpl is precisely
∂Hλ ∩ Ωpl. Moreover, σ(xλ) is the inner unit normal to Hλ.

Proof. We denote by u∗ the precise representative of u ∈ BV (Ωpl) defined outside a set Zu ⊂ Ωpl
with H1(Zu) = 0 (see e.g. [2, Corollary 3.80]). We can assume without loss of generality that
Zu contains the exceptional set Z introduced in the statement of Theorem 3.10. Further, setting
Nu :=

⋃
z∈Zu(Ωpl ∩ Lz) and Ωu := Ωpl \Nu, we can also assume that L2(Nu) = 0.

Indeed, this is true of Z. As far as Zu is concerned, by [5, Proposition 5.7], for all x0 ∈ Ωpl, there
exists an open neighborhood U of x0 contained in Ωpl, a square Q = (−r, r)2 and a bi-Lipschitz
mapping Φ : Q → U with the property that Φ−1 maps the characteristic line segments in U into
a family of vertical parallel lines. Specifically, for all x ∈ Q, there exists a unique t ∈ (−r, r) such
that

Φ−1(Lx ∩ U) = {t} × (−r, r).
Setting P (t, s) := t, the set Ẑu := P (Φ−1(Zu ∩ U)) is H1-negligible because Φ−1 and P are

Lipschitz. Since Ẑu ⊂ (−r, r), this reads as L1(Ẑu) = 0. Thus,

Φ−1

( ⋃
z∈Zu

(Lz ∩ U)

)
=
⋃
t∈Ẑu

{t} × (−r, r) = Ẑu × (−r, r).

By Fubini’s Theorem, L2(Ẑu × (−r, r)) = 0 and because Φ itself is Lipschitz,

L2

( ⋃
z∈Zu

(Lz ∩ U)

)
= 0.

The desired result is obtained by moving the point x0.

Let L be a characteristic line and ξ be the constant value of σ on L ∩ Ωpl. We define

(Ωpl)
ξ
y = {t ∈ R : y + tξ ∈ Ωpl},
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which is an open interval by convexity of Ωpl. For H1-a.e. y ∈ L ∩ Ωpl, we further set

uξy(t) := u(y + tξ) for L1-a.e. t ∈ (Ωpl)
ξ
y.

By [2, Theorem 3.7], uξy ∈ BV ((Ωpl)
ξ
y) for H1-a.e. y ∈ L ∩ Ωpl and the following disintegration

result holds:

Du · ξ = H1 (L ∩ Ωpl)⊗Duξy. (3.16)

Since, by the flow rule (see Remark 3.2-(iv)), Du = σµ where µ = L2 + |p|, Du · ξ = σ · ξ µ.
We claim that σ · ξ > 0 in Ωpl. Let y ∈ L ∩ Ωpl, since σ is constant along L and equal to ξ,
σ(y) · ξ = 1. If, for some t ∈ (Ωpl)

ξ
y, σ(y + tξ) · ξ = 0, the characteristic line Ly+tξ is parallel to ξ

and passes through y ∈ Ωpl which is impossible since line segments cannot intersect inside Ωpl (see
[5, Proposition 5.5]). The continuity of σ in Ωpl implies that σ(y+ tξ) ·ξ > 0 for all t ∈ (Ωpl)

ξ
y. Any

point x ∈ Ωpl can be written as x = y + tξ for some y ∈ L ∩Ωpl and t ∈ (Ωpl)
ξ
y, hence σ(x) · ξ > 0

for all x ∈ Ωpl.
Because |p| is a non negative measure, σ · ξ L2 ≤ Du · ξ and Fubini’s Theorem together with

(3.16) ensures that for H1-a.e. y ∈ L ∩ Ωpl,

Duξy · ξ ≥ σξy · ξL1 > 0 in (Ωpl)
ξ
y, (3.17)

where σξy(t) := σ(y + tξ).

Case 1. Assume first that λ ∈ u∗(Ωu) so that there exists xλ ∈ Ωu ⊂ Ωpl with u∗(xλ) = λ. By
Theorem 3.10 and since Zu ⊃ Z, we know that u∗ is constant along Lxλ ∩ Ωpl, hence u∗(x) = λ
for all x ∈ Lxλ ∩ Ωpl. Let Hλ be the open half-plane such that ∂Hλ = Lxλ and containing σ(xλ).
Set ξ := σ(xλ) ∈ S1 and L := Lxλ . According to (3.17), for H1-a.e. y ∈ L ∩ Ωpl,

uξy < λ L1-a.e. on (Ωpl)
ξ
y ∩ R∗−, uξy > λ L1-a.e. on (Ωpl)

ξ
y ∩ R∗+.

and thus (3.15) holds. Note that this first case does not use hypothesis (3.14).

Case 2. Next if λ 6∈ u∗(Ωu), we define

λ+ := inf{s > λ : s ∈ u∗(Ωu)} ≥ λ.

We claim that {u ≥ λ} ∩ Ωpl = {u ≥ λ+} ∩ Ωpl up to an L2-negligible set. This is obvious if
λ+ = λ. If however, λ+ > λ, by definition of λ+, u∗(Ωu) ∩ [λ, λ+) = ∅, hence (up to a set of zero
L2-measure)

{u ≥ λ} ∩ Ωpl = {u∗ ≥ λ} ∩ Ωu = {u∗ ≥ λ+} ∩ Ωu = {u ≥ λ+} ∩ Ωpl.

By definition of the infimum, a decreasing sequence {sn}n∈N in u∗(Ωu) is such that sn > λ, with
sn ↘ λ+. According to Case 1, there exist points xn ∈ Ωpl, characteristic lines Ln = Lxn and
open half-spaces Hn satisfying{

∂Hn = Ln; Hn 3 σ(xn);

u < sn L2 -a.e. in Ωpl \Hn; u > sn L2 -a.e. in Ωpl ∩Hn.

Let [an, bn] := Ln ∩ Ωpl. Up to a subsequence, we can suppose that an → a, bn → b for some
a, b ∈ ∂Ωpl and the closed line segment [an, bn] converges in the sense of Hausdorff to a closed
line segment [a, b]. If [a, b] ⊂ ∂Ωpl, either L2({u ≤ λ+} ∩ Ωpl) = 0, or L2({u ≥ λ+} ∩ Ωpl) = 0.
This implies that L2({u ≤ λ} ∩ Ωpl) = 0 or L2({u > λ} ∩ Ωpl) = 0 which is against (3.14). As a
consequence [a, b] is not contained in ∂Ωpl and by convexity of Ωpl, ]a, b[ ⊂ Ωpl.

By continuity of σ in Ωpl, ]a, b[ must be a characteristic line segment Lxλ ∩ Ωpl orthogonal to
σ(xλ), where xλ is any arbitrary point in ]a, b[. Let Hλ be the open half-space containing σ(xλ);
u ≤ λ+ L2-a.e. in Ωpl \Hλ and u ≥ λ+ L2-a.e. in Ωpl ∩Hλ. Recalling that u∗(Ωu) ∩ [λ, λ+) = ∅,
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and that L2({u 6= u∗}) = L2(Ωpl \Ωu) = 0, we conclude that u ≤ λ L2-a.e. in Ωpl \Hλ and u ≥ λ
L2-a.e. in Ωpl ∩Hλ. Using (3.17) with ξ = σ(xλ) and L = Lxλ , we infer that (3.15) holds. �

We recall one of the main results of [5] (see [5, Theorem 1.3]). To this aim, we need to introduce
some notation. Given two vectors v1 and v2 ∈ R2, we denote by C(v1, v2) := {αv1 + βv2 : α >
0, β > 0} the half open cone generated by v1 and v2. A boundary fan with apex ẑ ∈ ∂Ωpl ∩ ∂Ω is
an open subset of Ωpl of the form

Fẑ = Ωpl ∩ (ẑ + C(v1, v2)). (3.18)

Theorem 3.14. The set Ωpl can be written as the following pairwise disjoint union

Ωpl =
⋃
i∈I

Fi ∪
⋃
λ∈Λ

(Lxλ ∩ Ωpl) ∪
⋃
j∈J

Cj , (3.19)

for some (possibly) uncountable set Λ and at most countable sets I, J , where

• {Lxλ}λ∈Λ is a family of pairwise disjoint characteristic lines passing though xλ ∈ Ωpl;
• {Fẑi}i∈I is a family of pairwise disjoint open boundary fans with apex ẑi ∈ ∂Ωpl ∩ ∂Ω;
• {Cj}j∈J is a family of pairwise disjoint convex sets, closed in the relative topology of Ωpl

and with non empty interior.

Moreover, denoting by

F :=
⋃
i∈I

Fi,

then {Lxλ ∩ Ωpl}λ∈Λ (resp. {Cj}j∈N) are the connected components of

C := Ωpl \F (3.20)

with empty (resp. nonempty) interior.

We also recall the following

Definition 3.15. A point x ∈ ∂Ωpl is a characteristic boundary point if x 6∈ Lz for all z ∈ Ωpl.
We denote by ∂cΩpl the set of all characteristic boundary points.

The results of [5, Theorem 6.11, Remark 6.12] provides a precise structure of the connected
components of C .

Theorem 3.16. Let C be a connected component of C with nonempty interior. If C 6= Ωpl, then

(i) Either ∂C = L∪Γ with L an open characteristic line segment and Γ a connected closed set
in ∂Ωpl. In that case, Γ = Γ1∪Γ2∪S where Γ1 and Γ2 are connected and S = ∂C∩∂cΩpl =:
∂cC is a closed line segment (possibly reduced to a single point) that separates Γ1 and Γ2.
Further, each point of Γ1 (resp. Γ2) is traversed by a characteristic line segment which will
re-intersect ∂Ωpl on Γ2 (resp. Γ1).

(ii) Or ∂C = L ∪ L′ ∪ Γ ∪ Γ′ where L and L′ are open characteristic line segments, while Γ
and Γ′ are two disjoint connected closed sets in ∂Ωpl. Further each point of Γ (resp. Γ′)
is traversed by a characteristic line segment which will re-intersect ∂Ωpl on Γ′ (resp. Γ).
In that case, ∂C ∩ ∂cΩpl = ∅.

If however C = Ωpl, then ∂Ωpl = Γ1 ∪Γ2 ∪S ∪S′ where Γ1 and Γ2 are connected and S, S′ are
the (only) connected components of ∂cΩpl. They are disjoint closed line segments (possibly reduced
to a single point). Further, each point of Γ1 (resp. Γ2) is traversed by a characteristic line segment
which will re-intersect ∂Ωpl on Γ2 (resp. Γ1).
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Remark 3.17. Let L be a characteristic line segment such that L∩Ωpl ⊂ ∂C and H be the closed
half-plane with ∂H ⊃ L that contains C. For each ε > 0, we set Hε := {x ∈ R2 : dist(x,H) ≤ ε}.
Then

Ωpl ∩ (Hε \H) ∩F 6= ∅,
otherwise the connected set [C∪ (Ωpl ∩ (Hε \H)] would be disjoint from F and strictly contain C
which would contradict that C is a connected component of C . In other words, the characteristic
line segment L is either the boundary of a fan, or the accumulation point for the Hausdorff distance
of boundaries of fans. In particular, denoting by L ∩ Ωpl = [a, b] for some a, b ∈ R2, then (up to
exchanging a and b), there exists a sequence {zn}n∈N of apexes of boundary fans such that zn → a.

A similar argument would show that, for all λ ∈ Λ, Lxλ ∩ Ωpl is either the boundary of a fan,
or the accumulation point for the Hausdorff distance of boundaries of fans. ¶

Lemma 3.18. Let C be a connected component of C with non-empty interior such that ∂cC 6= ∅
(case (i) of Theorem 3.16). Let Γ1 and Γ2 be the connected components of ∂C defined in that
Theorem. Set, for any x ∈ Γ1, f(x) as the unique intersection point of Lx with Γ2. Then f is a
homeomorphism from Γ1 to Γ2.

Proof. According to Theorem 3.16-(i), the mapping f is well defined and one to one. It is enough
to check that f is continuous on Γ1 since a similar argument will lead to the continuity of f−1 on
Γ2.

Let x ∈ Γ1 and {xn}n∈N be a sequence in Γ1 be such that xn → x. For each n ∈ N, there exists
θn ∈ R such that f(xn) = xn + θnσ

⊥(xn). The sequence {θn}n∈N being bounded, it converges, up
to a subsequence, to some limit θ ∈ R. Moreover, by continuity of σ in C \ ∂cC (see [5, Theorem
6.22]), f(xn)→ x+ θσ⊥(x) =: y ∈ Lx ∩ Γ2. Since by Theorem 3.16-(i) Lx intersects Γ1 and Γ2 it
follows that, actually, y ∈ Lx ∩ Γ2, which proves that y = f(x). �

We next show that σ does not change orientation inside all connected components C of C .

Lemma 3.19. Consider C a connected component of C with nonempty interior and let L be a
characteristic line such that L ∩ Ωpl ⊂ ∂C. Then, either

C̊ = {x ∈ C̊ : σ(x) · (y − x) > 0 for all y ∈ L ∩ Ωpl}

or

C̊ = {x ∈ C̊ : σ(x) · (y − x) < 0 for all y ∈ L ∩ Ωpl}.

Proof. Define

C+ := {x ∈ C̊ : σ(x) · (y − x) ≥ 0 for all y ∈ L ∩ Ωpl}.
By continuity of σ in C̊, we have that C+ is closed in C̊.

If σ(x) · (y−x) = 0 for some x ∈ C̊ and y ∈ L∩Ωpl, then Lx would be parallel to y−x and the
segment [x, y] would be contained in Lx. But then both characteristics L and Lx would intersect
at y which would lead to a contradiction: indeed this is not possible if y ∈ Ωpl according to [5,
Proposition 5.5], while, if y ∈ ∂Ωpl, we would have constructed a boundary fan contained in C,
which is impossible since C contains no boundary fans (recall (3.20)). This implies that

C+ = {x ∈ C̊ : σ(x) · (y − x) > 0 for all y ∈ L ∩ Ωpl}.

Let x ∈ C+ and ε0 := miny∈L∩Ωpl
σ(x) · (y − x) > 0. By continuity of σ in C̊, there exists

0 < δ < 3ε0/4 such that Bδ(x) ⊂ C̊ and, if x′ ∈ Bδ(x), then

|σ(x)− σ(x′)| ≤ ε0

4diam(C)
.
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Thus,

σ(x′) · (y − x′) ≥ σ(x) · (y − x′)− ε0

4diam(C)
|y − x′| ≥ σ(x) · (y − x)− ε0

4
− δ ≥ 3ε0

4
− δ > 0

which proves that x′ ∈ C+. As a consequence C+ is open which is possible only if C+ = ∅ or
C+ = C̊ since C̊ is connected. If C+ = C̊, then we are done. If C+ = ∅, it means that

C̊ = {x ∈ C̊ : σ(x) · (y − x) < 0 for some y ∈ L ∩ Ωpl}.

Assume by contradiction that there exists y′ ∈ L ∩ Ωpl such that σ(x) · (y′ − x) > 0. For all

t ∈ [0, 1], define yt := ty + (1 − t)y′ ∈ L ∩ Ωpl because L ∩ Ωpl is a closed line segment. The
mapping t ∈ [0, 1] 7→ σ(x) · (yt − x) is continuous, while σ(x) · (y0 − x) > 0 and σ(x) · (y1 − x) < 0.
The intermediate valued Theorem implies that, for some t0 ∈ ]0, 1[, σ(x) · (yt0 − x) = 0 which is
impossible. Consequently, σ(x) · (y′ − x) < 0 for all y′ ∈ L∩Ωpl, which completes the proof of the
lemma in that case as well. �

We can similarly explicit the structure of boundary fans. Recalling the definition (3.18) of a
(boundary) fan Fẑ with apex ẑ ∈ ∂Ω ∩ ∂Ωpl, we set, for i = 1, 2, Li = ẑ + Rvi,

ti := sup{t ≥ 0 : ẑ + tvi ∈ ∂Fẑ}

and ai := ẑ + tivi so that Li ∩ Ωpl = [ẑ, ai]. By convexity of Ωpl,

∂Fẑ = [ẑ, a1] ∪ Γ ∪ [ẑ, a2],

where Γ is an open connected set in ∂Fẑ.

Proposition 3.20. Let Fẑ be a boundary fan with apex ẑ and generatrices v1, v2 ∈ R as in (3.18),
and let ∂cFẑ := ∂Fẑ ∩ ∂cΩpl. Then,

• Either ∂cFẑ = ]ẑ, a1]∪ ]ẑ, a2];
• Or ∂cFẑ = ]ẑ, a1] and L2 is a characteristic line (or the converse);
• Or ∂cFẑ = ∅ and both L1, L2 are characteristic lines.

Proof. Since, by [5, Lemma 6.1], Γ is traversed by characteristic line in Fẑ which also passes through
ẑ, we deduce that ∂cFẑ ⊂ ]ẑ, a1] ∪ ]ẑ, a2]. The conclusion follows observing that, if ]ẑ, ai[ ⊂ Ωpl,
then Li is a characteristic line. �

In view of Theorem 3.16 and Proposition 3.20, if follows that ∂cΩpl, if not empty, is the union
of pairwise disjoint line segments possibly reduced to a single point. The following result will imply
as a corollary that the characteristic boundary ∂cΩpl has at most two connected components.

Lemma 3.21. There does not exist three pairwise disjoint nonempty characteristic lines L1∩Ωpl,

L2 ∩ Ωpl and L3 ∩ Ωpl such that

Lj ∩ Ωpl ⊂ Hi for all i 6= j, (3.21)

where H1, H2, H3 are half-planes with ∂Hi = Li for i = 1, 2, 3.

Proof. ∂Ωpl is a closed, connected set with finite H1 measure, therefore, according to [13, Propo-
sition C-30.1], it is arcwise connected and there exists a 1-periodic Lipschitz continuous mapping

γ : [0, 1]→ R2 such that γ(0) = γ(1) and ∂Ωpl = γ([0, 1]). (3.22)

Let us define the set

C := Ωpl ∩H1 ∩H2 ∩H3.

It is nonempty, convex, and its boundary contains the three open characteristic line segments
Li ∩ Ωpl. Note that Li ∩ ∂Ωpl = {xi, x′i}, where both points xi and x′i lie in ∂Ωpl, so that
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Li ∩ Ωpl = ]xi, x
′
i[. Since L1 ∩ Ωpl, L2 ∩ Ωpl and L3 ∩ Ωpl are pairwise disjoint, the points x1, x′1,

x2, x′2, x3 and x′3 are pairwise distinct. Setting xi = γ(ri) and x′i = γ(r′i), we must have

0 ≤ r′1 < r2 < r′2 < r3 < r′3 < r1 < 1

upon an appropriate choice of γ(0). By convexity of C, the middle points yi := (xi + x′i)/2 belong
to Li ∩ Ωpl and consequently, Lyi = Li. Moreover, for i 6= j, the closed segments [yi, yj ] ⊂ Ωpl
cannot be contained in a characteristic line Lx, for some x ∈ Ωpl, otherwise Lx and Li (resp. Lj)
would intersect at yi (resp. yj), which is not possible in view of [5, Proposition 5.5].

For any t ∈ ]0, 1[, define y(t) := ty3 + (1− t)y1 ∈ ]y1, y3[. The intersection points of Ly(t) with
∂Ωpl, respectively denoted by γ(st) and γ(s′t), satisfy

s′t ∈ [r′3, r1], st ∈ [r′1, r2] ∪ [r′2, r3].

Define

t := sup{t ∈ [0, 1] : Ly(t) ∩ γ([r′1, r2]) 6= ∅}, t := inf{t ∈ [0, 1] : Ly(t) ∩ γ([r′2, r3]) 6= ∅}.
If, for all y ∈ ]y1, y3[, the characteristic line Ly intersects γ([r′2, r3]), then, by continuity of σ on
[y1, y3] ⊂ Ωpl, we would have that Ly1∩γ([r′2, r3]) 6= ∅ which is impossible since Ly1 = L1 is disjoint
from γ([r′2, r3]). Therefore the set {t ∈ [0, 1] : Ly(t) ∩ γ([r′1, r2]) 6= ∅} is not empty and t > 0.

A similar argument also shows that t < 1. Further t ≤ t otherwise we could find two points y,
y′ ∈ ]y1, y3[ such that Ly and Ly′ would intersect inside Ωpl, which is impossible by [5, Proposition
5.5].

L2

L1

•
γ(r1) = x1

•
γ(r′1) = x′1

• γ(r3) = x3

L3

•
γ(r′3) = x′3

•
γ(r2) = x2

•γ(r′2) = x′2

y3
•

•y1

y(t)•

Ly(t)

γ(s′t)•

γ(st)
•

Figure 3. Case of three characteristic characteristic line segments L1, L2, L3.

Let {tn}n∈N be a maximizing sequence in [0, 1] such that Ly(tn) ∩ γ([r′1, r2]) 6= ∅ for all n ∈ N
and tn → t. Since γ(s′tn) ∈ Ly(tn) = y(tn) + Rσ⊥(y(tn)), there exists θn ∈ R such that

γ(s′tn) = y(tn) + θnσ
⊥(y(tn)),

where {γ(s′tn)}n∈N is a sequence in γ([r′3, r1]) (hence bounded) and {θn}n∈N is a bounded sequence

since |σ⊥(y(tn))| = 1 for all n ∈ N. Therefore, up to a further subsequence γ(s′tn)→ x ∈ γ([r′3, r1])
and θn → θ. Thus, using that σ is continuous in [y1, y3] ⊂ Ωpl, it follows that

x = y(t) + θσ⊥(y(t)),

hence x ∈ Ly(t) ∩ γ([r′3, r1]) and Ly(t) intersects γ([r′1, r2]). Note that since t ∈ ]0, 1[, then y :=
y(t) ∈ ]y1, y3[. If x = γ(r′3), then x would be the intersection point of two distinct characteristic
lines L3 and Ly(t), hence the apex of a boundary fan Fx containing L2 ∩ Ωpl which is impossible
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by [5, Lemma 6.1]. On the other hand, if x = γ(r1), using the continuity of σ and the fact that
Ly(t) intersects γ([r′2, r3]) for all t > t, we could construct a sequence t′n ↘ t such that, for some
θ′n ∈ R,

γ(s′t′n) = y(t′n) + θ′nσ
⊥(y(t′n)).

Passing to the limit, we would get that γ(s′t′n)→ x′ and θ′n → θ′ with x′ ∈ γ([r′3, r1]) and

x′ = y(t) + θ′σ⊥(y(t)).

Thus x′ ∈ Ly(t) ∩ γ([r′3, r1]) so x′ = x and we would get that x is the apex of a boundary fan, still
denoted by Fx, with, again, the property that L2 ∩ Ωpl ⊂ Fx. Therefore, x ∈ γ(]r′3, r1[).

A similar argument shows that t ∈ ]0, 1[, y := y(t) ∈ ]y1, y3[, Ly ∩ γ(]r′2, r3[) 6= ∅ and Ly(t)

intersects γ([r′2, r3]) as well as γ(]r′3, r1[).
Since r2 < r′2, then t < t, otherwise Ly and Ly would intersect inside Ωpl at a single point y = y

since Ly ∩ γ(]r′1, r2[) 6= ∅ and Ly ∩ γ(]r′2, r3[) 6= ∅. But this is impossible by [5, Proposition 5.5].

Denote by Hy and Hy the open half-planes with boundary Ly and Ly that do not contain

the points y1 and y3 respectively. The region C′ := C ∩Hy ∩Hy contains the characteristic line

segment Ly(t) ∩ Ωpl for all t ∈ ]t, t[. Such a line segment cannot intersect Ly ∩ Ωpl and Ly ∩ Ωpl
by [5, Proposition 5.5], it cannot intersect the connected boundaries γ(]r′1, r2[) and γ(]r′2, r3[)
by construction, and it cannot intersect the open line segment ]γ(r2), γ(r′2)[ = L2 ∩ Ωpl by [5,
Proposition 5.5]. The line Ly(t) must therefore intersect the point γ(r2) (resp. γ(r′2)). This is
again impossible since there would be a boundary fan containing L3 ∩ Ωpl (resp. L1 ∩ Ωpl), in
contradiction with [5, Lemma 6.1]. �

Corollary 3.22. The set ∂cΩpl is the union of at most two pairwise disjoint line segments possibly
reduced to a single point.

Proof. Assume, by contradiction, that S1, S2, S3 are three distinct pairwise disjoint nonempty line
segments with Sj = (aj , bj) in ∂cΩpl (so, in our notation, with possibly aj = bj).

Recalling the mapping γ of (3.22), we renumber the Sj and exchange aj with bj if necessary so
that

ai = γ(si), bj = γ(tj) for j ∈ {1, 2, 3} with 0 ≤ t1 ≤ s2 ≤ t2 ≤ s3 ≤ t3 ≤ s1 ≤ 1.

We further set

Γ1 := γ(]t1, s2[), Γ2 := γ(]t2, s3[), Γ3 := γ(]t3, s1[).

If t1 = s2, then Γ1 = ∅ and b1 = a2. As a consequence of Theorem 3.16 and Proposition 3.20,
we must have that S1 = [a1, b1[ and S2 = ]a2, b2] and the point b1 = a2 is the apex of a boundary
fan F which, because of the convex character of Ωpl must be Ωpl itself. This is however not possible
since, by [5, Lemma 6.1], we would get that every point of S3 is traversed by a characteristic line,
a contradiction with the fact that S3 ⊂ ∂cΩpl. This argument shows that t1 6= s2, and we prove
similarly that t2 6= s3, and t3 6= s1.

According to Theorem 3.16 and to Proposition 3.20 and because of the convex character of Ωpl,
there exist three characteristic lines L1, L2, L3 and associated open half planes H1, H2, H3 with
∂Hi = Li for i = 1, 2, 3 such that (see Figure 4)

Si ⊂ R2 \Hi, Sj ⊂ Hi for all i 6= j.

Note also that L1 ∩ L2 ∩ Ωpl = ∅, otherwise denoting by x the intersection point of L1 ∩ Ωpl and

L2 ∩ Ωpl, it would follow that x is the apex of a boundary fan containing L3 ∩ Ωpl which is not

possible by [5, Lemma 6.1]. A similar argument actually shows that Li ∩Lj ∩Ωpl = ∅ for all i 6= j.
But this geometrical configuration is not allowed by Lemma 3.21. �
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L2

L1

•

•

•
L3

•

•

•

γ(s1) = a1 •

•
γ(t1) = b1

S1 γ(s2) = a2•
• γ(t2) = b2S2

γ(s3) = a3
••γ(t3) = b3 S3

Figure 4. Case of three characteristic boundaries S1, S2, S3 surrounded by character-
istic line segments.

Remark 3.23. In view of Theorem 3.16, Proposition 3.20 and Corollary 3.22, the characteristic
boundary ∂cΩpl must be the union of at most two line segments (maybe reduced to single points)
and the end points of those line segments must belong to ∂cΩpl unless they are the apex of a
boundary fan. ¶

In Section 6 below, we will ultimately have to assume that Ω is a convex set. Our argument
will then be helped by the following additional property.

Proposition 3.24. If Ω is convex and S = (a, b) is a connected component of ∂cΩpl, then either
]a, b[∩Σ = ∅ or ]a, b[ ⊂ Σ.

Proof. Suppose that ]a, b[∩Σ 6= ∅ so that, in particular Ωel is not empty.
Then, either S = ]a, b] and a ∈ ∂Ω must be the apex of a boundary fan. Since there is a point

in ]a, b] ∩ Ω, then, by convexity of Ω, ]a, b[⊂ Ω. So, ]a, b[ ⊂ Ω ∩ ∂Ωpl = Σ.
Or S = [a, b]. Assume by contradiction that ]a, b[ \Σ 6= ∅. By convexity of Ωpl and since

Σ ⊂ ∂Ωpl, there exists x ∈ ]a, b[ such that ]a, x] ∩ Σ = ∅ and ]x, b] ⊂ Σ. In particular ]a, x] ⊂ ∂Ω.

The convexity of Ω (hence also of Ω) shows that Ω is contained in one of the open half-spaces H
such that [a, b] ⊂ ∂H. But this implies that ]x, b] ⊂ ∂Ω which is not possible since ]x, b] ⊂ Ω. �

4. Continuity of the solutions

The goal of this section is to establish new continuity results for the solutions σ and u of
the minimization problem 3.1. Regarding the stress σ, we show a continuity property in the full
domain Ω (see Theorem 4.1) except at two points at most. Those would be located on the interface
Σ between Ωel and Ωpl and, at those points, the normal cone to Σ is not degenerate (there are
many normals). To this aim, we need to improve the results of [5] with an accurate account of
the behavior of σ at characteristic points of Σ. As for the displacement u, we already know that
it is smooth (because harmonic) in Ωel and that it cannot jump at all non characteristic points of
the interface, as a result of the flow rule and of the convexity of Ωpl. We improve this property
by showing that u cannot jump on the whole of the interface Σ and that it is continuous on the
portion of Ωpl spanned by the characteristic line segments that intersect Σ (see Theorem 4.9).

4.1. Continuity of the stress. In this subsection, we investigate the continuity of σ at the
interface Σ under assumption (H). Recalling Definition 3.15 for ∂cΩpl and (3.12) for the definition
of Σ, the main result of this section is the following
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Theorem 4.1. Under asssumption (H), there exists an exceptional set Z ⊂ Σ∩∂cΩpl, containing
at most two points, such that σ ∈ C0(Ω \ Z;R2).

We first show a partial continuity property of σ in Ω \ ∂cΩpl which will be improved at a later
stage.

Proposition 4.2. The function σ is continuous in Ω \ ∂cΩpl.

Proof. Step 1. We first show that σ ∈ C0((Ωpl ∪ Σ) \ ∂cΩpl;R2). It suffices to consider points
x0 ∈ Σ \ ∂cΩpl = ∂Ωpl ∩ Ω \ ∂cΩpl since we already know, by [5, Theorem 5.1], that σ is locally
Lipschitz continuous inside Ωpl. First we note that x0 cannot be the apex of a boundary fan
because it is inside Ω. So there is exactly one characteristic line Lx0 passing through x0 and, as in
[5], we define σ(x0) as the constant value of σ along that characteristic line. We now prove that
such an extension is continuous at x0. The proof below is nearly identical to that of [5, Theorem
6.22], but it has to incorporate the case of boundary fans which were not in the original proof,
which is why we detail it below.

Let {xn}n∈N be a sequence in (Ωpl ∪ Σ) \ ∂cΩpl such that xn → x0. The point xn is then
crossed by a unique characteristic line Lxn intersecting ∂Ωpl at two points an and bn with, up to a

subsequence, an → a and bn → b. As a consequence, the closed segment Sn := Lxn ∩Ωpl = [an, bn]
converges in the sense of Hausdorff to the segment S = [a, b]. In particular, since xn ∈ Sn, then
x0 ∈ S. Moreover, since a, b, x0 ∈ ∂Ωpl and ]a, b[ is an open (possibly empty) line segment inside
the convex set Ωpl, x0 must coincide with either a or b. We assume without loss of generality that
x0 = a. By convexity of Ωpl, there exists y0 6= x0 with y0 ∈ ∂Ωpl ∩ Lx0

. Let us denote by H
one of half-planes with ∂H = Lx0 . Up to a further subsequence, we can assume that Sn ⊂ H for
all n ∈ N. Since an → a = x0, it follows that for yet another subsequence, an+1 belongs to the
arc Cn in ∂Ωpl joining an and x0. According to Lemma 3.21, for all n ∈ N, the points bn+1 6∈ Cn
otherwise Ωpl would contain the three characteristics line segments Lx0

∩Ωpl, Sn = Lxn ∩Ωpl and
Sn+1 = Lxn+1

∩ Ωpl, which is impossible. Moreover, since Sn and Sn+1 cannot intersect in Ωpl by
[5, Proposition 5.5], we deduce by convexity of Ωpl that either |an+1 − bn+1| > |an − bn| for all
n ∈ N, or |an+1 − bn+1| ≥ |x0 − y0| for all n ∈ N. In both cases, we conclude that a 6= b.

Case I: Assume that there exists δ > 0 such that for all n ∈ N,

max
z∈Sn

dist(z, ∂Ωpl) ≥ δ,

then there exists zn ∈ Sn such that dist(zn, ∂Ωpl) ≥ δ and, up to a subsequence, zn → z for some
z ∈ S with dist(z, ∂Ωpl) ≥ δ. Since xn ∈ Lzn , there exists θn ∈ R such that

xn = zn + θnσ
⊥(zn).

Note that, up to a further subsequence, θn → θ ∈ R and thus, by continuity of σ in Ωpl, we have
x0 = z + θσ⊥(z) which ensures that x0 ∈ Lz. Thus, using that σ is constant along characteristics
and, once again, the continuity of σ in Ωpl, we get that

σ(xn) = σ(zn)→ σ(z) = σ(x0).

Case II: Assume next that, for some subsequence,

max
z∈Sn

dist(z, ∂Ωpl)→ 0.

By Hausdorff convergence, for all z ∈ S, there exists a sequence {zn}n∈N with zn ∈ Sn and zn → z.
Thus, dist(zn, ∂Ωpl) → 0 which ensures that S ⊂ ∂Ωpl. Then S = [a, b] is a closed line segment
contained in ∂Ωpl. If there exists y ∈ ]a, b[ \∂cΩpl, the characteristic line Ly must intersect Sn in

Ωpl for n large enough because Sn Hausdorff-converges to [a, b]. As Sn = Lxn ∩ Ωpl, this is not
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possible according to [5, Proposition 5.5]. Thus ]a, b[ ⊂ ∂cΩpl and x0 = a 6∈ ∂cΩpl. Since ]a, b[ 6= ∅,
according to Remark 3.23, x0 must be the apex of a boundary fan, which cannot be so because
x0 ∈ Ω. This second case never occurs.

Step 2. We now show that σ ∈ C0((Ωel ∪Σ) \ ∂cΩpl;R2). Note that Σ \ ∂cΩpl is relatively open
in Σ in view of Remark 3.23. Also, since σ ∈ H1

loc(Ω;R2), σ has a trace g on Σ which belongs to

H
1/2
loc (Σ;R2). Using now that σ ∈ C0((Ωpl ∪ Σ) \ ∂cΩpl;R2), we thus recover that

g(x) = σ(x) for H1-a.e. x ∈ Σ \ ∂cΩpl, (4.1)

hence g (has a representative which) is continuous on Σ \ ∂cΩpl. Since u is harmonic in the (open)
elastic region Ωel, u ∈ C∞(Ωel). By convexity of Ωpl, Σ is locally the graph of a Lipschitz function.

Let B be a ball centered at x0 ∈ Σ\∂cΩpl such that B ⊂ Ω and B∩Σ = B∩∂Ωel = B∩∂Ωpl\∂cΩpl.
Recalling that σ = ∇u in Ωel, we get that σ ∈ H1(B ∩ Ωel;R2) is a solution of{

∆σ = 0 in B ∩ Ωel,

σ = g on B ∩ ∂Ωel,

with g ∈ C0(B ∩ ∂Ωel;R2). As a consequence, if ϕ ∈ C∞c (R2; [0, 1]) is a cut-off function such that
ϕ = 1 in a neighborhood of x0 and Supp(ϕ) ⊂ B, then σ̃ := ϕσ ∈ H1(B ∩ Ωel;R2) satisfies{

∆σ̃ = f̃ in B ∩ Ωel,

σ̃ = g̃ on ∂(B ∩ Ωel),
(4.2)

where f̃ := σ∆ϕ + 2(∇σ)∇ϕ and g̃ = ϕg in ∂Ωel ∩ B and g̃ = 0 in ∂B ∩ Ωel. Note that g̃ is

continuous on ∂(B ∩ Ωel) and f̃ ∈ L∞(B ∩ Ωel;R2) + L2(B ∩ Ωel;R2). Moreover, since B ∩ ∂Ωel
is locally the graph of a Lipschitz function, then B ∩ Ωel is an open set with Lipschitz boundary
which thus satisfies the (exterior) cone condition. Applying e.g. [21, Theorem 8.30], we conclude
that σ̃ is continuous in B ∩ Ωel. Since ϕ ≡ 1 in a neighborhood of x0, σ must then be continuous
at x0 and varying x0 in Σ \ ∂cΩpl we conclude that

σ ∈ C0((Ωel ∪ Σ) \ ∂cΩpl;R2). (4.3)

Step 3. Since σ ∈ H1
loc(Ω;R2), σ ∈ C0((Ωel ∪ Σ) \ ∂cΩpl;R2) ∩ C0((Ωpl ∪ Σ) \ ∂cΩpl;R2), we

deduce that σ ∈ C0(Ω \ ∂cΩpl;R2). �

Remark 4.3. The result of Proposition 4.2 can be extended with the same argument as in the
first step to Ω \ (∂cΩpl ∪ (∂Ωpl ∩ F)) where F :=

⋃
i∈I{ẑi} and ẑi ∈ ∂Ωpl ∩ ∂Ω is the apex of the

boundary fan Fẑi in Theorem 3.14. ¶

We next wish to improve the previous result by establishing that σ is also continuous across
non-degenerate connected components of ∂cΩpl in Σ. According to (3.19), if x0 ∈ Σ ∩ ∂cΩpl then
either x0 ∈ ∂cΩpl ∩ Σ ∩ ∂Fẑi for some i ∈ I, or x0 ∈ ∂cΩpl ∩ Σ ∩ ∂Cj for some j ∈ J . By [5,

Theorem 6.2], we already know that σ|Ωpl ∈ C∞(Fẑi \ {ẑi};R2). In particular, since ẑi cannot
belong to Σ ⊂ Ω, then σ|Ωpl is continuous in Fẑi ∪ (Σ ∩ ∂Fẑi).

We now extend this property to connected components C of C with nonempty interior. We
already know that σ is continuous in C \ ∂cC thanks to [5, Theorem 6.22]. We now improve this
result in the case where ∂cC is not reduced to a single point.

Lemma 4.4. Let C be a connected component of C with nonempty interior defined in (3.20) such
that S = ∂cC = ∂C ∩ ∂cΩpl = [a, b] with a 6= b. Then σ is continuous in C.
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Proof. Recall that, by [5, Lemma 6.19] (see also Proposition 3.16), ∂C ∩ ∂Ωpl \ ∂cC has two
connected components Γ1 and Γ2. We will assume that, e.g., a ∈ ∂Γ1, b ∈ ∂Γ2. Furthermore, all
characteristic lines that intersect ∂C\∂cC must intersect both Γ1 and Γ2. Also, ∂C∩Ωpl ⊃ L∩Ωpl
for some characteristic line L. According to Lemma 3.19, we can assume without loss of generality
that

C̊ = {x ∈ C̊ : σ(x) · (y − x) < 0 for all y ∈ L ∩ Ωpl}, (4.4)

the other case being identical. We claim that σ extends by continuity to S by setting σ := ν on S
where ν is the (constant) outer unit normal so C on the segment S.

Case I: Take x ∈ ]a, b[, and let {xn}n∈N be a sequence in C such that xn → x.

If xn ∈ C̊ for n large enough, then the characteristic line Lxn intersects ∂C at two points
an ∈ Γ1 and bn ∈ Γ2. Up to a (not relabeled) subsequence an → a′ ∈ Γ1, bn → b′ ∈ Γ2 and the
segment [an, bn] converges in the sense of Hausdorff to the segment [a′, b′]. Moreover, exactly as in
Step 1, Case II of the proof of Proposition 4.2, ]a′, b′[ ⊂ ∂cΩpl. Since xn ∈ [an, bn] and xn → x, we
deduce that x ∈ [a′, b′]. As x, a, b, a′ and b′ ∈ ∂C and C is convex, we get that [a, b] ⊂ [a′, b′] ⊂ ∂C.
Using that [a, b] is maximal (see [5, Proposition 6.8-(ii)]) we obtain that a′ = a and b′ = b.

Since σ(xn) is orthogonal to Lxn ⊃ [an, bn], it follows that any limit ξ of σ(xn) must be
orthogonal to [a, b], hence ξ = εν for some ε = ±1 possibly depending on the subsequence of
{xn}n∈N. Recalling (4.4), σ(xn) · (y − xn) < 0 for all y ∈ L ∩ Ωpl and all n ∈ N. Passing to the

limit yields εν · (y− x) ≤ 0 for all y ∈ L∩Ωpl. By convexity of C we must have that ε = 1 so that
ξ = ν is independent of the subsequence. Thus we can extend σ by continuity to ]a, b[ with value
ν on S.

Otherwise, for a (not relabeled) subsequence xn ∈ ∂C, and for n large enough, xn ∈ ]a, b[ (we
use here that x ∈ ]a, b[). Since the extension of σ to S is precisely equal to ν on ]a, b[, we get that
σ(xn) = σ(x) = ν. Thus σ extends by continuity to ]a, b[ by setting σ := ν.

Case II: Assume then that x = a (the case x = b can be treated similarly). Let {xn}n∈N be
a sequence in C such that xn → a. If xn ∈ ∂C for n large enough, it suffices to consider the
case where xn ∈ Γ1 because σ = ν is constant on ]a, b[. As xn ∈ Γ1, then xn is traversed by a
characteristic line Lxn which also intersect Γ2 at some point bn. Arguing as in the previous case,
we infer that bn → b and thus that [an, bn] converges in the sense of Hausdorff to the segment [a, b].

On the other hand, if xn ∈ C̊, then the characteristic line Lxn must intersect ∂C at two points
an ∈ Γ1 and bn ∈ Γ2 which satisfy, up to a subsequence an → a, bn → b and the segment [an, bn]
converges in the sense of Hausdorff to the segment [a, b].

So, in both cases we are back to the setting of Case I and we conclude that σ(xn) → ν for
xn → x. Thus σ extends by continuity to the full closed segment S = [a, b] by setting σ := ν on S.

Note that, if instead of (4.4), we have C̊ = {x ∈ C̊ : σ(x) · (y− x) > 0 for all y ∈ L∩Ωpl} (see
Lemma 3.19), then σ will extend by continuity to S upon setting σ := −ν on S. �

Remark 4.5. According to the proof of Lemma 4.4, Theorem 3.16, Proposition 3.20 and [5,
Theorem 6.2], we get that, if S is a non degenerate connected component of ∂cΩpl, then σ = εν
on S where ε = ±1 and ν is a (constant) unit normal to S.

Finally we partially extend the continuity of σ to the degenerate connected components of ∂cΩpl
with a well-defined normal.

Lemma 4.6. Let C be a connected component of C with nonempty interior defined in (3.20) such
that

S = ∂cC = ∂C ∩ ∂cΩpl = {a}
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for some a, and such that C has a well-defined outer unit normal ν(a) at a. Then σ is continuous
in C.

Proof. Let L be a characteristic line segment such that ∂C ∩ Ωpl ⊃ L ∩ Ωpl. As before, thanks to
Lemma 3.19, we can assume without loss of generality that (4.4) holds. We claim that σ extends
by continuity to {a} by setting σ(a) = ν(a).

According to [5, Proposition 6.8-(i)], we already know that, for any sequence {xn}n∈N in (∂C∩
∂Ωpl) \ ∂cC with xn → a, and say xn ∈ Γ1, there exists a subsequence (not relabeld) and ε = ±1
(possibly depending on the subsequence) such that σ(xn) → εν. By continuity of σ on (∂C ∩
∂Ωpl) \ ∂cC, we have e.g. σ(xn) · (y − xn) ≤ 0 for all y ∈ L ∩ Ωpl and all n’s. Passing to the limit

in n, εν(a) · (y − a) ≤ 0 for all y ∈ L ∩ Ωpl, hence ε = 1 and does not depend on the particular
subsequence of {xn}n∈N.

If now xn ∈ C̊ → a, then an argument identical to that of Case I in Lemma 4.4 shows that
Lxn∩C =: [an, bn], with an, bn ∈ ∂C∩∂Ωpl\∂cC, Hausdorff-converges to {a}, so that in particular
an → a and bn → a. But then, by the previous considerations,

|σ(xn)− ν(a)| = |σ(an)− ν(a)| → 0,

since an ∈ Lxn and an ∈ (∂C ∩ ∂Ωpl) \ ∂cC and an 6= a. �

As Example 4.7 below shows, if C admits several normals at some isolated characteristic bound-
ary point, then σ might not be continuous at that point.

Example 4.7. Let T be the triangle with vertices (0, 0), a0 := (0, 1) and b0 := (1/2, 1/2). For all
n ∈ N, we define the points

an = (0, 2−n), bn = (2−n−1, 2−n−1).

In the triangle Tn = (an, an+1, bn) we consider a fan with apex in bn, while in the triangle T ′n =
(an+1, bn, bn+1) we consider a fan with apex an+1. The fans are oriented in such a way that the
resulting function σ is continuous across two adjacent triangles. More precisely, σ is defined as

σ(x) =


(x−bn)⊥

|x−bn| if x ∈ Tn,

− (x−an+1)⊥

|x−an+1| if x ∈ T ′n.

We have thus constructed a function σ ∈W 1,∞
loc (T ;R2) such that

|σ| = 1, divσ = 0 in T.

It is straightforward, with the help of [5, Theorem 6.2], to construct an explicit solution to (3.2)
on T with appropriate boundary conditions so that such a σ is indeed the associated stress.

Let ε > 0 small and C = (0, aε, bε) ⊂ T be a sub-triangle with aε, bε ∈ ]a0, b0[, |aε − a0| ≤ ε,
and |bε − b0| ≤ ε. Let xn we the intersection point between the segments [0, aε] and [an, bn], and
yn be the intersection point between the segments [0, bε] and [an+1, bn]. Both sequences satisfy
xn → (0, 0) and yn → (0, 0). Then σ ∈ C0(C \ {0};R2), while

lim
n→∞

σ(xn) =
(a0 − b0)⊥

|a0 − b0|
, lim

n→∞
σ(yn) = − (b0 − a1)⊥

|b0 − a1|
.

The point (0, 0) ∈ ∂cC is an isolated characteristic boundary point and all vectors that belong
to the normal cone to C at (0, 0), are limits of a sequence {σ(zn)}n∈N for some zn ∈ Tε with
zn → (0, 0).

An elementary computation would demonstrate that the L2-norm of ∇σ blows up on T so that
the situation described in this example cannot happen if T ( Ω. This also provides an example
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Figure 5. An example of non-continuity of σ.

distinct from that of boundary fans demonstrating that one cannot hope to get H1-regularity up
to the boundary for σ. The H1

loc-regularity is in a sense optimal. ¶

We are now in position to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. From Corollary 3.22, we know that ∂cΩpl contains at most two connected
components reduced to a single point that we call z1 and z2. We define Z by setting zi ∈ Z if zi ∈ Σ
and the normal cone to Ωpl at zi is not reduced to a single direction. The conclusion of Theorem
4.1 is then just a concatenation of the previous results. Indeed Proposition 4.2, Lemmas 4.4 and
4.6 together with the fact, originally established in [5, Theorem 6.2], that, if S = ]a, b] ⊂ ∂cΩpl∩Ω,

then σ|Ωpl ∈ C∞(Fa \ {a};R2) where Fa is a boundary fan with apex a ∈ ∂Ω, imply that

σ ∈ C0((Ωpl ∪ Σ) \ Z;R2). (4.5)

Let ω be an open subset of Ω such that Z ∩ ω = ∅. Since σ ∈ H1(ω;R2), then its trace on
Σ ∩ ω, denoted by g, is continuous on that set. Using that σ|Ωel = ∇u|Ωel and that u is harmonic
in Ωel, we infer that {

∆σ = 0 in Ωel ∩ ω,
σ = g on Σ ∩ ω.

The same argument as that in Step 2 of the proof of Proposition 4.2 allows us to conclude that σ
is continuous on (Ωel ∪ Σ) ∩ ω, and thus

σ ∈ C0((Ωel ∪ Σ) \ Z;R2). (4.6)

Combining (4.5), (4.6) together with σ ∈ H1
loc(Ω;R2) leads to σ ∈ C0(Ω \ Z;R2). �

Remark 4.8. If Ωpl is strictly convex then its boundary contains no flat parts and thus, ∂cΩpl can
only be at most two isolated points. So, recalling Remark 4.3, we conclude that σ is continuous
on Ωpl, except maybe on the countable set F ∪ Z and that only Z can be inside Ω. ¶

4.2. Continuity of the displacement. In this subsection we investigate the continuity properties
of the displacement. Although u is only with bounded variation in Ωpl, we will show that it is
continuous at all points of Ωpl swept by characteristic lines passing through a point of Σ (see
(3.12)), that is on the the set

ω := {x ∈ Ωpl : ∃ y ∈ Σ \ ∂cΩpl such that x ∈ Ly}. (4.7)

We propose to prove the following partial continuity property of the displacement(s):

Theorem 4.9. Under assumption (H), u (has a representative which) is continuous in Ωel∪Σ∪ω.
Moreover, for all x ∈ ω, u is constant along the characteristic line segment Lx ∩ Ωpl.
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We already know that u ∈ C∞(Ωel) ∩W 1,∞(Ωel). Since Σ is locally the graph of a Lipschitz
function, we deduce that u ∈ C0(Ωel ∪ Σ). It thus enough to show that u is continuous in ω and
that u+ = u− on Σ, where u+ (resp. u−) denotes the trace of u|Ωel (resp. u|Ωpl) on Σ. Note that
previous argument shows that u+ is continuous on Σ.

Since Σ is open in the relative topology of ∂Ωpl, it has at most countably many connected
components. Arguing separately with each connected component, we can assume without loss of
generality that Σ is connected. Let g : [0, 1] → Σ be a one-to-one Lipschitz mapping such that
g(]0, 1[) = Σ.

We first state a technical result which shows that if a characteristic line intersects Σ twice, then
the open arc in Σ joining those two points must contain a characteristic boundary.

Lemma 4.10. Let L a characteristic line intersecting (the same connected component of) Σ at
two distinct points g(s) and g(t) of Σ, then there exists a line segment S = [a, b] ⊂ ∂cΩpl such that
S ⊂ g(]s, t[).

Proof. Denoting by H the open half-space such that [g(s), g(t)] ⊂ ∂H and containing g(]s, t[), then
the convex set Ωpl ∩H is contained in a connected component C of C with nonempty interior and
g(]s, t[) ⊂ ∂Ωpl ∩ ∂C. But then, Theorem 3.16-(i) implies the result. �

Lemma 4.11. Let 0 ≤ s0 < t0 ≤ 1 be such that g(]s0, t0[) ∩ ∂cΩpl = ∅. Define

Σ0 = g(]s0, t0[), ω0 := {x ∈ Ωpl : ∃ y ∈ Σ0 such that x ∈ Ly}.
Then u has a representative which is continuous in Ωel ∪ Σ0 ∪ ω0.

Proof. By definition of ω0, for all x ∈ ω0, there exists a unique characteristic line segment Lx
passing through x and intersecting Σ0 at a unique point zx. Note that zx cannot be the apex of a
fan since zx ∈ Ω. We define

û(x) = u+(zx).

We claim that the function û is continuous in ω0. To that effect, consider a point x ∈ ω0. Since
u+ is continuous at zx ∈ Σ0, for all ε > 0 there exists δ > 0 such that |u+(y)− u+(zx)| ≤ ε for all
y ∈ Bδ(zx) ∩ Σ0. Let

Aδ =
⋃

y∈Bδ(zx)∩Σ

Ly ∩ ω0.

Clearly, Aδ has non-empty interior and x ∈ Aδ. Moreover, since characteristic lines do not intersect
inside Aδ, for all y ∈ Aδ we have zy ∈ Bδ(zx) and thus

|û(y)− û(x)| = |u+(zy)− u+(zx)| ≤ ε,
which proves the continuity of û on ω0 and that, by construction û|Σ0

= u+.
Then, û belongs to the equivalence class of u, i.e., û(x) = u(x) for L2-a.e. x ∈ ω0. Here is why.

By Theorem 4.1, σ is continuous on Σ0 since Σ0 ∩ ∂cΩpl = ∅. Moreover, by convexity of Ωpl, for
every x ∈ Σ0, the characteristic line Lx is not tangent to Σ0. Thus |σ · ν| < 1 H1-a.e. on Σ0, and
the flow rule in item (i) of Remark 3.2 implies that u+ = u− H1-a.e. on Σ0. We can thus find an
H1-negligible set Z1 ⊂ Σ0 such that u+ = u− everywhere on Σ0 \ Z1.

Then N1 :=
⋃
z∈Z1

(Lz ∩ Ωpl) is L2-negligible. It is enough, for that purpose, to show that, for
all s0 < s1 < t1 < t0,

L2

 ⋃
z∈Z1∩g(]s1,t1[)

(Lz ∩ Ωpl)

 = 0. (4.8)

For δ < 1
2 min{s1 − s0, t0 − t1} small, consider the convex open set Aδ := Ωpl ∩ {x ∈ Ω :

dist(x, ∂Ω) > δ} which has the property Aδ ⊂⊂ Ω, hence that σ ∈ H1(Aδ;R2). By the choice of
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δ, the points g(s1) and g(t1) belong to Ωδ ∩ ∂Aδ and the characteristic lines Lg(s1) and Lg(t1) are
not tangential to ∂Aδ. We can then apply Merlet’s Lemma stated and proved in the Appendix to,
in the notation of that Lemma, A = Aδ and C = g(]s1, t1[), the open arc joining g(s1) and g(t1) in
Σ0. We conclude that the set

⋃
z∈Z1∩g(]s1,t1[)(Lz ∩ Aδ) is L2-negligible. Letting δ → 0, we obtain

(4.8).
Moreover, according to [5, Theorem 5.6], there exists an H1-negligible set Z2 ⊂ Ωpl such that

u is constant on Lx ∩ Ωpl for all x ∈ Ω \ N2 where N2 := (
⋃
z∈Z2

Lz) ∩ Ωpl is L2-negligible. The

resulting set Z := Z1 ∪ Z2 is H1-negligible and N := N1 ∪ N2 is L2-negligible. Moreover, since
û = u+ on Σ0 \ Z, we deduce that û = u in ω0 \N , hence û = u L2-a.e. in ω0. �

Proof of Theorem 4.9. We distinguish several cases.

Case 1. If Σ ⊂ ∂cΩpl then Σ is a closed line segment and Ly ∩ Σ = ∅ for all y ∈ Ωpl. In that case
ω = ∅ and the conclusion follows.

Case 2. If Σ ∩ ∂cΩpl = ∅, we apply Lemma 4.11 with s0 = 0 and t0 = 1.

Case 3. If Σ∩∂cΩpl 6= ∅, by Corollary 3.22 and Proposition 3.24, the characteristic boundary ∂cΩpl
has at most two connected components which are closed in the relative topology of Σ, and whose
interior is either disjoint from Σ or contained in Σ. Therefore, by Lemma 4.11, it is enough to
check that if S = (a, b) is a connected component of ∂cΩpl, then u+ = u− on S and u is continuous
in a neighborhood of S in Ω.

Let 0 ≤ ta ≤ tb ≤ 1 be such that a = g(ta) and b = g(tb). Note that we cannot have ta = 0 and
tb = 1, otherwise a = g(0) and b = g(1) and Σ ⊂ ∂cΩpl, corresponding to Case 1 above. We can
thus assume without loss of generality that ta > 0. We will distinguish two further subcases.

Case 3a. If S = [a, b] = ∂cC is the characteristic boundary of a connected component C of C
with nonempty interior, by Theorem 3.16, there exists a characteristic line segment L such that
L ∩ Ωpl ⊂ ∂C. We denote by p and q the two intersection points of L with ∂Ωpl. We first note
that

p or q does not belong to Σ. (4.9)

Indeed, assume by contradiction that both p and q ∈ Σ. Since L ∩ Ωpl = [p, q] is a part of the
boundary of C, Remark 3.17 shows that it is the limit for the Hausdorff convergence of boundaries
of (boundary) fans {Fzn}n∈N and, say, p is the limit of the apexes {zn}n∈N which belong to
∂Ωpl ∩ ∂Ω. But p ∈ Σ ⊂ Ω, so that zn ∈ Ω for n large enough, which is impossible.

Using the notation of Theorem 3.16, let Γ1 and Γ2 to be the two connected components of
∂C ∩ ∂Ωpl \ ∂cC. Up to a change of orientation of the parameterization g of Σ, we may assume
that there exists t0 ∈ ]0, ta[ such that g([t0, ta[) ⊂ Γ1. In particular, g(t0) ∈ Γ1 so that Lg(t0) will

intersect Γ2. Let H be an open half-plane such that ∂H = Lg(t0) and H contains S. Let us show

that u is continuous in (Ω ∩C ∩H) ∪ Ωel.
From Theorem 3.16-(i), for all x ∈ (Ω ∩C ∩H) \ [a, b], there exists a unique characteristic line

Lx passing through x and intersecting g(]t0, ta[) at a unique point zx. We define

û(x) =

{
u+(zx) if C ∩H \ [a, b],

u+(x) if x ∈ [a, b].
(4.10)

We first show that the function û|Σ∩H is continuous on Σ ∩ H. First, by construction,
û|g([t0,tb]) = u+|g([t0,tb]) is continuous on g([t0, tb]). On the other hand, using the function f

introduced in Lemma 3.18, û = u+ ◦ f−1 on g(]tb, 1[)∩H which shows that û|g(]tb,1[)∩H is continu-

ous on g(]tb, 1[)∩H as the composition of continuous functions. It remains to show the continuity
of û|Σ∩H at the junction point b. For all y ∈ g(]tb, 1[) ∩H, there exists a unique x(y) ∈ g(]t0, ta[)
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such that f(x(y)) = y. Since x(y) → a as y → b, we deduce that û(y) = u+(x(y))) → u+(a). If
a = b, the continuity of û follows since u+(b) = u+(a) = û(a). If a 6= b, we recall from Lemma 4.4
that σ is a constant unit vector orthogonal to [a, b]. Now σ|Ωel = ∇u|Ωel , so u satisfies{

∆u = 0 in Ωel,

∂νu = ε on ]a, b[

with ε = ±1. By elliptic regularity, we infer that u ∈ C∞(Ωel∪ ]a, b[). Since |∇u| < 1 in Ωel,
|∇u| ≤ 1 on ]a, b[. Using that |∂νu| = 1 on that set, it follows that ∂τu = 0 on ]a, b[. The trace u+

of u|Ωel on Σ is therefore constant on ]a, b[, hence, by continuity,

u+ is constant on [a, b]. (4.11)

The continuity of û thus follows in that case as well.
We next prove that the function û is continuous in Ω ∩C ∩H. In view of Lemma 4.11, we get

the continuity of û in (Ω ∩C ∩H) \ [a, b]. To check the continuity of û on [a, b], let us consider a
point x ∈ ∂cC = [a, b] and a sequence {xn}n∈N in Ω ∩C ∩H such that xn → x.

• If xn ∈ C̊ for n large enough, then the closed line segment [an, bn] := Lxn ∩C converges in
the sense of Hausdorff to [a, b]. In particular, up to an interchange of an with bn, an → a
and bn → b. Moreover, an = zxn for all n ∈ N. Thus, using that u+ is continuous on Σ,
we get

û(xn) = u+(an)→ u+(a) = û(x),

where we used that u+ is constant on the segment [a, b] if a 6= b.
• If, for a (not relabeled) subsequence, xn ∈ Σ, using that û|Σ∩H is continuous on Σ∩H by

Step 1, we immediately get that û(xn)→ û(x).

Finally, Lemma 4.11 shows that û and u belong to the same equivalence class since the definition
(4.10) of û is consistent with that given in Lemma 4.11.

Case 3b. If S = ∂cF is the characteristic boundary of a boundary fan F, by Proposition 3.20
and since a ∈ Ω, it must be that S = [a, b[ where b = g(1) is the apex of F. Let t0 ∈ ]0, ta[ be such
that the characteristic line Lg(t0) passes through the point b. We denote by H the open half-plane
such that ∂H = Lg(t0) and H contains [a, b[.

For all x ∈ F ∩H \ {b} we denote by zx ∈ g([t0, ta]) the unique intersection point of Lx with
g([t0, ta]), and we set

û(x) := u+(zx).

Using the continuity of u+ and arguing as in Case 3a, we infer that û is continuous in F ∩H \ {b}.
Moreover, by Theorem 6.2 and Proposition 6.3 in [5], there exists an H1-negligible set Z ⊂ F ∩
H \ {b} such that u+ = u− on Σ ∩ H \ Z and u is constant along Lx ∩ Σ ∩ H for all x ∈
(Σ ∩ H) \

⋃
z∈Z Lz. Using the change of variable in polar coordinates (with origin given by b)

together with Fubini’s Theorem, we get that L2((
⋃
z∈Z Lz) ∩ F) = 0. Moreover, by construction,

u = û in (Σ ∩H) \
⋃
z∈Z Lz, hence u = û L2-a.e. in F ∩H. �

In the sequel, we will identify u with its continuous representative in the set ω.

Remark 4.12. Under the additional assumption that the Dirichlet boundary data w is continuous
on ∂Ω, a possible generalization of Theorem 4.9 to a global continuity property of u in the entirety of
Ω will in particular hinge on the feasibility of extending Merlet’s Lemma (see Lemma in Appendix)
to exceptional H1-negligible sets Z contained in the exterior boundary of Ωpl, i.e., ∂Ω ∩ ∂Ωpl. ¶
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5. Definition and properties of the characteristic flow

In this section the continuity result for σ established in Theorem 4.1 guarantees the existence
(not the uniqueness) of the characteristic curves (1.7). We analyze their local properties, in par-
ticular at the interface Σ between Ωel and Ωpl, as well as their topological properties that excludes
geometric situations such as loops.

Let x ∈ Ω\Z, where Z is the exceptional discontinuity set of σ made of at most two points (see
Theorem 4.1). Since, by Theorem 4.1, σ ∈ C0(Ω \ Z;R2), the Cauchy-Peano Theorem yields the
existence of a maximal open interval I = Ix = ]αx, βx[ containing 0, and of γ = γx ∈ C1(Ix;R2)
such that (γx, Ix) is a maximal solution of the ODE

γx(t) ∈ Ω \ Z for all t ∈ Ix,

γ̇x(t) = σ⊥(γx(t)) for all t ∈ Ix,

γx(0) = x.

(5.1)

Since |σ| ≤ 1, it follows that the mapping γx is 1-Lipschitz. Therefore, the limits

px := lim
t→αx

γx(t), qx := lim
t→βx

γx(t) (5.2)

exist so that γx can be extended by continuity to [αx, βx]. Denote by Γ = Γx := γx([αx, βx]) the
image of the resulting curve which will be called a characteristic (curve). Then, because of the
maximality of (γx, Ix), either Γx is a closed curve, i.e., px = qx, or px, qx ∈ ∂Ω ∪ Z.2

Remark 5.1. Note that, if for some interval open interval J ⊂ Ix we have γx(t) ∈ Ωel for all
t ∈ J , using that u ∈ C∞(Ωel) and σ|Ωel = ∇u|Ωel , the chain rule yields

d

dt
u(γx(t)) = ∇u(γx(t)) · γ̇x(t) = σ(γx(t)) · γ̇x(t) = 0 for all t ∈ J.

Thus, u is constant along the portion of characteristic γx(J) ⊂ Γx. ¶

Since σ ∈ C∞(Ωel;R2) and σ ∈ C0,1
loc (Ωpl;R2), it results from the Cauchy-Lipschitz Theorem

that the solutions are unique inside Ωel and Ωpl. In other words, if x 6= y, then

Γx ∩ Ωel = Γy ∩ Ωel or Γx ∩ Γy ∩ Ωel = ∅, (5.3)

and

Γx ∩ Ωpl = Γy ∩ Ωpl or Γx ∩ Γy ∩ Ωpl = ∅.
In particular Γx and Γy (if distinct) can only intersect on ∂Ω ∪ Σ.

We now establish several properties of the characteristic flow so as to get a better grasp of the
behavior of the characteristic curves in a neighborhood of the interface Σ. Let us first consider the
elementary case where all of Γx is included in Σ.

Lemma 5.2. If γx(]αx, βx[) ⊂ Σ, then Γx is a closed line segment contained in ∂cΩpl not reduced
to a point, σ = εν for some ε = ±1, where ν the unit normal to Γx (oriented from Ωel to Ωpl),
and the trace of u|Ωel on Σ is constant on Γx.

Proof. Since γ(]α, β[) ⊂ Σ, then σ⊥(y) is tangent to Σ for all y ∈ γ(]α, β[). This implies that
γ(]α, β[) ⊂ ∂cΩpl and thus, that Γ is a closed line segment not reduced to a point. Denoting by
ν the unit normal to Σ oriented from Ωel to Ωpl and using that σ ∈ C0(Γ;R2) by Theorem 4.1, it
must be so that σ = εν on Γx for some constant ε = ±1. That the trace of u|Ωel on Σ is constant
on Γx is proved by an argument identical to that which led to (4.11). �

2We will on occasion drop the x-dependence in γx, Γx, px, qx for simplicity, unless confusion may ensue.
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We next study how a characteristic locally behaves when intersecting Σ.

Proposition 5.3. Let x ∈ Ω\Z and (γx, Ix) be a maximal solution of (5.1) such that Γx∩Σ 6= ∅,
and let t0 ∈ [αx, βx] be such that x0 := γx(t0) ∈ Γx ∩ Σ.

(i) If x0 6∈ ∂cΩpl, then there exists δ > 0 small such that, up to a change of orientation,
γ(t) ∈ Ωpl for all t ∈ [t0 − δ, t0[ and γ(t) ∈ Ωel for all t ∈ ]t0, t0 + δ].

(ii) If x0 ∈ S for some connected component S = (a, b) of ∂cΩpl, then either Γx ∩ S = S or
Γx ∩ S = {a} or Γx ∩ S = {b}.

Proof. Case 1. Assume first that x0 6∈ ∂cΩpl. Then, by definition of the characteristic boundary,
there exists x ∈ Ωpl such that x0 ∈ Lx. Thus by convexity of Ωpl, up to a change of orientation, we
can assume that γ(t) ∈ Ωpl for all t ∈ [t0 − δ, t0[, for some δ > 0 small. Using again the convexity
of Ωpl and the continuity of γ̇, the vector γ̇(t0) = σ⊥(x0) is not tangential to ∂Ωpl since otherwise
Lx ∩ Ωpl = ∅.

By contradiction, assume that there exists a sequence {tj}j∈N such that tj ↘ t0 and γ(tj) ∈
Ω ∩ Ωpl for all j. For any τ ∈ Nx0(Ωpl), the normal cone to Ωpl at x0 = γ(t0),

τ · (γ(tj)− γ(t0)) ≤ 0.

Dividing the previous inequality by tj − t0 ≥ 0 and letting tj → t+0 leads to τ · γ̇(t0) ≤ 0. Similarly

since γ(t) ∈ Ωpl for all t ≤ t0, then

τ · (γ(t)− γ(t0)) ≤ 0.

Dividing by t − t0 ≤ 0 and letting t → t−0 yields τ · γ̇(t0) ≥ 0. Thus τ · γ̇(t0) = 0, which

proves that γ̇(t0) is orthogonal to Nx0(Ωpl). In other words, γ̇(t0) is tangential to ∂Ωpl which
is a contradiction. As a consequence, at the possible expense of decreasing δ > 0 if necessary,
γ(t) ∈ Ωel for all t ∈ ]t0, t0 + δ].

Case 2. Assume next that x0 ∈ S for some connected component S = (a, b) of ∂cΩpl.
Let us show that either Γ ∩ S = S, or Γ ∩ S = {a} or Γ ∩ S = {b}. For this, there is no loss of

generality in assuming that a 6= b. By Lemma 4.4, σ = εν for some ε = ±1, where ν is the unit
normal to S oriented from Ωel to Ωpl.

Assume first that x0 ∈ ]a, b[, and let S′ := ]a′, b′[ be an open line segment such that [a′, b′] ⊂ ]a, b[

and x0 ∈ ]a′, b′[. Let U ′ be a smooth, open set such that U
′ ⊂ Ω, U

′∩Σ = [a′, b′] and V ′ = U ′∩H,
where H = {y ∈ R2 : (y − x0) · ν < 0} is the open half plane disjoint from Ωpl. Since V ′ ⊂ Ωel, u
satisfies {

∆u = 0 in V ′,

∂νu = ε on S′,

and since S′ ⊂ ∂V ′ is flat, elliptic regularity ensures that u ∈ C∞(V ′ ∪ S′). As a consequence, for
any [a′′, b′′] ⊂ ]a′, b′[, there exists δ > 0 such that σ = ∇u is Lipschitz in Wδ := Ωel∪ [a′′−δ, b′′+ δ]
and ]a′, b′[ ⊂ [a′′ − δ, b′′ + δ]. The Cauchy-Lipschitz Theorem shows the uniqueness of the solution
of (5.1) in Wδ. In particular, since x0 ∈ ]a′, b′[ ⊂ Wδ and σ = εν is constant in [a, b], there exists
a maximal interval J ⊂ I containing t0 such that

γ(t) = x0 + ε(t− t0)ν⊥ for all t ∈ J
with γ(J) = (a, b), and thus Γ ∩ S = S.

If Γ∩S = {a, b} with a 6= b, we can, up to a change of orientation, find α ≤ ta < tb ≤ β such that
a = γ(ta) and b = γ(tb). Note that γ(]ta, tb[) ⊂ Ωel otherwise Γ would have to cross the segment
]a, b[ which is not possible because ]a, b[ ⊂ ∂cΩpl. Since γ([ta, tb]) ∪ [a, b] is a closed Jordan curve,
Jordan’s Theorem shows that there is a bounded connected component W of R2\(γ([ta, tb])∪ [a, b])
such that ∂W = γ([ta, tb])∪ [a, b]. Since W ⊂ Ωel, then u is harmonic in W . Moreover, by Remark
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5.1, there is c1 ∈ R such that u ≡ c1 on γ([ta, tb]). On the other hand, because ∇u = εν on [a, b],
appealing to Lemma 2.2, ∂τu = 0 on [a, b] and u is also constant on [a, b]. Thus there exists c2 ∈ R
such that u ≡ c2 on [a, b]. Since u ∈ W 1,∞(Ωel), u is continuous on Ωel ∪ Σ, which implies that
c1 = c2 because at least one of the points a or b belongs to Σ. Finally, u being harmonic in W and
constant on ∂W , the maximum principle shows that u is constant in W , hence σ|W = ∇u|W = 0.
But this is against the continuity of σ in ]a, b[ because |σ| = |εν| = 1 on ]a, b[.

In conclusion we get that either Γ ∩ S = S, or Γ ∩ S = {a} or Γ ∩ S = {b}. �

The following result excludes the possibility that a characteristic line contains a closed loop.

Lemma 5.4. Let (γx, Ix) be a maximal solution of (5.1) with x ∈ Ω \Z. Then Γx cannot contain
a closed loop Γ′

(i) inside Ωel ∪ Σ and intersecting Σ at a single point x0 ∈ Σ \ ∂cΩpl;
(ii) inside Ωel ∪Σ and intersecting Σ on a closed line segment S = [a, b] (possibly reduced to a

single point if a = b) which is a connected component of ∂cΩpl;

(iii) inside Ωel ∪Σ∪Ωpl intersecting exactly one connected component of Ωel, intersecting Σ at
two distinct points, and such that #(Γ′ ∩ Z) ≤ 1.

Proof. Assume by contradiction that there exist α ≤ t0 < s0 ≤ β such that x0 := γ(t0) = γ(s0) and
define Γ′ = γ([t0, s0]). Then, γ : [t0, s0]→ R2 is a closed Jordan curve, and, by Jordan’s Theorem,
we can consider the bounded connected component U of R2 \ γ([t0, s0]) such that ∂U = γ([t0, s0]).

Proof of (i). Suppose first that {x0} = Γ′ ∩ Σ with x0 ∈ Σ \ ∂cΩpl. Since U ⊂ Ωel, then u
is harmonic in U . Moreover, since γ(]t0, s0[) ⊂ Ωel, Remark 5.1 shows that u remains constant
on γ(]t0, s0[). By continuity of u in Ωel ∪ Σ, we get that u is constant on ∂U ; by the maximum
principle, u is constant in U , and thus, σ = ∇u = 0 in U . But, since x0 ∈ ∂U belongs to Σ\∂cΩpl,
it is a continuity point of σ by Proposition 4.2. We thus reach a contradiction because on the one
hand σ(x0) = 0 and, on the other hand, |σ| = 1 on Σ \ Z by Remark 3.11.

Proof of (ii). A similar argument holds in the case where Γ′ ∩ Σ = [a, b] := S is a closed line
segment which is a connected component of ∂cΩpl. Indeed, if α ≤ ta < tb ≤ β are such that
γ(ta) = a, γ(tb) = b and γ(]ta, tb[) = Γ′ ∩ Ωel, then ∂U = γ(]ta, tb[) ∪ S. We get that, as before, u
is constant on γ(]ta, tb[). Moreover, according to Lemma 4.4, σ|S = ∇u|S = εν for some ε = ±1,
where ν is the unit normal to S oriented from Ωel to Ωpl. As a consequence ∂τu = 0 on S, hence
u is constant on S. Since u is continuous in Ωel ∪Σ, we deduce that u is constant on ∂U . If a 6= b
or a = b 6∈ Z, Lemmas 4.4 and 4.6 lead to a contradiction. If however, a = b ∈ Z, then, since u is
harmonic and constant on ∂U , hence on U , it is constant in the connected component W of Ωel
containing U . As a consequence, σ|Ωel = ∇u|Ωel = 0 in W . Since x0 ∈ Σ and Σ = Ω ∩ ∂Ωel is
open in the relative topology of ∂Ωel, we deduce that ∂W ∩ Σ \ {a} 6= ∅. We thus get that σ = 0
on Σ∩ ∂W which contradicts again the continuity of σ across Σ∩W \Z because |σ| = 1 on Σ \Z
by Remark 3.11.

Proof of (iii). Since Γ intersects only one connected component of Ωel, it follows that Γ = Γ′,
t0 = α, s0 = β and, for some x0 ∈ Ωpl, Lx0 ∩ Ωpl = Γ ∩ Ωpl = ∂U ∩ Ωpl. Moreover, since σ

is constant along Lx0
∩ Ωpl (see Theorem 3.10), it results that σ = αν for some α ∈ {−1, 1} on

∂U ∩ Ωpl, where ν is the outward unit normal to U .

Assume without loss of generality that α = 1 so that σ ·ν = 1 on ∂U ∩Ωpl. Since #(Γ′∩Z) ≤ 1,
∂U contains at most one discontinuity point of σ. We claim that

σ · ν > 0 on ∂U \ Z. (5.4)

If not, by continuity of σ and ν, there must exist y0 ∈ ∂U ∩ Ωel such that σ(y0) · ν(y0) = 0. By
the definition (5.1) of the characteristics, σ is orthogonal to Γ = ∂U and, consequently, σ(y0) = 0.
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Let r0 ∈ [α, β] be such that y0 = γ(r0). Using (5.1) again yields γ̇(r0) = 0. Since y0 ∈ Ωel and
σ ∈ C∞(Ωel;R2), the Cauchy-Lipschitz Theorem ensures the existence of δ > 0 such that the ODE

X(r) ∈ Ωel for all r ∈ [−δ, δ],
Ẋ(r) = σ⊥(X(r)) for all r ∈ [−δ, δ],
X(0) = y0

has a unique local solution which must satisfy X(r) = γ(r0 + r) = y0 for all r ∈ [−δ, δ]. Thus
the characteristic curve Γ stops at y0 ∈ Ωel, which contradicts the fact that Γ is a closed loop and
establishes (5.4). According to the divergence theorem,

0 =

ˆ
U

div σ dx =

ˆ
∂U\Z

σ · ν dH1,

which is a impossible. �

The following and last result of this section states that, if a characteristic curve connects in
Ωel two points of the interface Σ, then the portion of Σ in between those two points must contain
characteristic boundary points of Ωpl.

Lemma 5.5. Let (γx, Ix) be a maximal solution of (5.1) with x ∈ Ω \ Z. Assume that αx ≤ t0 <
t1 ≤ βx are such that

γx(t0), γx(t1) belong to the same connected component of Σ,

γx(t0) 6= γx(t1),

γx(]t0, t1[) ⊂ Ωel,

(5.5)

and denote by C the open arc in Σ joining γx(t0) and γx(t1). Then, at least one connected compo-
nent S of ∂cΩpl is such that S ∩ C 6= ∅ and S ⊂ C. Further, if S is reduced to a single point, then
S ⊂ C.

Proof. Set x0 = γ(t0) and x1 = γ(t1). According to [13, Proposition C-30.1], there exists a
Lipschitz mapping g : [0, 1] → R2 such that g(0) = x0, g(1) = x1 and g([0, 1]) is a curve in Σ
joining x0 and x1.

Assume that ∂cΩpl ∩ g(]0, 1[) = ∅, so that, for all s ∈ ]0, 1[, there exists xs ∈ Ωpl such that
g(s) ∈ Lxs . Consider the closed Jordan curve made of the union of g([0, 1]) and γ([t0, t1]). By
Jordan’s Theorem, R2 \ (g([0, 1]) ∪ γ([t0, t1])) has a bounded connected component U ⊂ Ωel such
that ∂U = g([0, 1]) ∪ γ([t0, t1]). By (5.3) and since characteristic curves cannot intersect in Ωel,
for all s ∈ [0, 1], Γxs ∩ Ωel ⊂ U . Define

r− = sup{s ∈ ]0, 1[ : ∃ t ∈ ]s, 1[ such that g(t) ∈ Γxs}

and

r+ = inf{s ∈ ]0, 1[ : ∃ t ∈ ]0, s[ such that g(t) ∈ Γxs}.
We have 0 < r− ≤ r+ < 1. Assume first that r− < r+ and let r ∈ ]r−, r+[. Then, since
g(r) 6∈ ∂cΩpl, there exists xr ∈ Ωpl such that g(r) ∈ Lxr . By continuity of γ̇ and convexity of Ωpl,
the curve Γxr intersects Σ at g(r) and, by definition of r− and r+, Γxr cannot intersect g([0, 1])
elsewhere.

The first possibility is that Γxr forms a loop in Ωel, that is that there exist αxr ≤ t′ < s′ ≤ βxr
such that γxr (t

′) = γxr (s
′) = g(r) ∈ Σ \ ∂cΩpl and γxr (]t

′, s′[) ⊂ Ωel, which is impossible in view
of Lemma 5.4-(i). The second possibility is that Γxr leaves every compact which would imply that
Γxr intersects γ([t0, t1]) ⊂ ∂U , again a contradiction with (5.3).
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Thus we must have that r− = r+ =: r. If Γxr ∩ g([0, 1]) = {g(r)}, the same argument as
before leads to a contradiction. Therefore, there exists r′ 6= r such that g(r′) ∈ Γxr . Without
loss of generality, we can assume that r′ > r. By definition of r = r−, for every τ ∈ ]r, r′[, there
exists τ ′ < τ such that g(τ ′) ∈ Γxτ . But then, g(τ) ∈ Γxτ′ , in contradiction with the fact that
τ > r− = r.

So ∂cΩpl ∩ g(]0, 1[) cannot be empty and there exists a connected component of ∂cΩpl, namely
a line segment S = (a, b), such that S ∩ g(]0, 1[) 6= ∅. If a = b, S = {a} and a ∈ g(]0, 1[). If a 6= b
and e.g. x1 ∈ ]a, b[, then, by Proposition 5.3-(ii), ]a, b[ ⊂ Γx. Thus, there exists δ > 0 such that
γx(t) ∈ S ⊂ Σ for all t ∈ ]t1−δ, t1 +δ[ which is impossible since γx(]t0, t1[) ⊂ Ωel. As a consequence
x1 6∈ ]a, b[ and the same goes for x0. It results that ]a, b[ ⊂ g(]0, 1[), hence S ⊂ g([0, 1]). �

Remark 5.6. Lemma 4.10 and Lemma 5.5 establish that if a characteristic curve intersects the
same connected component of Σ twice at different points (the only possible scenario according to
Lemma 5.4), then the closure of that component must contain one of the two connected components
of ∂cΩpl. ¶

6. Uniqueness for purely Dirichlet boundary conditions

In this last section, we propose to give conditions under which, with the help of the previously
acquired results, uniqueness of the minimizer u in (3.1), hence also of the minimizer in (1.3), holds
true under pure Dirichlet boundary conditions.

The following uniqueness theorem, which is our main result, holds true.

Theorem 6.1. Let Ω be a bounded, C3,1 and convex domain in R2 and w ∈ L1(∂Ω). Assume that
the saturation set Ω1 defined in (3.5) satisfies hypothesis (H) and has nonempty interior.3 Then
the functional I : BV (Ω)→ R defined by

I(u) :=

ˆ
Ω

W (∇u) dx+ |Dsu|(Ω) +

ˆ
∂Ω

|w − u| dH1 (6.1)

has a unique minimizer in BV (Ω).

The strategy of proof of Theorem 6.1 is a priori simple: first establish uniqueness in the elastic
domain Ωel, then in the plastic domain Ωpl. Although the problem stated in the elastic domain
may seem straightforward (u solves a Poisson equation), uniqueness is far from obvious because,
as already observed in Example 3.8, u may fail to match the boundary value w on the external
boundary ∂Ωel ∩ ∂Ω. The main difficulty consists in proving that the boundary value is actually
attained on a part of the external boundary with positive H1-measure. Assuming the contrary
would imply that u should be constant on the external boundary. It would lead to various con-
tradictions in all possible geometric paths for the characteristic curves. Once uniqueness in Ωel is
established, uniqueness in Ωpl is obtained through a detailed analysis of the level sets of u and a
reconstruction of Du thanks to the BV -coarea formula.

The rest of this section is devoted to the proof of Theorem 6.1. Let u1 and u2 ∈ BV (Ω)
be two minimizers of I. We denote by (u1, σ, p1) and (u2, σ, p2) the associated solutions to the
plasticity problem (3.2)with ∂DΩ = ∂Ω (we recall that the stress σ is unique). First, we remark
that, because σ is uniquely defined, the set Ωel is uniquely defined, independently of the minimizer
under consideration. In the sequel we will sometimes denote by u either function u1, or u2.

3The case where Ω1 has empty interior has already been studied in Theorem 3.7.
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6.1. Uniqueness in Ωel. If Ωel = ∅, then one should proceed directly to Subsection 6.2. So, from
now onward in this subsection, we assume that Ωel 6= ∅.

By arguing in each connected component of Ωel, there is no loss of generality in assuming
that Ωel itself is connected, and consequently that Σ is connected as well. Since σ is unique and
σ = ∇u1 = ∇u2 in the connected set Ωel, there exists and constant c ∈ R such that u1 − u2 = c.
We are thus tasked with showing that c = 0.

Assume first that there exists an H1-measurable set A ⊂ ∂Ωel ∩ ∂Ω with H1(A) > 0 such that
|σ · ν| < 1 H1-a.e. on A. Then the flow rule in item (i) of Remark 3.2 implies that u1 = w and
u2 = w H1-a.e. on A. Since u1 − u2 ≡ c in Ωel, c = 0 and

u1 = u2 in Ωel. (6.2)

We are thus left with the case where

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω.

Our goal in the rest of this Subsection is to show that the latter never happens. This will be a
rather lengthy task.

Since σ = ∇u in Ωel, then σ · ν = ∂νu on ∂Ωel ∩ ∂Ω and

|σ · ν| = |∂νu| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω. (6.3)

In all that follows, g : [0, 1]→ R2 is a Lipschitz parametrization of Σ with the property that, if
Σ ∩ ∂Ω 6= ∅, g(0) and g(1) are the intersection points of Σ with ∂Ω.

The functions σ and u enjoy good properties on ∂Ωel \ Σ.

Lemma 6.2. Assume that ∂Ω is of class C1,1 and that

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω.

Then the function u is constant on ∂Ωel \ Σ. Moreover, there exists a constant α ∈ {−1, 1} such
that

σ = αν on ∂Ωel \ Σ,

where ν is the outer unit normal to ∂Ωel \ Σ ⊂ ∂Ω.

Proof. Since u is harmonic in Ωel and since, by (6.3), |∂νu| = 1 on ∂Ωel\Σ, Lemma 2.2 immediately
ensures that u is constant on ∂Ωel \ Σ.

Let BR(x0) be a ball centered at x0 ∈ ∂Ωel \Σ such that BR(x0)∩Σ = ∅. Since u is harmonic
in Ω ∩BR(x0) and constant on ∂Ω ∩BR(x0) which is of class C1,1, elliptic regularity ensures that
u ∈ H2(Ω ∩Br(x0)) for all r < R. Thus, σ = ∇u ∈ H1(Ω ∩Br(x0);R2) and, because the exterior
normal ν is Lipschitz continuous,

σ · ν ∈ H1/2(Br(x0) ∩ ∂Ω).

Recalling (6.3), we thus conclude that σ · ν is in H
1/2
loc (∂Ωel \ Σ; {−1, 1}) and thus must remain

constant along ∂Ωel \Σ (see e.g. [5, Lemma A.3] in the case of a flat boundary). We thus get the
desired expression for σ on ∂Ωel \ Σ. �

A first consequence of Lemma 6.2 is that g(0) 6= g(1), and thus

Σ ∩ ∂Ω 6= ∅. (6.4)

Indeed, if g(0) = g(1) then Σ ∩ ∂Ω ⊂ {g(0)} and σ = αν on ∂Ω \ {g(0)} for some α ∈ {−1, 1}. As
σ is divergence free in Ω, we get that

0 =

ˆ
Ω

divσ dx =

ˆ
∂Ω

σ · ν dH1 = αH1(∂Ω),
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which is impossible. It also implies that g : [0, 1]→ Σ is one to one.

Another important consequence of Lemma 6.2 is that the characteristic curves Γx cannot in-
tersect ∂Ωel \ Σ, provided that ∂Ω is smooth enough.

Lemma 6.3. Assume that ∂Ω is of class C3,1 and that

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω.

Then Γx ∩ (∂Ωel \ Σ) = ∅ for all x ∈ Ω \ Z.

Proof. The function u is harmonic in Ωel and constant on ∂Ωel \Σ ⊂ ∂Ω. Since ∂Ω is of class C3,1,
elliptic regularity ensures that u ∈ H4(Ω∩BR(x0)) for all x0 ∈ ∂Ωel \Σ ⊂ ∂Ω and all R > 0 small
enough so that BR(x0)∩Σ = ∅. As a consequence, σ = ∇u ∈ H3(Ω∩BR(x0);R2) and the Sobolev
embedding implies that σ ∈ C1(Ω ∩BR(x0);R2). In particular σ is locally Lipschitz-continuous in
Ωel\Σ and, for all y ∈ Ωel\Σ, the Cauchy-Lipschitz Theorem ensures the existence and uniqueness
of (local and maximal) solutions (I, γ) to the ODE

γ(t) ∈ Ωel \ Σ for all t ∈ I,
γ̇(t) = σ⊥(γ(t)) for all t ∈ I,
γ(0) = y ∈ Ωel \ Σ.

(6.5)

Let δ > 0 and h : ] − δ, δ[ → R2 be a local arc-length C1-parametrization of ∂Ωel \ Σ. Let

α ∈ {−1, 1} be given by Lemma 6.2. Since ḣ(t) is a continuous unit tangent vector to ∂Ωel \ Σ at

h(t), we can choose an orientation in such a way ḣ(t) = αν⊥(h(t)) for all t ∈ ]− δ, δ[. In particular
h satisfies {

h(t) ∈ ∂Ωel \ Σ for all t ∈ ]− δ, δ[,
ḣ(t) = σ⊥(h(t)) for all t ∈ ]− δ, δ[ .

Classical ODE arguments based on uniqueness of maximal solutions to (6.5) ensure that either
Γx ∩ (Ωel \Σ) = ∂Ωel ∩ ∂Ω or Γx ∩ (∂Ωel \Σ) = ∅. Since x ∈ Ω, the former case cannot occur. �

We next exclude the possibility that the points g(0) and g(1) belong to the same characteristic
line.

Lemma 6.4. Assume that ∂Ω is of class C1,1, that Σ ∩ ∂Ω = {g(0), g(1)}, and that

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω.

Then, the points g(0) and g(1) do not belong to a common characteristic line segment.

Proof. Assume by contradiction that L is a characteristic line segment such that g(0), g(1) ∈ L,
so that L∩Ωpl = ]g(0), g(1)[. The nonempty open set V , defined as the intersection of Ω with the

half-space bounded by L and containing Σ, satisfies ∂V = (L∩Ωpl)∪ (∂Ωel \Σ). Since on L∩Ωpl,

σ is constant and orthogonal to L, there exists a constant β ∈ {−1, 1} such that σ = βν on L∩Ωpl,
where ν is the (constant) exterior unit normal to V . According to Lemma 6.2, σ satisfies

divσ = 0 in V,

σ · ν = β on L ∩ Ωpl,

σ · ν = α on ∂Ωel \ Σ,

for some constants α, β ∈ {−1, 1}. But then, we must have that

αH1(L ∩ Ωpl) + βH1(∂Ωel ∩ ∂Ω) =

ˆ
∂V

σ · ν dH1 =

ˆ
V

div σ dx = 0.
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Thus H1(L ∩ Ωpl) must be equal to H1(∂Ωel ∩ ∂Ω) which is impossible since H1(L ∩ Ωpl) <
H1(∂Ωel ∩ ∂Ω). �

We next show that Σ must contain both a characteristic and a non-characteristic boundary.

Lemma 6.5. Assume that Ω is convex, that ∂Ω is of class C3,1 and that

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω.

Then,

Σ \ ∂cΩpl 6= ∅ (6.6)

and there is a line segment S = (a, b) which is a connected component of ∂cΩpl such that

S ⊂ Σ. (6.7)

Proof. Let us start with (6.6), and assume by contradiction that Σ ⊂ ∂cΩpl. Then Lemma 5.2
shows that Σ is a segment and no characteristics can intersect Σ. By Theorem 4.1 σ is continuous
across Σ and, by Lemma 5.2, σ|Ωel = ∇u|Ωel is orthogonal to Σ and u|Ωel is constant on Σ. Since
Ω is a convex set, it results that Ωel is convex as well, hence it has a Lipschitz boundary. As a
consequence, because u ∈W 1,∞(Ωel), then u is a Lipschitz function on Ωel and, using Lemma 6.2,
we obtain that u must be constant on ∂Ωel. Since u is harmonic in the connected set Ωel, the
maximum principle ensures that u is constant in Ωel, hence σ|Ωel = ∇u|Ωel = 0, which contradicts
(6.3).

We now prove (6.7). Suppose that there exist x ∈ Σ \ ∂cΩpl such that #(Γx ∩ Σ) = 1. By
Lemma 5.4, the characteristic curve Γx contains no loops in Ωel ∪Σ passing through x. Therefore,
using that Γx intersects Σ only at x, we infer that Γx intersects ∂Ωel \ Σ which is against Lemma
6.3. Thus #(Γx ∩ Σ) ≥ 2 for all x ∈ Σ \ ∂cΩpl. Set x = γx(0) and denote by y = γx(t) (with

αx ≤ t ≤ βx) the point in Γx ∩Σ such that γx(]0, t[) ∩Σ = ∅. Such a point exists because γ̇x(0) is
not tangential to Σ since x /∈ ∂cΩpl.

If γx(]0, t[) ⊂ Ωel, (6.7) is a direct consequence of Lemma 5.5. If γx(]0, t[) ⊂ Ωpl, then Lx∩Ωpl =
Ly ∩ Ωpl = γx(]0, t[) = ]γx(0), γx(t)[. If y also belongs to Σ, (6.7) follows from Lemma 4.10. If

instead y belongs to (Σ \ Σ) ∩ ∂Ω, then y = g(0) or g(1). Assume e.g. that y = g(0). Then, by
Proposition 5.3-(i), it must be that γx(] − δ, 0[) ∈ Ωel for some δ > 0. Since Γx ∩ (∂Ωel \ Σ) = ∅
by Lemma 6.3, and Γx contains no loop in Ωel ∪ {x} by Lemma 5.4-(i), there exists s 6= t such
that z := γx(s) ∈ Σ and γx(]t, s[) ⊂ Ωel. The validity of (6.7) comes again from an application of
Lemma 5.5. �

Let 0 ≤ ta ≤ tb ≤ 1 be such that a = g(ta) and b = g(tb) with S = (a, b) ⊂ Σ. By (6.6)
either a 6= g(0) or b 6= g(1). Without loss of generality we can thus suppose that tb < 1. We must
now distinguish wether S is the characteristic boundary of a connected component C of C (which
means that S is a closed line segment), or the characteristic boundary of a fan F.

6.1.1. When S is a closed line segment contained in Σ. We assume first S ⊂ ∂C ∩ ∂cΩpl for some
connected component C of C with nonempty interior, that S = [a, b] is a closed line segment
(possibly reduced to a point) contained in Σ. It thus follows that ta > 0. By Theorem 3.16-(i),
there exists a characteristic line segment L such that ∂C ∩ Ωpl = L ∩ Ωpl. We denote by p and q
the two intersection points of L with the convex set Ωpl. We further consider Γ1 and Γ2 to be the
two connected components of ∂C ∩ ∂Ωpl \ ∂cC as in Theorem 3.16-(i).

We show that we are always, in such a case, in the geometric setting (of Figure 6).

Lemma 6.6. Assume that Ω is convex, that ∂Ω is of class C3,1, that

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω
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and that S is a closed line segment contained in Σ. Then, at the expense of interchanging g(0)
with g(1), there is a characteristic line segment L0 such that

• L0 passes through g(0) and g(t0) for some t0 ∈ ]tb, 1[;
• g([0, ta[) ⊂ Γ1 and g(]tb, t0]) ⊂ Γ2;
• the closed arc g([0, t0]) contains no other connected component of ∂cΩpl, other than S.

Proof. First, as in (4.9), one of the points p or q does not belong to Σ. We can thus assume without
loss of generality that q 6∈ Σ, that g(]tb, 1]) ⊂ Γ2 and q ∈ Γ2. We now distinguish several cases.

• If q = g(1) and p ∈ Σ, the characteristic line segment L passes through g(1) and g(s0) for
some s0 ∈ ]0, ta[;

• If q = g(1) and p ∈ ∂Ωpl \ Σ. In that case g(0) ∈ Γ1 and Theorem 3.16 ensures that the
characteristic line segment Lg(0) must intersect Γ2 = g(]tb, 1[) at some point g(t0) for some
t0 ∈ ]tb, 1[);
• If q ∈ ∂Ωpl \Σ and p ∈ Σ, then g(1) ∈ Γ2 and Theorem 3.16 ensures that the characteristic

line segment Lg(1) must intersect Γ1 ⊂ g(]0, ta[) at some point g(s0) for some s0 ∈ ]0, ta[);

• If both p and q ∈ ∂Ωpl \ Σ, then g(0) ∈ Γ1 and Lg(0) intersects Γ2 at some point q′. Two
further sub-cases arise:

– either q′ ∈ Σ so that q′ = g(t0) for some t0 ∈ ]tb, 1[.
– or q′ 6∈ Σ and then, g(1) ∈ Γ2 is such that Lg(1) intersects Γ1 at some point g(s0) with
s0 ∈ ]0, ta[.

Therefore, up to interchanging g(0) with g(1), there is always a characteristic line segment L0 which
passes through g(0) and g(t0) for some t0 ∈ ]tb, 1[, g([0, ta[) ⊂ Γ1 and g(]tb, t0]) ⊂ Γ2. Moreover,
by virtue of Lemma 3.21, since the closed arc g([0, t0]) is included in ∂C, it cannot contain any
connected component of ∂cΩpl, other than S = [a, b]. �

L0

H0

•
g(0)

•
a = g(ta) S

Ωel

Σ
Ωpl

•
b = g(tb)

•
g(1)

• g(t0)

Figure 6. S is a closed line segment contained in Σ

Denote by H0 the open half-plane such that ∂H0 = L0 and H0 contains S. Observe that
C∩H0 ⊂ ω, where ω is defined in (4.7), so that Theorem 4.9 ensures that u ∈ C0(Ωel∪Σ∪(C∩H0)),
and, for all x ∈ C ∩H0, u is constant along the characteristic line segment Lx ∩C ∩H0.

Let us denote by Γ = γ([α, β]), α < β, the characteristic curve such that L0∩Ωpl ⊂ Γ. Up to a
change of orientation, we can assume that Γ starts at the point γ(α) = g(0). We set α0 := α and
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s0 := 0 so that γ(α0) = g(s0), and define β0 with β > β0 > α0 in such a way that γ(β0) = g(t0)
and

L0 ∩ Ωpl = γ([α0, β0]).

Since, by Lemma 6.3, Γ ∩ (∂Ωel \ Σ) = ∅, it follows from Proposition 5.3-(i) that γ(]β0, β]) must
intersect Σ. Let

α1 := inf{t > β0 : γ(t) ∈ Σ} (6.8)

and note that γ(α1) ∈ Σ.

Case 1. If γ(α1) = g(ta) = a (see Figure 7), let s ∈ ]0, ta[ and Lg(s) be the characteristic line
segment passing through g(s) ∈ Γ1. By Theorem 3.16 and since characteristic line segments
cannot intersect in C, Lg(s) must intersect g(]tb, t0[) at a point g(t) for some t ∈ ]tb, t0[. By (5.3),
characteristic curves cannot intersect in Ωel. In view of Lemma 5.4-(i) Γg(t) contains no loop in
Ωel passing through g(t). Thus, using Lemma 5.5 together with the fact that g([0, t0]) contains no
other connected component of ∂cΩpl besides S = [a, b], Γg(t) must pass through the point a = g(ta).
By continuity of u in (C ∩ H0) ∪ Σ∪Ωel and since u is constant along all characteristic curves,
u ≡ u(a) in C ∩H0, which is impossible by Lemma 3.12.

Case 2. If γ(α1) ∈ g(]ta, tb[) = ]a, b[ (see Figure 8), Proposition 5.3-(ii) shows that [a, b] ⊂ Γ. Thus
there exists α′ < α1 such that γ(t) ∈ ]a, b[ ⊂ Σ for all t ∈ ]α′, α1[ which contradicts the definition
(6.8) of α1.

Case 3. If γ(α1) ∈ g([tb, t0]) (see Figure 9), there exists s1 ∈ [tb, t0] such that γ(α1) = g(s1).
Note that s1 6= t0 otherwise, by Lemma 5.4-(i), Γg(t) would contain a closed loop in Ωel ∪ {g(t0)}.
Since γ(]β0, α1[) ⊂ Ωel, Lemma 5.5 ensures that g(]s1, t0[)∩ ∂cΩpl 6= ∅. This is however impossible
since, by Lemma 6.6, g([0, t0]) only contains the connected component S = [a, b] of ∂cΩpl, which
is g([ta, tb]).

Case 4. If γ(α1) = g(0) = γ(α0) (see Figure 10), then α1 = β and the characteristic curve Γ =
γ([α0, α1]) forms a closed loop (intersecting one connected component of Ωel) which is impossible
by Lemma 5.4-(iii).

Case 5. If γ(α1) ∈ g(]0, ta[), then γ(α1) = g(s1) ∈ Γ1 for some s1 ∈ ]0, ta[. By Theorem 3.16
and since characteristic line segments cannot intersect in C, the line segment Lg(s1) must intersect
g(]tb, t0[) at a point g(t1) for some t1 ∈ ]tb, t0[. Let β1 > α1 be such that γ(β1) = g(t1). According
to Proposition 5.3-(i), there exists δ > 0 such that γ(t) ∈ Ωel for all t ∈ ]β1, β1 + δ[. Using again
Lemma (6.3) and arguments identical to those leading to the conclusion of Cases 1–3, we can thus
define

α2 := inf{t > β1 : γ(t) ∈ Σ}
and conclude that γ(α2) ∈ Σ and γ(α2) = g(s2) for some s2 ∈ [s1, ta]. We claim that actually
s2 ∈ ]s1, ta[. Indeed,

X If s2 = s1, then γ(α2) = γ(α1) =: p. Fix a point x ∈ g(]0, s1[). The characteristic line
Γx passing through x ∈ Σ \ ∂cΩpl satisfies Lx ∩ Ωpl ⊂ Γx, and it must intersect g(]tb, t0[) at a
point y = g(t2). Since by (5.3), characteristic curves cannot intersect in Ωel, by Lemma 5.4 Γg(t)
contains no loop in Ωel ∪ {y} and, by Lemma 5.5 together with the fact that g([0, t0]) contains no
connected component of ∂cΩpl, other than S = [a, b], Γx cannot intersect g([t1, t2]) and Γx must
pass through the point p. Thus, by continuity of u in (C ∩H0) ∪ Σ ∪ Ωel and since u is constant
along all characteristic curves, it follows that u = u(p) on Lx ∩ Ωpl. Let

A =
⋃

x∈γ(]0,s1[)

Lx ∩ Ωpl.
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It has nonempty interior. The previous argument shows that u ≡ u(p) in A which is impossible by
Lemma 3.12.
X If s2 = ta, then γ(α2) = a. A similar argument shows that, for all x ∈ γ(]s1, ta[) the

characteristic line Γx must pass through the point a. We obtain that u ≡ u(a) is constant in the
set ⋃

x∈γ(]s1,ta[)

Lx ∩ Ωpl

which has nonempty interior, leading again to a contradiction by virtue of Lemma 3.12.

Thus, it must be that s2 ∈ ]s1, ta[. Iterating the previous argument, we obtain the existence of a
strictly increasing sequence {sn}n∈N ⊂ ]0, ta[, a strictly decreasing sequence {tn}n∈N ⊂ ]tb, t0[ and
strictly increasing sequences {αn}n∈N, {βn}n∈N in ]α, β[ with the properties that, for all n ∈ N,

γ(αn) = g(sn), γ(βn) = g(tn);

αn < βn < αn+1;

]γ(αn), γ(βn)[ = γ(]αn, βn[) ⊂ Γ ∩ Ωpl is a characteristic line segment;

γ(]βn, αn+1[) ⊂ Γ ∩ Ωel.

From the properties above, αn → α∗ and βn → β∗ with α∗ = β∗. Further, we must have
a = g(ta) = γ(α∗) = γ(β∗) = g(tb) = b. In other words, S = {a} = {b} and Γ forms a spiral
converging to the point S (see Figure 11). Repeating the same argument we obtain that for all
x ∈ γ(]0, ta[), the characteristic line Γx must pass through the point a. Using that u is constant
along all characteristic curves together with the continuity of u in (C∩H0)∪Σ∪Ωel, we get that
u ≡ u(a) in C ∩H0 which leads to a contradiction in view of Lemma 3.12.

Case 6. If γ(α1) ∈ g(]t0, 1]) (see Figure 12), there exists t′0 ∈ ]t0, 1] such that γ(α1) = g(t′0) and
thus, by Lemma 5.5, the other connected component S′ of ∂cΩpl must be contained in g([t0, t

′
0]).

Either S′ = ∂cFẑ is the characteristic boundary of a fan with apex ẑ = g(1), that is S′ =
]g(1), g(t′)] = g([t′, 1[) for some t′ ∈ ]t0, 1[ and γ(α1) = g(1), t′0 = 1. Further, t0 6= t′, otherwise
g(t0) would be the apex of a fan, which is impossible since g(t0) ∈ Ω. Let t ∈ ]t0, t

′[ so that
g(t) ∈ Σ \ ∂cΩpl. The characteristic curve Γg(t) cannot intersect Γ in Ωel by (5.3). By Lemma
5.4 it contains no loop inside Ωel passing through g(t) and, by Lemma 5.5, it cannot pass through
another point in g([t0, t

′]) other than g(t) since g([t0, t
′])∩∂cΩpl = ∅. Using item (ii) in Proposition

5.3 again, the only possibility is that Γg(t) passes through the point g(1). Since Σ is flat in a
neighborhood of g(1) and Ω is convex, the open set Ωel has Lipschitz boundary in a neighborhood of
g(1) and, because u ∈W 1,∞(Ωel), u|Ωel is therefore continuous up to the point g(1). Consequently,
u being constant along Γg(t) ∩ Ωel, it follows that u+(x) = u|Ωel(g(1)) for all x ∈ g(]t0, t

′[), where

u+ (resp. u−) stands for the trace of u|Ωel (resp. u|Ωpl) on Σ. Next, since by [5, Theorem 6.2], u
is a monotone function of the angle (where the origin is set at the apex ẑ = g(1) of the fan Fẑ)
and, by [5, Proposition 6.3], u+ = u− H1 a.e. on Σ ∩ ∂Fg(1) \ S′ it follows that u ≡ u|Ωel(g(1)) is
constant inside the fan Fg(1), which leads to a contradiction invoking Lemma 3.12 again.

Thus, it must be that S′ = [a′, b′] is a closed segment (possibly reduced to a single point), and it
follows from Theorem 3.16 that S′ = ∂cC′ for some connected component C′ of C with nonempty
interior. Let t0 < ta′ ≤ tb′ ≤ t′0 be such that a′ = g(ta′) and b′ = g(tb′). Let L′ be a characteristic
line segment such that L′ ∩ Ωpl ⊂ ∂C′ and denote by p′ and q′ the intersection points of L′ with
∂Ωpl. Lemma 6.6 implies that at least one of the points p′ or q′ does not belong to Σ. Since, by
Lemma 3.21, one of these points, say p′, belongs to the open arc g(]t0, ta′ [) in Σ joining g(t0) and
a′, it follows that q′ 6∈ Σ. Then, two cases must be distinguished.
X If t′0 > tb′ , then γ(α1) = g(t′0) ∈ ∂C′ \ ∂cC′, so that Lg(t′0) intersect Σ at some other point

g(s′0) with s′0 ∈ ]t0, ta′ [. Let us denote by Γ′ = γ′([α′, β′]) the characteristic curve such that
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Lg(t′0) ∩ Ωpl ⊂ Γ′. We are then in a situation similar to that of Case 5 and we can construct a
strictly increasing sequence {s′n}n∈N ⊂ ]t0, ta′ [, a strictly decreasing sequence {t′n}n∈N ⊂ ]tb′ , 1[ and
strictly increasing sequences {α′n}n∈N, {β′n}n∈N in ]α′, β′[ with the properties that, for all n ∈ N,

γ′(α′n) = g(s′n), γ′(β′n) = g(t′n);

α′n < β′n < α′n+1;

]γ′(α′n), γ′(β′n)[= γ′(]α′n, β
′
n[) ⊂ Γ′ ∩ Ωpl is a characteristic line segment;

γ′(]β′n, α
′
n+1[) ⊂ Γ′ ∩ Ωel.

As in Case 5, we show that Γ′ forms a spiral converging to the point a′ = b′ and we reach a
contradiction.
X If t′0 = tb′ , then γ(α1) = b′. Note that, if a′ = b′, then ∂cΩpl ∩ g(]t0, ta′ [) = ∅ and this

is not possible in view of Lemma 5.5. It thus follows that a′ 6= b′. We next infer that u|Ωel is
continuous up to b′. This is clearly the case if b′ ∈ Σ. If however b′ ∈ ∂Ω, we use that Σ is flat
in a neighborhood of b′ (since it coincides with S′ = [a′, b′]) and thus, by convexity of Ω, Ωel has
Lipschitz boundary in a neighborhood of b′. Using that u ∈W 1,∞(Ωel), u|Ωel must be continuous,
up to b′.

Let t ∈ ]t0, ta′ [ so that g(t) ∈ Σ \ ∂cΩpl. Since by (5.3), characteristic curves cannot intersect
in Ωel and, by Lemma 5.4, Γg(t) contains no loop in Ωel passing through g(t), it follows from
item (ii) in Proposition 5.3 that Γg(t) must pass through the point b′. Thus, using that u is
constant along all characteristic curves, we get that u ≡ u|Ωel(b′) in the domain A ⊂ Ωel such that
∂A = γ([β0, α1]) ∪ g([t0, tb′ ]). As a consequence σ = ∇u = 0 in A, which contradicts the fact that
|σ| = 1 on g([t0, tb′ ]) ⊂ Σ.

So the situation envisioned in this paragraph is impossible.

6.1.2. When S is a closed line segment not contained in Σ. As in Paragraph 6.1.1, we are again
in the situation where S = ∂C ∩ ∂cΩpl for some connected component C of C with nonempty
interior, but now S = [a, b] is a closed line segment with, say, a = g(0), hence ta = 0. By Theorem
3.16-(i), there exists a characteristic line segment L such that ∂C ∩ Ωpl = L ∩ Ωpl. We denote
again by p and q the two intersection points of L with the convex set Ωpl. We further consider Γ1

and Γ2 to be the two connected components of ∂C ∩ ∂Ωpl \ ∂cC as in Theorem 3.16-(i).

We show that we can always reduce to the following geometrical situation (see Figure 13).

•a = g(ta) = g(0)

S

• b = g(tb)

H0

L0

•
p0

Ωel

Ωpl •
g(1)

• g(t0)

Figure 13. S is the characteristic boundary of a fan.



UNIQUENESS AND CHARACTERISTIC FLOW 43

Lemma 6.7. Assume that ∂Ω is of class C3,1, that

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω

and that S is a closed line segment not contained in Σ. Then, at the expense of interchanging g(0)
with g(1), there is a characteristic line segment L0 such that

• L0 passes through a point p0 6∈ Σ and g(t0) for some t0 ∈ ]tb, 1[;
• g(]tb, t0]) ⊂ Γ2;
• the closed arc g([0, t0]) contains no other connected component of ∂cΩpl, other than S.

Proof. We just sketch the proof since it is very similar to that of Lemma 6.6. We first notice that
p does not belong to Σ since S = [a, b] = g([0, tb]) 6= L. Consider several cases:

• If q ∈ Σ, the result follows by setting L0 = L.
• If q 6∈ Σ, taking an arbitrary t0 ∈ ]tb, 1[, we have that g(t0) ∈ Γ2 and Theorem 3.16 ensures

that the characteristic line segment Lg(t0) must intersect Γ1 ⊂ ∂Ωpl \ Σ at some point p0.
We then set L0 = Lg(t0).

We check the last two points exactly as in the proof of Lemma 6.6. �

As before, we denote by H0 the open half-plane such that ∂H0 = L0 and such that H0 contains
S. Since C∩H0 ⊂ ω, where ω is defined in (4.7), Theorem 4.9 ensures that u ∈ C0(Ωel∪Σ∪(C∩H0)),
and, for all x ∈ C ∩H0, u is constant along all characteristic line segments Lx ∩C ∩H0.

We use the notation of Subsection 6.1.1: Γ = γ([α, β]), α < β, is the characteristic curve
such that L0 ∩ Ωpl ⊂ Γ. Up to a change of orientation, we can assume that Γ starts at the point
γ(α) = p0. We set α0 := α and define β0 > α0 in such a way that γ(β0) = g(t0) and

L0 ∩ Ωpl = γ([α0, β0]).

Since, by Lemma 6.3, Γ ∩ (∂Ωel \ Σ) = ∅, it follows that γ(]β0, β]) must intersect Σ. Let

α1 := inf{t > β0 : γ(t) ∈ Σ}
and note that γ(α1) ∈ Σ.

Case 1. If γ(α1) = g(0) = a, we reach a contradiction exactly as in Case 1 of Paragraph 6.1.1, once
we observe that, Ω being convex, u is continuous up to the point g(0) (see the beginning of Case
6 or Paragraph 6.1.1).

Case 2. If γ(α1) ∈ ]a, b[, we reach a contradiction exactly as in Case 2 of Paragraph 6.1.1.

Case 3. If γ(α1) ∈ γ([tb, t0]), we reach a contradiction exactly as in Case 3 of Paragraph 6.1.1.

Case 4. If γ(α1) ∈ γ(]t0, 1]), we reach a contradiction exactly as in Case 6 of Paragraph 6.1.1.

So the situation envisioned in this paragraph is impossible.

6.1.3. When S is the characteristic boundary of a fan. In that case, by Proposition 3.20, up to an
interchange of a with b, it must be so that S = ]a, b] is the characteristic boundary of a fan F with
apex a. Moreover, since the apex of a fan has to belong to ∂Ω, it follows that a = g(0). Using
that, by Lemma 6.4, g(0) and g(1) do not belong to the same characteristic line, it follows that
the geometric configuration of Figure 14 holds true. This is expressed though the following

Lemma 6.8. Assume that ∂Ω is of class C3,1, that

|σ · ν| = 1 H1-a.e. on ∂Ωel ∩ ∂Ω

and that S is the characteristic boundary of a fan. At the expense of interchanging g(0) and g(1),
there exists a characteristic line segment L0 such that

• L0 passes through the points a = g(0) and g(t0) for some t0 ∈ ]tb, 1[;
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S

•b = g(tb)

H0

L0

•a = g(ta) = g(0)

Ωel

Ωpl •
g(1)

• g(t0)

Figure 14. S is the characteristic boundary of a fan.

• g(]tb, t0]) ⊂ ∂Ωpl ∩ ∂F;
• the closed arc g([0, t0]) contains no other connected component of ∂cΩpl, other than S.

We set, once again, H0 to be the open half-plane with ∂H0 = L0 that contains S. Since
F ∩H ⊂ ω, where ω is defined in (4.7), Theorem 4.9 shows that u ∈ C0(Ωel ∪ Σ ∪ (F ∩H0)), and,
for all x ∈ F ∩H0, u is constant along all characteristic line segments Lx ∩ F ∩H0.

Arguing exactly as in Paragraphs 6.1.1 and 6.1.2, we set Γ = γ([α, β]), α < β, to be the
characteristic curve such that L0 ∩ Ωpl ⊂ Γ. Up to a change of orientation, we can assume that Γ
starts at the point γ(α) = g(0). We define α0 := α and s0 := 0, so that γ(α0) = g(s0), and define
β0 > α0 in such a way that γ(β0) = g(t0) and

L0 ∩ Ωpl = γ([α0, β0]).

Since, by Lemma 6.3, Γ ∩ (∂Ωel \ Σ) = ∅, it follows that γ(]β0, β]) must intersect Σ. Let

α1 := inf{t > β0 : γ(t) ∈ Σ}

and note that γ(α1) ∈ Σ.

Case 1. If γ(α1) = g(0) = a, we reach a contradiction exactly as in Case 1 of Paragraph 6.1.2.

Case 2. If γ(α1) ∈ ]a, b[, we reach a contradiction exactly as in Case 2 of Paragraph 6.1.1.

Case 3. If γ(α1) ∈ γ([tb, t0]), we reach a contradiction exactly as in Case 3 of Paragraph 6.1.1.

Case 4. If γ(α1) ∈ γ(]t0, 1]), we reach a contradiction exactly as in Case 6 of Paragraph 6.1.1.

So the situation envisioned in this paragraph is impossible.

In conclusion of Subsection 6.1, we have established that it cannot be so that |σ ·ν| = 1 H1-a.e.
on ∂Ωel ∩ ∂Ω, which, in view of (6.2), establishes the uniqueness of u in Ωel.

6.2. Uniqueness in Ωpl. If u1 and u2 are two minimizers of the functional I defined in (6.1),
we have proved so far that u1 = u2 in Ωel, so that the trace of u1|Ωel and u2|Ωel coincide at the
interface Σ between Ωel and Ωpl. We denote by ũ this common value and define

w̃ := w1∂Ωpl∩∂Ω + ũ1Σ ∈ L1(∂Ωpl).
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The functions u1 and u2 are thus solutions to the plasticity problem (3.2) in Ωpl with boundary
data given by (the unique function) w̃. Equivalently, u1|Ωpl and u2|Ωpl are minimizers of

v ∈ BV (Ωpl) 7→
ˆ

Ωpl

W (∇v) dx+ |Dsv|(Ωpl) +

ˆ
∂Ωpl

|v − w̃| dH1.

Using the flow rule (see Remark 3.2-(i)), since |σ · ν| < 1 on ∂Ωpl \ ∂cΩpl, the boundary value
w̃ is attained on ∂Ωpl \ ∂cΩpl. In other words,

u1 = u2 = w̃ H1-a.e. on ∂Ωpl \ ∂cΩpl, (6.9)

where, in the light of Corollary 3.22, ∂cΩpl is made of at most two connected components which
are line segments. In order to show that u1 = u2 L2-a.e. in Ωpl we follow the proof of [22, Theorem
1.1] which we adapt to our setting.

We first notice that there are at most countably many λ’s in R such thatH1({w̃ = λ}∩∂Ωpl) > 0.
Consider λ ∈ R such that H1({w̃ = λ} ∩ ∂Ωpl) = 0. For i = 1, 2, we define the superlevel sets of
ui by

Eiλ = {ui > λ} ∩ Ωpl.

Assume first that 0 < L2(Eiλ) < L2(Ωpl) for all i = 1, 2. By Proposition 3.13, the superlevel
sets are of the form Eiλ = Hi

λ ∩ Ωpl, where Hi
λ are open half-planes such that Liλ = ∂Hi

λ is a
characteristic line and {

ui < λ L2-a.e. in Ωpl \H
i

λ,

ui > λ L2-a.e. in Ωpl ∩Hi
λ.

Let us consider the set Cλ := E1
λ \ E

2

λ = (H1
λ \H

2

λ) ∩ Ωpl and assume that L2(Cλ) > 0. This set
is nonempty, open, convex, and its boundary contains the line segments L1

λ ∩ Ωpl and L2
λ ∩ Ωpl.

Moreover, ∂Cλ \ [(L1
λ ∩Ωpl) ∪ (L2

λ ∩Ωpl)] = ∂Cλ ∩ ∂Ωpl has at least one connected component Γλ
with H1(Γλ) > 0. Note also that, according to Lemma 3.21, Γλ ∩ ∂cΩpl = ∅ so that u1 and u2

reach the boundary value w̃ on Γλ, i.e.

u1 = u2 = w̃ H1-a.e. on Γλ.

By definition of the set Cλ, u1 > λ and u2 < λ L2-a.e. in Cλ. Therefore, by positivity of the
trace operator in BV (see e.g. [22, Lemma 2.2]), we infer that u1 ≥ λ and u2 ≤ λ H1-a.e. on Γλ.
But since u1 = u2 = w̃ H1-a.e. on Γλ, we deduce that w̃ = λ H1-a.e. on Γλ which is against our
choice of λ. We have thus proved that L2(Cλ) = 0 for all but countably many λ ∈ R, and thus
that {u1 > λ} ∩ Ωpl = H1

λ ∩ Ωpl = H2
λ ∩ Ωpl = {u2 > λ} ∩ Ωpl up to an L2-negligible set, except

possibly for countably many λ’s in R.

If either L2(Eiλ) = 0 or L2(Ωpl) for i = 1 or 2, one of the sets Eiλ must be ∅ or Ωpl (up to an
L2-negligible set) so that, defining Cλ appropriately with L2(Cλ) > 0, we obtain, as before, that
u1 > λ and u2 < λ L2-a.e. on Cλ, thereby reaching a contradiction by the same argument as
before.

In all cases, we conclude that {u1 > λ}∩Ωpl = {u2 > λ}∩Ωpl up to an L2-negligible set, for all
but at most countably many λ’s in R. The Fleming-Rishel coarea formula in BV (see [2, Theorem
3.40]) then yields

Du1 Ωpl =

ˆ
R
Dχ{u1>λ}∩Ωpl dλ =

ˆ
R
Dχ{u2>λ}∩Ωpl dλ = Du2 Ωpl.

The set Ωpl being convex, hence connected, u1 − u2 = c for some constant c ∈ R. Using (6.9) and
because H1(∂Ωpl \ ∂cΩpl) > 0, we deduce that c = 0 and that u1 = u2 L2-a.e. in Ωpl.

In conclusion of Subsection 6.2, we have established the uniqueness of u in Ωpl.
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Appendix

In our context, revisiting the proof of Theorem 3.10 (see [5, Theorem 5.6]), it can be seen that
characteristic lines in Ωpl originating from an H1-negligible set of points in (the interior of) Ωpl
form an L2-negligible set (see also the proof of Proposition 3.13). Specifically, if Z ⊂ Ωpl is an H1-
negligible set, then

⋃
z∈Z(Lz ∩Ωpl) is L2-negligible. Unfortunately, the proof of this property does

not easily extend to the case where the exceptional set Z leaves on the boundary of Ωpl because
σ is only locally Lipschitz in Ωpl. For example, the apex ẑ of a boundary fan is a set of zero H1

measure (since it is a singleton), but the union of the characteristics originated from ẑ is precisely
the boundary fan Fẑ, hence a set of positive L2 measure. However, the H1

loc(Ω;R2)-regularity of
σ will permit us to consider exceptional sets Z ⊂ Ω∩∂Ωpl, thanks to the following lemma (see the
proof of Lemma 4.11 for the details).

Lemma (Merlet’s Lemma). Consider a convex open set A ⊂ R2 and m ∈ H1(A;R2) ∩ C0(A;R2)
with {

divm = 0

|m| = 1
in A.

Define Lx = x + Rm⊥(x) to be the characteristic line with director m⊥(x) going through x ∈ A.
Consider two points x0 and x1 in ∂A such that Lx0 (resp. Lx1) is not in the tangent cone to ∂A
at x0 (resp. x1), and let C the open arc joining x0 and x1 in ∂A. If Z ⊂ C is such that H1(Z) = 0,
then L2

(⋃
z∈Z(Ly ∩A)

)
= 0.

Proof. In the following proof, angles are non-oriented.
By a result first derived in [26, Proposition 3.2] (see also [5, Proposition 5.4] in our specific

context) together with the continuity of m on A, m remains constant along Lx ∩ A for all x ∈ A.
In particular, Lx∩Ly∩A = ∅ for x, y ∈ A with x 6= y, otherwise m would not belong to H1(A;R2)
(see e.g. [5, Theorem 6.2] for the case x = y ∈ ∂A).

Denote by g : [0, 1] → C a one-to-one Lipschitz parametrization of C with g(0) = x0 and
g(1) = x1. Let H0 (resp. H1) be the open half-plane such that ∂H0 = Lx0 (resp. ∂H1 = Lx1) and
containing Lx1 ∩A (resp. Lx0 ∩A). Then

U := H0 ∩H1 ∩A

is a (nonempty) convex open subset of A which has the property

(Lx0
∩A) ∪ (Lx1

∩A) ∪ C ⊂ ∂U.

Let C′ = ∂U \ [(Lx0
∩ A) ∪ (Lx1

∩ A) ∪ C]. We first notice that the length of any line segment
joining a point x ∈ C to a point y ∈ C′ must stay between two positive constants, i.e.,

0 < α ≤ H1([x, y]) = |x− y| ≤ diam(A) for all (x, y) ∈ C × C′, (A.1)

for some α > 0 only depending on A.
Let us denote by y0 (resp. y1) the other intersection point of Lx0

(resp. Lx1
) with ∂A. Because

of the convex character of U and since Lx0
(resp. Lx1

) is not in the tangent cone to ∂A at x0
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(resp. x1), the angle between any chord [x, x′] joining two points x, x′ ∈ C with a segment [x, y]
joining x ∈ C to y ∈ C′ is such that

η0 ≤ ∠([x, x′], [x, y]) ≤ π − η0, (A.2)

for some angle 0 < η0 ≤ min{∠([x0, x1], [x0, y1]),∠([x0, x1], [y0, x1])} < π only depending on A.

Step 1: Bound from above on the area of a portion V ⊂ U bounded by two characteristic lines.
Consider a small arc g([s, s′]) of C joining a := g(s) to b = g(s′). We denote by θ the angle between
the lines La and Lb and assume that

θ ≤ η0

2
. (A.3)

This is possible if s and s′ are close enough because m is continuous. Let c (resp. d) be the
intersection point of La (resp. Lb) with ∂A distinct from a (resp. b). Note that c 6= d, otherwise
La would be intersecting Lb at c = d which would contradict the fact that v ∈ H1(A;R2). Whenever
θ 6= 0 we consider the intersection point zθ of the lines La and Lb; it must lie outside A, lest, once
more, m not be H1(A;R2).

Let V be the convex subdomain of U bounded by g([s, s′]), La ∩A, Lb ∩A. Consider the open
half-plane H passing through the points x0 and x1, and such that C ⊂ H. If θ 6= 0 and zθ ∈ H, by
convexity of A, the area of V can be estimated as

L2(V ) ≤ C(|a− b|+ sin θ), (A.4)

while, if θ = 0 or zθ 6∈ H, that area is immediately seen to be controlled by

L2(V ) ≤ C|a− b|, (A.5)

for some constant C > 0 only depending on A.
Let us zero in on the case where θ 6= 0 and zθ ∈ H since, otherwise, estimate (A.5) will suffice

for our purpose as seen later.

Step 2: Bound of ‖∇m‖L2(V ) from below when θ 6= 0 and zθ ∈ H. Assume, without loss of

generality, that |a−z| ≤ |b−z| and define T to be the trapeze with boundary [a, c̄]∪[c̄, d̄]∪[b, d̄]∪[a, b]
where c̄ ∈ La, d̄ ∈ Lb, ]c̄, d̄[ ⊂ A is parallel to ]a, b[ and either c̄ = c, or d̄ = d. The convexity of
V ensures that T ⊂ V . We call η the angle between [a, b] and La. We further denote by h the
distance between the line segments [a, b] and [c̄, d̄] and note that, in the notation of (A.1),

h ≥ αmin{sin η, sin(η − θ)} ≥ α sin η sin(η − θ); (A.6)

see figure 15.

A
V

θ

T
La

Lb

h

η

•c

•
a

•
z

•
b

•d

•c̄ η − θ

Figure 15. The sets A, V and T .
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Let us consider an orthonormal basis {e1, e2} of R2 where the origin is set at the point a, the
first vector e1 = b−a

|b−a| is oriented in the direction of the vector b− a, and e2 (which is orthogonal

to e1) is such that T ⊂ {x ∈ R2 : x · e2 ≥ 0}. Denoting by (x1, x2) the coordinates of x in that
basis, purely geometric considerations lead to

T =

{
(x1, x2) ∈ R2 : 0 ≤ x2 ≤ h, a(x2) ≤ x1 ≤ b(x2)

}
,

where, for x2 ∈ 0, h], (a(x2), x2) ∈ [a, c̄], (b(x2), x2) ∈ [b, d̄] and the length of the section of T at
height x2 ∈ [0, h] is given by

b(x2)− a(x2) = |a− b|+ x2

(
tan

(π
2

+ θ − η
)
− tan

(π
2
− η
))

.

Then, Fubini’s theorem together with Jensen’s inequality yieldsˆ
V

|∇m|2 dx ≥
ˆ
T

|∇m|2 dx ≥
ˆ h

0

[ˆ b(x2)

a(x2)

|∂1m|2 dx1

]
dx2

≥
ˆ h

0

|m(b(x2), x2)−m(a(x2), x2)|2

b(x2)− a(x2)
dx2. (A.7)

Using that m is constant along [a, c̄] ⊂ La and [b, d̄] ⊂ Lb together with the fact that θ = ∠(La, Lb),
we infer that |m(b(x2), x2)−m(a(x2), x2)|2 = 2(1− cos θ) = 4 sin2( θ2 ) ≥ sin2 θ. Hence, in view of
(A.6) together with the trigonometric formula

tan
(π

2
+ θ − η

)
− tan

(π
2
− η
)

=
sin θ

sin η sin(η − θ)
,

(A.7) becomesˆ
V

|∇m|2 dx ≥
ˆ α sin η sin(η−θ)

0

sin2 θ

|a− b|+ x2

(
tan

(
π
2 + θ − η

)
− tan

(
π
2 − η

))dx2

= sin θ sin η sin(η − θ) ln

(
1 +

α sin θ

|a− b|

)
. (A.8)

The angle relations (A.2), (A.3) imply that

sin η sin(η − θ) ≥ sin η0 sin
(η0

2

)
:= C0,

where C0 > 0 is a constant only depending on A, and (A.8) finally becomes,ˆ
V

|∇m|2 dx ≥ C0 sin θ ln

(
1 +

α sin θ

|a− b|

)
. (A.9)

Step 3: Conclusion. Since H1(Z) = 0, by definition of the Hausdorff measure, for all δ > 0,
there exist an at most countable set I ⊂ N and {Bi}i∈I such that Z ⊂

⋃
i∈I Bi and∑

i∈I
diam(Bi) ≤ δ. (A.10)

Moreover, there is no loss of generality in assuming that the sets Bi = B%i(zi) are discs centered

at a point zi ∈ Z with radius %i > 0. We can further suppose that Bi \ C = ∅ and θi ≤ η0/2 (see
(A.2)–(A.3)) at the expense of decreasing δ and thanks to the continuity of m.

For each i ∈ I, we set {ai, bi} = ∂Bi ∩ C, and define the associated Vi, θi, Hi and zθi . We
partition I into

I+ := {i ∈ I : θi 6= 0 and zθi ∈ Hi}, I− := {i ∈ I : θi = 0 or zθi /∈ Hi}.
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Using (A.5),

L2(Vi) ≤ Cdiam(Bi), i ∈ I−, (A.11)

while (A.4) ensures that

L2(Vi) ≤ C(diam(Bi) + sin θi), i ∈ I+. (A.12)

Here C > 0 is a constant only depending on A. In view of (A.9),
ˆ
Vi

|∇m|2 dx ≥ C0 sin θi ln

(
1 +

α sin θi
diam(Bi)

)
, i ∈ I+. (A.13)

Define the disjoint sets of indices

I+
0 :=

{
i ∈ I+ :

sin θi
diam(Bi)

< 1

}
, I+

j :=

{
i ∈ I+ : 2j−1 ≤ sin θi

diam(Bi)
< 2j

}
for j ≥ 1,

so that ∑
i∈I+

sin θi =

j0∑
j=0

∑
i∈I+j

sin θi +
∑
j>j0

∑
i∈I+j

sin θi.

Now,
j0∑
j=0

∑
i∈I+j

sin θi ≤
j0∑
j=0

∑
i∈I+j

2jdiam(Bi) ≤ 2j0(j0 + 1)
∑
i∈I

diam(Bi), (A.14)

while, appealing to (A.13),∑
j>j0

∑
i∈I+j

sin θi ≤
∑
j>j0

1

ln(1 + α2j0)

∑
i∈I+j

sin θi ln

(
1 + α

sin θi
diam(Bi)

)

≤ 1

C0 ln(1 + α2j0)

∑
i∈I+

ˆ
Vi

|∇m|2 dx

≤ 1

C0 ln(1 + α2j0)

ˆ
A

|∇m|2 dx, (A.15)

where we used that, since characteristic lines cannot intersect inside A, the sets {Vi}i∈I+ are
pairwise disjoint. Gathering (A.10), (A.11), (A.12), (A.14) and (A.15), we obtain that∑

i∈I
L2(Vi) =

∑
i∈I−
L2(Vi) +

∑
i∈I+
L2(Vi)

≤ C
∑
i∈I

diam(Bi) + C
∑
i∈I+

sin θi

≤ C

(
δ + 2j0(j0 + 1)δ +

C0

ln(1 + α2j0)

ˆ
A

|∇m|2 dx
)
. (A.16)

Given ε > 0, choosing first j0 ∈ N large enough and then δ > 0 small enough, we conclude that∑
i∈I
L2(Vi) ≤ ε.

Since
⋃
z∈Z(Lz ∩A) ⊂

⋃
i∈I Vi, this proves that the set

⋃
z∈Z(Lz ∩A) is L2-negligible. �
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