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PWA control functions: from the projection of mpQP solution and back
to the convexification by lifting

Songlin Yang1, Sorin Olaru1, and Pedro Rodriguez-Ayerbe1

Abstract— This paper focuses on the geometric properties of
the Piece-Wise Affine (PWA) feedback function as they appear
from the optimal solution of the multi-parameter quadratic
programming (mpQP) problem. Such optimization problems
are popular formulations, for example, in the design of model-
based predictive controllers (MPC) for discrete linear systems
subject to input and state constraints. The paper considers
such a PWA function as input data and provides a method for
reconstructing a feasible convex set and a PWA curve within
it, which retrieves the identical structure of the solution in the
original parametric feasible set. The proposed method involves
establishing and decomposing the topology structure of the
polyhedral critical regions, which form the domain of the PWA
function by means of a graph of interconnections. The regions
are split into the boundary and interior collections using convex-
concave lifting. The explicit solution is then merged based on
the convex-concave liftings to reconstruct the feasible domain
and the PWA curves.

I. INTRODUCTION

Model predictive control (MPC) has captured significant
attention in the academic community due to its receding hori-
zon optimal control formulation [1]. MPC uses a dynamic
model of the process to predict the future evolution over a
finite-time horizon and selects the optimal control actions
with respect to a specified performance index. Furthermore,
MPC can handle process constraints and multi-variable in-
teractions in a unified formulation. Various researchers have
recently studied MPC and their optimization-based control
alternatives [2] from different angles [3]. The present paper
focuses on the geometric characteristics of MPC [4] and aims
to propose inverse optimal solutions [5] for the predictive
controllers.

Explicit MPC (EMPC) emerged as a method to simplify
online control computation by converting it into evaluating
a piecewise affine function over polyhedral critical regions
[6]. The geometrical properties of the optimal solution were
exploited during the construction, but the EMPC implemen-
tation proved challenging due to the memory required for
online evaluation. In [7], the authors reduce storage and
evaluation time by assuming the initial state is contained in
a given set, omitting irrelevant predictive trajectory regions.
In [8], by enumerating the possible optimal active sets,
the authors showed that EMPC solutions admit a closed-
form solution which does not require the storage of critical
regions. In [9], a parametrized polyhedra approach in the
combined (input+parameter) space is used to analyse the

1Université Paris-Saclay, CNRS, CentraleSupélec,
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solution of EMPC. In [4], the authors construct the uncon-
strained critical region and then enumerate the others based
on the combinations of active constraints.

Once the advantages of implicit and explicit MPC have
been characterized, a series of studies [10] proved that
explicit PWA formulations could be used to obtain inverse
optimal QP formulations with lower computation footprint.
Remarkably, inverse-optimal formulations have been con-
structed with only one supplementary dimension of the vec-
tor of arguments [5], thus offering a particularly compact QP
for the PWA controller originated by the MPC formulation.

The inverse optimal solutions for PWA feedback functions
obtained in the literature exploit constraint activation at the
optimum for the entire range of the parameters. However, the
original MPC formulation has a solution that is unconstrained
around the equilibrium whenever this is located in the interior
of the (state-input) feasible domain. In this context, and
in contrast to prior research results, such as in [5] and
[11], this paper aims to devise a new PWA function and
a corresponding higher-dimensional polytope to uphold the
geometric structure of the original control action, includ-
ing the feasible domain and the constrained-unconstrained
characteristics. Specifically, the PWA control is partitioned
into two components: a linear function corresponding to the
unconstrained critical region in the parameters’ space and a
constrained solution that is essentially a projection onto the
boundary of the feasible set.

• A higher-dimensional polytope and a suitable PWA
function are defined starting from an original continuous
PWA control and its corresponding polyhedral critical
region. Notably, the newly created polytope and the
extended PWA function exhibit the same projection as
the original PWA function.

• Drawing inspiration from the concept of convex lifting
[12], we introduce a novel approach called convex-
concave lifting to facilitate the construction of the
higher-dimensional polytope.

• We examine the connection between the constructed
polytope and the original mpQP problem and point out
that the corresponding mpQP problem constructed using
the proposed higher-dimensional polytope has a lower
complexity.

Notation: In this paper, Rn and N denote the set of real
numbers in n-dimensional space, the set of nonnegative
integers, and IN = [1, N ] ∩ N. The symbols 0m×n and Im
represent a matrix of size m× n with all elements equal to
zero and an m-dimensional identity matrix, respectively. If



P ⊂ Rn is a polyhedral set, then int(P) denotes the set of
interior points of P and bd(P) denotes the set of boundary
points of P , ProjRm P represents the orthogonal projection
of P onto the subspace Rm. The convex hull of a set {∗} is
denoted by conv{∗}. Bn = {x ∈ Rn : ∥x∥∞ ≤ 1}.

II. BACKGROUND AND PROBLEM
FORMULATION

A. From MPC to PWA control

Consider a discrete-time linear system:

xk+1 = Axk +Buk, (1)

where the states xk ∈ Rn, and the inputs uk ∈ Rm at time
k are bounded by polyhedral sets:

X = {x ∈ Rn|Hxx ≤ bx},U = {u ∈ Rm|Huu ≤ bu},

where bx, bu, Hx, and Hu are known constant matrices, such
that 0 ∈ int(X ) and 0 ∈ int(U).

The model-based predictive controller with a N-steps
receding horizon can be obtained by the iterative construction
of the control sequence κ∗

u(x) = [uT
0 , · · · , uT

N−1]
T which

solves the finite-time optimal control problem for the given
initial state x0 = x:

κ∗
u(x) = argmin

κu

N−1∑
k=0

uT
kRuk +

N∑
k=1

xT
kQxk (2a)

s. t. xk+1 = Axk +Buk, (2b)
uk ∈ U , xk ∈ X , xN ∈ Ω (2c)

with R ≻ 0, Q ⪰ 0 and Ω ⊆ Rn a control invariant set with
0 ∈ int(Ω). Without loss of generality, the problems to be
solved at each sampling instant can be written:

κ∗
u(x) = arg min

κu

κT
uHκu + xTFκu, (3a)

s.t. [xT , κT
u ] ∈ P, (3b)

where x ∈ X = ProjRn P ⊆ X is the current state playing
the role of a parameter, κu(x) ∈ RmN is the optimization
vector and H ≻ 0. The set P is the parameterized feasible
domain with the formulation

P = {[xT , κT
u ]

T |Gκu ≤ W + Ex, x ∈ X}

where G,W,E are constructed from the mpQP problem (2).
From the above notations it follows ∀x ∈ X ,P ≠ ∅.

The solution to problem (3) takes the form of a piecewise
affine (PWA) function of the system state x. In order to deal
with those properties, the notion of polyhedral partition needs
to be introduced.

Definition 1. A collection of polyhedral sets {X1, . . . ,XN}
is called a polyhedral partition of X if ∀i, j ∈ IN , i ̸= j,

1. X = ∪N
i=1Xi;

2. int(Xi) ∩ int(Xj) = ∅.

Such a polyhedral partition is next denoted as {Xi}IN
.

Building upon the results presented in [6], the solution
to the mpQP problem (2) can be expressed as a continuous
PWA function of x, denoted as κ∗

u(x).

κ∗
u(x) = fi(x), x ∈ Xi,

where fi : Rn → RmN is piecewise affine and Xi is a
polyhedron of polyhedral partition {Xi}IN

.

B. Properties of the MPC controller

Similar to the literature on the geometric structure of MPC
[4]- [9], the relationship between the unconstrained optimum
and the feasible domain is privileged in the present work. The
following propositions underline a fundamental property in
this respect.

Proposition 1. If 0 ∈ int(X ), 0 ∈ int(U) and 0 ∈ int(Ω)
in (2) then with respect to the solution of (3):

X1 = {x ∈ X |κ∗
u(x) = −H−1Fx}

is a polyhedron set with int(X1) ̸= ∅, and additionally,

∀x ∈ int(X1), [x
T , κ∗

u(x)
T ] ∈ int(P).

Proof. At the origin, the optimal argument is κ∗
u(0) = 0,

corresponding to a feasible interior point of the constraint
set 0 ∈ P . Moreover, the unconstrained optimum is given by
κ∗
u(x) = −H−1Fx and there exists a non-empty region R ⊆

X such that (A − BH−1F )x ∈ X ,∀x ∈ R. Once the non-
emptiness of X1 is ensured, its boundaries are given by the
KKT conditions represented by affine inequality constraints
[6], which proves its polyhedral structure.

Additionally, suppose by contradiction that it exists x ∈
int(X1) such that [xT , (−H−1Fx)T ] /∈ int(P). It means
that [xT , (−H−1Fx)T ] ∈ bd(P). and thus either κ∗

u(x) ̸=
−H−1Fx} or 0 ∈ bd(P). The first case contradicts the
definition of set X1 and the second with the assumption that
both X ,Ω and U contain the origin in their strict interior.

X1 is often denoted as the unconstrained critical region of
the EMPC. In the geometry of the PWA control function, the
importance of this set is underlined by the following result.

Proposition 2. If 0 ∈ int(X ), 0 ∈ int(U) and 0 ∈ int(Ω)
in (2), then for x ∈ X \ X1, the optimal solution for the
mpQP problem (3) satisfies

[xT , κ∗
u(x)

T ] ∈ bd(P)

Proof. Suppose again by contradiction that it exists x ∈
X \ X1 with [xT , κ∗

u(x)
T ] ∈ int(P). From this second fact,

it follows that the unconstrained optimum is feasible, i.e.
κ∗
u(x)

T = −H−1Fx, which leads to a contradiction as long
as the optimality conditions should hold only for x ∈ X1.

Corollary 1. If 0 ∈ int(X ) and 0 ∈ int(U) then

∀x ∈ int(X1),
[
xT , κ∗

u(x)
T
]T ∈ int(Pu),

where

Pu := conv
{
[xT , κ∗

u(x)
T ]T : x ∈ X

}
. (4)



Two important features of an MPC controller emerge from
the aforementioned properties.

• The optimal solution κ∗
u(x) consists of two parts: the

unconstrained optimum for x ∈ X1, and the boundary
solution for x ∈ Xi where i ∈ IN \ {1}.

• Only the first component of the sequence κ∗
u(x) is used

by MPC control action κpwa(x) and will be denoted as

κpwa(x) =
[
Im,0m×(mN−m)

]
κ∗
u(x),

or explicitly as

κpwa(x) = Fix+ gi, x ∈ Xi, (5)

where Fi ∈ Rm×n, gi ∈ Rm.
In the following sections, we combine these two properties
to propose a problem of interest and its solution strategy.

C. Problems formulation
Starting from an mpQP problem (3) with a parameter

vector x ∈ X ⊂ Rn and the parameterized feasible domain
P ⊂ Rn+mN , the corresponding solution κ∗

u(x) for the
problem (3) and control action κpwa(x) : Rn → Rm

for the system (1) can be obtained with standard methods.
With respect to the current developments, the control action
κpwa(x) defined over X will be considered to be available
in an explicit form.

The goal is to construct a feasible set Pz ⊂ Rn+m+nz

starting from the continuous PWA control action κpwa(x),
such that
Prop 1: Pz is a polytope, and it satisfies:

ProjRn Pz = X .

Prop 2: There exists a continuous PWA vector function
κz(x) : Rn → Rm+nz subject to:

κpwa(x) =
[
Im,0m×nz

]
κz(x). (6)

Prop 3: ∀x ∈ int(X1), [x
T , κT

z (x)]
T ∈ int(Pz).

Prop 4: ∀x ∈ X \ int(X1), [x
T , κT

z (x)]
T ∈ bd(Pz).

By imposing these four conditions, implicitly a reformu-
lation of the MPC feasible domain and its optimal solution
(P, κ∗

u) is achieved:

P ⊂ Rn+mN −→ Pz ⊂ Rn+m+nz ,

κ∗
u : Rn → RmN −→ κz : Rn → Rm+nz .

If m + nz ≪ mN , the new pair (Pz, κz) preserves the
topological structure of the pair (P, κ∗

u) while reducing its
complexity. One can employ (Pz, κz) to formulate a new
mpQP problem that is equivalent to (3) but has a lower
complexity.

D. A scalar motivating example
Fig. 1 depicts a PWA function κpwa : R → R defined over

a partition {Xi}I5 with 5 regions. The same figure depicts
the solution pair (Pz, κz) satisfying:

Pz ⊂ R3 : ProjR P = ∪5
i=1Xi,

κz : R → R2 : κpwa(x) = [1, 0]κz(x),∀x ∈ ∪5
i=1Xi.

and fulfilling the conditions in the problem formulation.

Fig. 1. Example of the solution sought for the pair (Pz , κz) based on an
initial PWA function κpwa(x).

III. PRELIMINARY RESULTS

Two instrumental notions are introduced in this section.

A. Convex lifting
Definition 2. [12] Given a polyhedral partition {Xi}IN

of
a polyhedron X ⊂ Rn, l(x) : X → R is called a piecewise
affine convex lifting if the following conditions hold:

• l(x) = aTi x+ bi for x ∈ Xi;
• l(x) is continuous over X ;
• l(x) > aTj x+ bj for all x ∈ Xi \Xj with i, j ∈ IN and

i ̸= j.

B. Interconnection graph corresponding to the topology of
the PWA partition

The topological structure of a polyhedral partition {Xi}IN

characterizes the interconnectivity and distribution of the
constituent regions Xi according to the non-emptiness of
their intersection. This is represented in terms of as a non-
directional graph (N ,E )IN

, with N denoting the regions
and E representing the links between these regions. If
Xi ∩ Xj ̸= ∅, E (i, j) = E (j, i) = 1. Otherwise, E (i, j) =
E (j, i) = 0.

Fig. 2 illustrates a topological structure graph for a 2-
dimensional polyhedral partition.

Fig. 2. A topological structure graph in the 2-dimensional partition.



IV. A BASIC CONSTRUCTIVE RESULT

To address the problem presented in subsection II.C, the
topological structure graph of {Xi}IN

is classified and a
novel convex-concave lifting technique to extend the variable
to a higher-dimensional space for convexification purposes.
The constructive process is completed with a third step where
the PWA control law κpwa(x) is combined with the lifting to
establish a feasible set Pz . The entire sequence of operations
is illustrated through a uni-dimensional space example.

A. Decomposable interconnection graph within the partition

First, let us refer to the dimensional expansion lemma
proposed in [5].

Lemma 1. [5] Let Γs ⊂ Rds be a full-dimensional polytope
with the set of vertices V(Γs) = {s(1), · · · , s(q)}. For any
finite set of points {s(1), · · · , s(q)} ⊂ Rdt defining a full-
dimensional polytope, an extension of the family V(Γs)
can be obtained in higher-dimensional space Rds+dt for the
concatenated vectors [sT , tT ]T defining the set:

Vs,t :=

{[
s(1)

t(1)

]
, · · · ,

[
s(q)

t(q)

]}
.

The polytope Γs,t = conv(Vs,t) satisfies: Vs,t = V(Γs,t).

Remark 1. For two sets Γs and Γs,t, the following holds:

ProjRds Γs,t = Γs.

According to Lemma 1, the set Pu defined in Corollary 1
satisfies:

ProjRn Pu = X .

Typically, Pu cannot satisfy the Prop 1–4 required to
construct the feasible set Pz . Consequently, an extra step
is necessary to embed Pu in a higher-dimensional polytope.

Definition 3. Let (N ,E )IN
be a graph associated with

{Xi}IN
. A PWA function f(x) : ∪

i∈Nbd

Xi → R is called

a boundary lifting function (BLF) if the following holds:

Pi
f ⊂ bd(Pf )

with i ∈ Nbd ⊆ IN and

Pi
f := conv

{
[xT , f(x)]T : x ∈ Xi

}
,

Pf := conv
{
[vT , f(v)]T : v ∈ ∪

i∈Nbd

V(Xi)

}
.

Remark 2. The existence of a BLF over ∪
i∈Nbd

Xi doesn not

solve the stated problem but some connections between Pf

and Pz can be estabished:
• ProjRn Pz = X . However, the set Pf only guarantees

that ProjRn Pf ⊇ ∪
i∈Nbd

Xi.

• The set ∪
i∈Nbd

Xi is not required to be both compact and

connected. Therefore, the PWA function f(x) may be
discontinuous.

Subsequently, we aim to identify multiple appropriate BLFs
to build a polytope Pz in a higher-dimensional space.

The domain of f(x) allows us to partition the topology
structure graph (N ,E )IN

into two subgraphs: the bound-
ary subgraph (N ,E )Nbd

and interior subgraph (N ,E )Nin .
Here, Nin := IN \Nbd. Fig. 3 illustrates an interior subgraph
of (N ,E )IN

, as presented in Fig. 2.

Fig. 3. An interior subgraph of the topology structure in Fig. 2.

B. Convex-concave construction

In order to create the feasible set Pz , it is necessary
to devise a BLF that elevates the regions in the interior
subgraph (N ,E )Nin to the boundary. A convex-concave
lifting approach, derived from convex lifting, is suggested
to facilitate this process.

Definition 4. Let {Xi}Nin
⊆ {Xi}IN

be a collection of
regions. A piecewise affine lifting function g : Rn → R,
defined as g(x) = aTi x + bi for x ∈ Xi where i ∈ Nin,
is categorized as a convex-concave lifting if it satisfies the
following conditions:

• The set Nin is partitioned into two groups:
1) N vex

in , containing the convex items, and N cave
in , con-

taining the concave items. These groups fulfill the
conditions N vex

in ∪N cave
in = Nin and N vex

in ∩N cave
in =

{1}.
• For all i ∈ N vex

in , the following conditions are satisfied:
2) g(x) > aTj x + bj for all x ∈ Xi \ Xj and all j ̸=

i, j ∈ N vex
in ;

3) g(x) < aTj x+ bj , ∀x ∈ Xi and ∀j ∈ N cave
in \ {1}.

• For all i ∈ N cave
in , the following conditions are satisfied:

4) g(x) < aTj x + bj for all x ∈ Xi \ Xj and all j ̸=
i, j ∈ N cave

in ;
5) g(x) > aTj x+ bj , ∀x ∈ Xi and ∀j ∈ N vex

in \ {1}.
• For all i, j ∈ Nin, i ̸= j, the following condition holds:

6) aTi x+ bi = aTj x+ bj , x ∈ Xi ∩ Xj .

Remark 3. A convex lifting is a convex-concave lifting with
N cave

in = {1}.

The proposed convex-concave liftable conditions and their
connection to a BLF for state space X will be discussed next.

Definition 5. The collection {Xi}Nin
is said to be valid for

convex-concave liftability if

∪
i∈Nvex

in \{1}
Xi ⊂ H+, ∪

i∈N cave
in \{1}

Xi ⊂ H−,



where H+ and H− are two halfspaces generated by a
hyperplane H ⊂ Rn.

Remark 4. According to the above definition, a necessary
condition for the application of the convex-concave lifting
is the existence of a hyperplane to partition {Xi}Nin

into
two subsets. Fig. 2 and Fig. 3 illustrate this approach. For
example, in the graph (N ,E )IN

, it may not be possible
to divide the regions, except for the original region 1, into
two groups using a hyperplane. However, a hyperplane can
divide the interior subgraph (N ,E )Nin

into two groups
once the region 1 is omitted. Thus, we refer to the set
of regions (N ,E )Nin generated from Fig. 3 as valid for
convex-concave liftability.

In the rest of this subsection, the main objective is to
propose an algorithm to effectively construct a convex-
concave lifting for a valid collection {Xi}Nin

.
In practice, the indices of Nin will be split into two sets

such that:

N vex
in ∩N cave

in = {1},N vex
in ∪N cave

in = Nin. (7)

If {Xi}Nin
is valid for liftability, then Nin can be directly

partitioned. One of the two subsets is associated with the
convex items, while the other part automatically will contain
the concave items.

Let (i, j) ∈ E with i, j ∈ (∗), where (∗) denotes Nin,
N vex

in , or N cave
in . If i, j ∈ N vex

in , then conditions 2 in
Definition 4 are convexity ones and can be described as:

∀x ∈ Xi \ (Xi ∩ Xj), gi(x) > gj(x). (8)

If i, j ∈ N cave
in , conditions 4 becomes:

∀x ∈ Xi \ (Xi ∩ Xj), gi(x) < gi(x). (9)

If i, j ∈ Nin, condition 6 becomes:

∀x ∈ Xi ∩ Xj , gi(x) = gj(x). (10)

Conditions 3 and 5 in Definition 4 are boundary condi-
tions.

Algorithm 1 outlines the process for computing ai and bi
for all i ∈ Nin, in a convex-concave lifting.

C. Lifting a Polyhedral Partition

Suppose the collection {Xi}Nin ⊆ {Xi}IN
is valid for

convex-concave liftability. Let g(x) : ∪
∀i∈Nin

Xi → R be a

PWA function defined as g(x) = aTi x + bi, xi ∈ Xi, which
is a convex-concave lifting of {Xi}Nin

.

Proposition 3. Let {Xi}Nin
⊆ {Xi}IN

be a convex-concave
liftable collection, where N vex

in and N cave
in are the convex

and concave items of Nin, respectively. The following equa-
tion holds:

Pg ⊂ Rn+1 : ProjRn Pg = X

with

Pg ={
[
xT , z

]T |s.t. z ≥ aTi x+ bi, z ≤ aTj x+ bj ,

∀x ∈ X , i ∈ N vex
in \ {1}, j ∈ N cave

in \ {1}},

Algorithm 1 Construction a convex-concave lifting for a
given collection {Xi}Nin

of a polytope X ⊂ Rn

Input: {Xi}Nin
and a given constant ϵ > 0.

Output: Parameter pairs (ai, bi),∀i ∈ Nin.
1: Divide the items set Nin into two parts N vex

in and N cave
in .

2: Register all neighboring regions in {Xi}Nin
, {Xi}Nvex

in
,

and {Xi}N cave
in

.
3: For each (i, j) ∈ E and i, j ∈ Nin

∀v ∈ V(Xi ∩ Xj), a
T
i v + bi = aTj v + bj . (11a)

4: For each (i, j) ∈ E with i, j ∈ N vex
in , add convexity

conditions, ∀v ∈ V(Xi), v /∈ V(Xj):

aTi v + bi ≥ aTj v + bj + ϵ. (11b)

5: For each (i, j) ∈ E i, j ∈ N cave
in , add concavity

conditions, ∀v ∈ V(Xi), v /∈ V(Xj):

aTi v + bi + ϵ ≤ aTj v + bj . (11c)

6: For i ∈ N vex
in \ {1},∀j ∈ N cave

in \ {1}, add boundary
conditions, ∀v ∈ V(Xi):

aTi v + bi + ϵ ≤ aTj v + bj . (11d)

7: For i ∈ N cave
in \ {1},∀j ∈ N vex

in \ {1}, add boundary
conditions, ∀v ∈ V(Xi):

aTi v + bi ≥ aTj v + bj + ϵ. (11e)

8: Solve a linear quadratic problem with variables
ai, bi,∀i ∈ Nin:

min
ai,bi

∑
∀i∈Nin

(aTi ai + bTi bi) subject to (11). (12)

if ai, bi are the solution to the optimization problem:

min
ai,bi

∑
∀i∈Nin

(aTi ai + bTi bi) subject to (11), (14) (13)

with (14) denoted as

aTi x+ bi ≤ aTj x+ bj , (14)

∀x ∈ X , i ∈ N vex
in \ {1}, j ∈ N cave

in \ {1}.

Proof. In the expression of Pg , the condition x ∈ X must
be satisfied, which implies that:

ProjRn Pg ⊆ X .

Moreover, for any x ∈ X , there exists a real number z0 ∈ R
such that [xT , z0]

T ∈ Pg . Therefore, we have:

X ⊆ ProjRn Pg.

As a result, the proposition is proven to be true.

Remark 5. To simplify the formulation, Pg will be equiva-
lently denoted as:

Pg = {[xT , z]T |Hz,xx+Hz,zz ≤ bz}. (15)



Besides, to construct the convex-concave lifting g(x) based
on the optimization problem (13), a set of new constraints
(14) must be considered. The aforementioned constraints
correspond to boundary conditions and can be simplified to
a finite set of constraints as follows:

• For i ∈ N vex
in \{1},∀j ∈ N cave

in \{1}, and ∀v ∈ V(X ):

aTi v + bi ≥ aTj v + bj + ϵ.

D. Composition of PWA functions

This subsection presents a methodology for building a set
Pz that leverages the decomposable interconnection graph
approach detailed in Subsection A, in conjunction with
convex-concave lifting techniques in Subsections B and C.

Given a polyhedral partition {Xi}IN
with topology

(N ,E )IN
, we seek to construct a polytope Pz that en-

capsulates the continuous PWA function κpwa :
N
∪
i=1

Xi →
Rm. To achieve this objective, we begin by constructing a
polytope Pu ⊂ Rn+m defined in (16). The polytope can be
represented equivalently as:

Pu =
{
[xT , uT ]T ∈ Rn+m|Hu,xx+Hu,uu ≤ bu

}
. (16)

We begin by noting that ProjRn Pu = X . Additionally, we
partition the topology (N ,E )IN

into two subgraphs based
on the following boundary condition:

(N ,E )Nbd
:∀i ∈ Nbd,Pi

u ⊂ bd(Pu); (17a)

(N ,E )Nin
:∀i ∈ Nin,Pi

u ∩ int(Pu) ̸= ∅. (17b)

with Pi
u = conv

{
[vT , κT

pwa(v)]
T : v ∈ V(Xi)

}
. Besides,

sets Nbd and Nin satisfy:

Nbd ∪Nin = IN ,Nbd ∩Nin = ∅, 1 ∈ Nin.

Assumption 1. For the subgraph (N ,E )Nin , the relevant
collection {Xi}Nin

is valid for convex-concave liftability.

Based on Proposition 3 and Assumption 1, we can design
a convex-concave lifting

g : ∪
∀i∈Nin

Xi → R,

such that

ProjRn Pg = X and ∀i ∈ Nin \ {1},Pi
g ⊂ bd(Pg)

with Pg defined in (15) and Pi
g denoted as

Pi
g =conv

{
[xT , gT (x)]T : x ∈ Xi

}
. (18)

Using PWA function κpwa(x) and a convex-concave lift-
ing g(x), the following proposition constructs set Pz .

Proposition 4. Given a continuous PWA function κpwa(x)
defined over a polyhedral partition {Xi}IN

, we construct the
set Pu and a specialized convex-concave lifting g(x) over a
collection {Xi}Nin

. The polytope Pz ⊂ Rn+m+1 satisfies
Prop 1–4 in II-C and can be expressed as:

Pz ={
[
xT , uT , z

]T ∈ Rn+m+1| subject to
Hu,xx+Hu,uu ≤ bu, Hz,xx+Hz,zz ≤ bz}.

Proof. The inclusion of x ∈ X in Pz implies that:

ProjRn Pz ⊆ X .

Additionally, for any x ∈ X , there exist two vectors u0 ∈ Rm

and z0 ∈ R such that:

[xT , uT
0 ]

T ∈ Pu, [x
T , z0]

T ∈ Pg

Therefore, we have:

[xT , uT
0 , z0]

T ∈ Pz ⇒ X ⊆ ProjRn Pz.

Prop 1 imposed on Pz according to II-C is proven to hold.
In order to satisfy Prop 2 in II-C, we define a piecewise

affine functionκz : ∪
i∈IN

Xi → Rm+1, given by:

κz(x) =

[
κpwa(x)
z(x)

]
with

z(x) =

{
g(x), x ∈ Xi, i ∈ Nin,
gc(x), x ∈ Xi, i ∈ Nbd,

where function gc(x) : Rn → R only needs to ensure the
continuity of z(x) over the entire state space X . Apparently,
κpwa(x) =

[
Im,0m×1

]
κz(x).

Prop 3–4 in II-C are proven by analyzing various situa-
tions based on the value of x.

If x ∈ int(X1), since 1 ∈ Nin, we have [xT , κT
pwa(x)]

T ∈
int(Pu). This implies the existence of ϵ1 > 0 such that
[xT , κT

pwa(x)]
T + ϵ1Bn+m ⊂ Pu. Based on the design

process of convex-concave lifting, if x ∈ int(X1), then
[xT , g(x)]T ∈ int(Pg) holds true. Similarly, there is ϵ2 >
0 such that [xT , g(x)]T + ϵ2Bn+1 ⊂ Pg . Thus, we can
choose ϵ3 = min{ϵ1, ϵ2} so that [xT , κT

pwa(x), g(x)]
T +

ϵ3Bn+m+1 ⊂ Pz .
If x ∈ Xi with i ∈ Nin \ {1}, due to i ∈

Nin, [xT , κT
pwa(x)]

T ∈ int(Pu). It means ∃ϵ1 >
0, [xT , κT

pwa(x)]
T + ϵ1Bn+m ⊂ Pu. According to the design

process of convex-concave lifting, [xT , g(x)]T ∈ bd(Pg),
which means ∄ϵ2 > 0, [xT , g(x)]T + ϵ2Bn+1 ⊂ Pg . It
means ∄ϵ > 0, [xT , κT

pwa(x), g(x)]
T+ϵBn+m+1 ⊂ Pz . Thus,

[xT , κT
pwa(x), g(x)]

T ∈ bd(Pz).
If x ∈ Xi with i ∈ Nbd, we can not find ϵ >

0, [xT , κT
pwa(x)]

T + ϵBn+m ⊂ Pu, which also means
∄ϵ > 0, [xT , κT

pwa(x), gc(x)]
T + ϵBn+m+1 ⊂ Pz and

[xT , κT
pwa(x), gc(x)]

T ∈ bd(Pz).

Algorithm 2 outlines the procedure for decomposing the
construction task and building the constraints for the set Pz .

Remark 6. The design of a convex-concave lifting for all
regions except the original ones to the boundary in one step
is impossible if Assumption 1 doesn’t hold. In the following
section, we will present the iterative process, which allows
generalization by recursively leading to the validation of the
Assumption 1.



Algorithm 2 Construction a feasible set Pz for a given
continuous PWA function κpwa defining over {Xi}IN

.

Input: A continuous PWA function κpwa :
N
∪
i=1

Xi → Rm

and its domain X ⊂ Rn.
Output: A higher-dimensional polytope Pz ⊂ Rn+m+1 and

a relevant continuous PWA function κz(x) : X →
Rm+1.

1: Establish the topology structure graph of {Xi}IN
de-

noted as (N ,E )IN
.

2: Construct the polytope Pu ⊂ Rn+m, denoted by (16),
for the polyhedral partition {Xi}IN

.
3: The graph (N ,E )IN

can be partitioned into two parts
based on Pu, resulting in (N ,E )Nbd

and (N ,E )Nin
,

as shown in (17).
4: Construct a convex-concave lifting function g(x) for sub-

graph (N ,E )Nin such that the resulting set projection
ProjRn Pg = X , as defined in (15), is guaranteed.

5: Construct set Pz and define the relevant continuous PWA
function κz : X → Rm+1 using Proposition 4 as a basis.

E. Exemplification for a scalar function

Consider a scalar PWA function:

κpwa(x) =


−1.5x− 4.75, x ∈ X2 = {x : −4 < x ≤ −2}
2x+ 2.25, x ∈ X3 = {x : −2 < x ≤ −1}
−0.25x, x ∈ X1 = {x : −1 < x ≤ 3}
1.5x− 5.25, x ∈ X4 = {x : 3 < x ≤ 5}
−5x+ 27.25, x ∈ X5 = {x : 5 < x ≤ 6}

By following the steps outlined in Algorithm 2, we obtained
the required parameters in the following:

[Hz,x, Hz,z, bz] =

[−0.0619 −0.4952 −0.8666
0.1592 0.0318 0.9867
−0.0201 0.1806 0.9833
−0.7276 −0.4851 0.4851

]
,

[Hu,x, Hu,u, bu] =

[
1.0000 0 6.0000
−1.0000 0 4.0000
−1.0000 −1.0000 1.0000
0.7143 1.0000 2.1429

]
The function z(x) : R → R can be compactly denoted
as z(x) = aTi x + bi, where ai and bi are the i-th el-
ements of vectors [0,−1.6250,−1.000,−0.7143,−2.3214]
and [0,−2.2500,−1.0000, 2.1429, 10.1786], respectively.

For clarity, separate identical translation operations are
applied to {Xi}I5

, κpwa(x) and Pu, Pg and g(x), Pz and
κz(x) in Fig. 4. κz(x) is a curve within Pz , and only when
x ∈ int(X1), the curve remains inside Pz . Furthermore, the
equations ProjR Pz = ProjR Pu and [1, 0]κz(x) = κpwa(x)
hold, as depicted in Fig. 4.

V. GENERALIZATION

In this section, the set Pz and a corresponding continuous
PWA function κz(x) are constructed in a general setting by
relaxing assumption 1. An iterative graph decomposition ap-
proach is used to layer the convex-concave lifting technique
to achieve this goal.

Fig. 4. Example of the solution sought for the pair (Pz , κz) for a scalar
case.

A. Iterative decomposition of the interconnection graph

If Assumption 1 holds for subgraph (N ,E )Nin
, i.e., the

collection {Xi}Nin
is valid for convex-concave liftability,

a convex-concave lifting procedure can be constructed for
{Xi}Nin\{1} to the boundary of the lifting set while leaving
region 1 still as the unconstrained region.

If Assumption 1 doesn’t hold, the basic approach in-
volves dividing subgraph {Xi}Nin

into two new subgraphs,
named{Xi}N 1

bd
(i.e., liftable collection) and {Xi}N 1

in
(i.e.,

unliftable collection), and then repeating the iteration on
{Xi}N c

in
until {Xi}N c

in
= {Xi}{1}. Here, c ∈ N, {Xi}N c

bd

and {Xi}N c
in

are divided from {Xc}N c−1
in

, and specifically,
N 0

in := Nin. The Algorithm 3 summarizes the constructing
of the set Pz up to the validation of the Assumption 1.

The main procedures involve finding a hyperplane Hc

in the 4-th step and achieving the objective by combining
κpwa(x) with several convex-concave lifting functions gj(x),
where j ∈ {0, · · · , c}. While finding an optimal hyperplane
is irrelevant to this study, it should be mentioned that the
decomposition can also be achieved by excluding node 1
and decomposing the graph up to the partition in disjoint
subgraphs. The following subsection presents a generic ap-
proach to deal with step 10.

B. General solution under layered convex-concave liftings

For the j-th convex-concave lifting of the liftable collec-
tion {Xi}N j

in
with j ∈ {0, · · · , c}, we denote the lifting as

gj(x) and the corresponding Pgj similar to (15) and (18):

gj : ∪
∀i∈N j

in

Xi → R,

Pgj ={[xT , zj ]
T |Hzj ,xx+Hzj ,zjzj ≤ bzj}.

Proposition 5. For a continuous PWA function κpwa(x)
defined over a polyhedral partition {Xi}IN

, we have con-
structed set Pu and a sequential convex-concave lifting gj(x)
defined over a collection {Xi}N j

in
with j ∈ {0, · · · , c}.



Algorithm 3 Construction a feasible set Pz for general case.

Input: A continuous PWA function κpwa :
N
∪
i=1

Xi → Rm

and its domain X ⊂ Rn.
Output: A higher-dimensional polytope Pz ⊂ Rn+m+c and

a relevant continuous PWA function κz(x) : X → Rm+c

with c ∈ N.
1: Initialize c = 0.
2: Same steps 1-3 as in Algorithm 2.
3: while {Xi}N c

in
is not convex-concave liftable do

4: Split the graph (N ,E )N c
in\{1} into two subgraphs

by finding a hyperplane Hc:

(N ,E )N c+1
bd

:∀i ∈ N c+1
bd ,Hc ∩ Xi ̸= ∅; (19a)

(N ,E )N c+1
in

:∀i ∈ N c+1
in ,Hc ∩ Xi = ∅. (19b)

5: Update parameters: c = c+ 1.
6: Update the item set: N c

in = N c
in ∪ {1}.

7: Construct a convex-concave lifting function gc(x)
for subgraph (N ,E )N c

in
, ensuring the corresponding

projection ProjRn Pgc = X as defined in equation (15).
8: end while
9: Repeat Step 7.

10: By combining the functions κpwa(x) and gj(x) with
j ∈ {0, · · · , c}, we generate set Pz and define the
appropriate function κz : X → Rm+c.

Polytope Pz ⊂ Rn+m+c satisfies Prop 1–4 in II-C and can
be expressed as:

Pz ={
[
xT , uT , zT

]T ∈ Rn+m+c| subject to:j ∈ {0, · · · , c}
Hu,xx+Hu,uu ≤ bu, Hzj ,xx+Hzj ,zjzj ≤ bzj}

with zj the j-th element of vector z ∈ Rc.

Proof. The proof process is similar to that in Proposition
4.

C. A link with low complexity mpQP alternatives to MPC

This subsection explains constructing an mpQP problem
using Pz and the function κz(x) proposed in the previous
subsection. We also analyze the relationship between the new
mpQP problem and the original problem in (3).

Consider an mpQP problem:

κz(x) =arg min
u,z

f(x, u, z) (20a)

subject to:[xT , uT , zT ]T ∈ Pz, (20b)

where κz(x) and Pz are provided by proposition 5.
Upon comparing problems (3) and (20), the follows hold:
• They share the same domain of parameter x:

ProjRn P = ProjRn Pz = X .

• The first m elements of the optimal solution coincide:

κpwa(x)=
[
Im,0m×(m−1)N

]
κ∗
u(x)=

[
Im,0m×c

]
κz(x).

• Their optimal solutions share the same geometric struc-
tures: the solution for the unconstrained region X1

remains within the feasible domain. In contrast, the
solution for other regions lies on the boundary.

• The variables in problem (3) have a dimension of mN ,
while those in problem (20) have a dimension of m+c.
Typically, we have

mN ≫ m+ c,

indicating that problem (20) is less complex and can be
solved faster online than problem (3).

Remark 7. Designing a suitable cost function f(x, u, z) to
ensure the feasibility of problem (20) is a challenging task
and will be the subject of further studies.

VI. CONCLUSIONS

Starting from the optimal control law obtained by means
of an mpQP problem, an analysis of the polyhedral partition’s
topology has been made to decompose the regions into
the boundary (saturated one) and interior parts. Different
strategies exploiting the convex-concave liftability of the
interior regions’ help replace the interior regions on the
boundary in a higher dimension. The polytope obtained by
successive liftings is one of the most important steps for
building inverse-optimal solutions, as it provides the feasible
domain in terms of linear inequalities. Future work will build
upon this methodology and detail the selection of the optimal
index.
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