
A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Acceleration of contractor algebra on RISCV in
the context of mobile robotic

Filiol Pierre, Jaulin Luc,
Le Lann Jean-Christophe, Bollengier Theotime

June 25, 2023

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Table of contents

1 A bit of context

2 The RiscV standard

3 Interval representation

4 Adding support for xinterval

5 Emulation platform

6 Conclusion

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Interval arithmetic in robotic

Interval analysis is standardized in the IEEE 1788 standard .

Robotic applications using intervals rely on libraries such as :
1 ibex/gaol
2 libieee1788
3 mpfi

Such libraries have flaws
1 Portability issues.
2 Not designed with robotic in mind
3 Lack of documentation

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Interval arithmetic in robotic

Interesting features for a robotic-oriented implementation
Precision is often not the biggest concern in mobile robotic.
However, some other criteria are worth to be optimized :

1 Overall execution speed
2 Portability
3 Guaranteed results (even if pessimistic)
4 Energy efficiency (embedded context).

Hardware implementation can be a solution
This allows to

1 Reach a more accurate bitwise and timing mastery
2 Portable by essence (you provide the coprocessor)
3 Be power efficient

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Interval arithmetic in robotic

Scope of the study
There are several ways to produce hardware accelerators :

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

The RiscV standard

Some key strengths
1 Open specification and standard
2 Modular
3 Extensible
4 Simple (compared to x86/arm/...)
5 Complete software stack (gcc, ...)

Extensibility is very interesting for us
We can insert our interval operations and modify riscv-gcc to use
them.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Riscv modular architecture

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Extending the RiscV standard

RiscV has several advantages in term of extensibility
1 It offers standard extensions to start building your solution
2 By design, a lot of space is available for additional instructions

and extension
3 RiscV gcc compiler can be modified to support new

instructions (strong compiler basis).

The goal is to build a RiscV extension called xinterval
1 It is based on standard extensions I,M,A,F,D
2 It provides instructions for computing with intervals
3 The new instructions can be used in C language

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Why I,M,A,F,D ?

RV32I brings basic integer instructions + integer registers

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Why I,M,A,F,D ?

RV32F and RV32D brings basic floating point instructions
1 arithmetic instructions for float and double
2 special math instructions for float and double
3 conversion instructions
4 memory related instructions

Register configurations
Using I,M,A,F,D provides the following registers :

1 32 registers of size 32 bits for unsigned instructions
2 32 registers of size 64 bits for floating-point instructions

32 bits RiscV allows to have 64 bits long registers.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

How to represent an interval in hardware ?

Intervals are represented using a 64 bits word
They fit inside the 64 bits double registers brought by D extension.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

About bounds encoding and flags

Upper and lower bounds are encoded on 31 bits
This differs from the IEEE-754 standard which uses 32 bits.

1 1 sign bit (same as IEEE-754)
2 7 bits exponent (against 8 in IEEE-754)
3 23 bits mantissa (same as IEEE-754)

Overall precision remain the same but the range of number we can
represent is smaller. This difference is often pointless in robotic.

This allows to define two flags
1 an empty flag (to represent the empty set)
2 a iota flag

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

About the iota flag

In one of our previous work, we highlighted a phenomenon which
happens in most interval solvers.

Let us consider the following set X

X = {(x1, x2) | x2 +
√

x1 + x2 ∈ [1, 2]}. (1)

Let us try to compute an inner and outer approximations of X
using an existing solver (CODAC) :

1 from codac import *
2 from vibes import *
3 X0= IntervalVector ([[-10 ,10] ,[-10 ,10]])
4 f = Function (x1 ,x2 ,x2+sqrt(x1+x2))
5 S= SepFwdBwd (f, Interval (1 ,2))
6 vibes. beginDrawing ()
7 SIVIA(X0 ,S ,0.01)

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

About the iota flag

We obtain the following paving (which is wrong)

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

About the iota flag

Some box are wrongly classified
This happens because contractor-based methods obtain an inner
approximation by considering a contractor for the complentary of
X as

X = {(x1, x2) | x2 +
√

x1 + x2 /∈ [1, 2]}. (2)

whereas it should be

X = {(x1, x2) | x2 +
√

x1 + x2 /∈ [1, 2] or x1 + x2 < 0}. (3)

This what iota flag is meant for
It is used to mark intervals that are victims of this phenomenon
after a chain of forward contractions. Those intervals are then
trapped and handled accordingly during backward contraction.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

About the iota flag

Some box are wrongly classified
This happens because contractor-based methods obtain an inner
approximation by considering a contractor for the complentary of
X as

X = {(x1, x2) | x2 +
√

x1 + x2 /∈ [1, 2]}. (4)

whereas it should be

X = {(x1, x2) | x2 +
√

x1 + x2 /∈ [1, 2] or x1 + x2 < 0}. (5)

This what iota flag is meant for
It is used to mark intervals that are victims of this phenomenon
after a chain of forward contractions. Those intervals are then
trapped and handled accordingly during backward contraction.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

The xinterval custom extension

Overview
1 It requires I,M,A,F,D standard extensions.
2 It implements the interval model detailed previously.
3 It consists of a set of assembly instructions which extend

RiscV standard.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Main instructions of xinterval

Conversion functions
Name Type Effect

itvlcvt.x.inf D,S Set the lower bound of the interval
stored in rd to be the fp value in rs1.

itvlcvt.x.sup D,S Set the upper bound of the interval
stored in rd to be the fp value in rs1.

itvlcvt.x.sup D,S,T Use the fp values in rs1 and rs2 to
build a new interval in rd.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Main instructions of xinterval

Check functions
Name Type Effect

itvlisempty d,S Tells if the interval stored in
rs1 is empty

itvlhasiota d,S Tells if the interval stored
in rs1 is iota-flagged

Set functions
Name Type Effect

itvlinter D,S,T Store in rd the intersection of
the intervals in rs1 and rs2

itvlunion D,S,T Store in rd the union of
the intervals in rs1 and rs2

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Main instructions of xinterval

Forward and backward contractors
Addition Subtraction Multiplication Division

Square root Square Exponential Logarithm
Cosinus Sinus

Using addition forward contractor in assembly
addFwCtc fs2, fs3, fs4

Using addition backward contractor in assembly
addBwCtc1 fs3 fs2, fs3, fs4
addBwCtc2 fs4 fs2, fs3, fs4

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

How to make our new instructions valid in C ?

By default, gcc is totaly ignorant about xinterval
We need to instruct him how to use them. Luckily, this is handled
by the riscv-toolchain.

Solution : Modify the assembler and binutils

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Modifying binutils

Telling the assembler how to handle forward contractors

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Modifying binutils

Now this code is valid in C

1 // inline function to allow the use of xinterval
instruction addfwctc

2 // This instruction add 2 intervals stored in double
registers and stores the result in a double
register

3 inline interval __attribute__ ((always_inline))
_addFwCtc (interval itv1 , interval itv2) {

4 interval result ;
5 asm(" addfwctc %0 ,%1 ,%2" : "=f"(result) : "f"(itv1),

"f"(itv2));
6 return result ;
7 }

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Building an emulator to test everything

We have implemented an emulator to test our model

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

A classic localization problem

Localisation problem using landmarks with known positions
1 We want to estimate the position (x,y) of a robot which

navigates around 3 landmarks with known positions.
2 It periodically receives his distance relative to each landmark

with a given accuracy ϵ.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

A classic localization problem

Localisation problem using landmarks with known positions
1 At each step (x,y) must obey the following constraints :

(x − a1x)2 + (y − a1y)2 ∈ [(d1 − ϵ)2, (d1 + ϵ)2]
(x − a2x)2 + (y − a2y)2 ∈ [(d2 − ϵ)2, (d2 + ϵ)2]
(x − a3x)2 + (y − a3y)2 ∈ [(d3 − ϵ)2, (d3 + ϵ)2]

2 Using properties of forward-backward propagation, we can find
a contractor which computes the set of x and y which meet
those requirements.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Building the application

The compiled code
The code below corresponds to the contractor to one landmark :

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Building the application

Binary dump of the compiled code

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Building the application

The paving obtained from inside the emulator :

(a) Union of contractors (b) Intersection of contractors

Figure: Using contractors to solve a localisation problem

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Building the application

Our emulator allows us to monitor the execution
We can for example :

1 Obtain various metrics (nb of instructions, frequency, ...).
2 Estimate timing and clock cycles.

A bit of context The RiscV standard Interval representation Adding support for xinterval Emulation platform Conclusion

Conclusion

During this presentation we have shown how to :
1 Build a RiscV extension to compute with intervals.
2 Modify the gcc compiler to use it in C.
3 Build an emulator to test and profile our model.
4 Build an run a small robotic application.

	A bit of context
	The RiscV standard
	Interval representation
	Adding support for xinterval
	Emulation platform
	Conclusion

