
HAL Id: hal-04320703
https://hal.science/hal-04320703v1

Submitted on 5 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering Driven Iterated Hybrid Search for Vertex
Bisection Minimization

Yan Jin, Bowen Xiong, Kun He, Jin-Kao Hao, Chu-Min Li, Zhang-Hua Fu

To cite this version:
Yan Jin, Bowen Xiong, Kun He, Jin-Kao Hao, Chu-Min Li, et al.. Clustering Driven Iterated Hybrid
Search for Vertex Bisection Minimization. IEEE Transactions on Computers, 2022, 71, pp.2370 - 2380.
�10.1109/tc.2021.3128504�. �hal-04320703�

https://hal.science/hal-04320703v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 1

Clustering Driven Iterated Hybrid Search for
Vertex Bisection Minimization

Yan Jin, Bowen Xiong, Kun He, Jin-Kao Hao, Chu-Min Li and Zhang-Hua Fu*

Abstract—The Vertex Bisection Minimization Problem (VBMP) is a relevant graph partitioning model with a variety of practical
applications. This work introduces a clustering driven iterated hybrid search algorithm (CLUHS), which is the first approach that applies
clustering to reinforce iterated local search for solving VBMP. The proposed CLUHS uses hierarchical clustering to build an initial
solution, guide local search process and perform search diversification. Experimental studies on 137 benchmark instances show the
high competitiveness of the proposed approach compared to the state-of-the-art methods. In particular, CLUHS finds new
record-breaking solutions for 18 instances.

Index Terms—Vertex bisection, Graph partitioning, Clustering, NP-hard, Local search.

F

1 INTRODUCTION

THE Vertex Bisection Minimization Problem (VBMP) [1]
is to partition the vertices of a simple graph into two

disjoint subsets of approximately equal-size in order to
minimize the number of vertices in one subset adjacent
with at least one vertex in the other subset. VBMP gener-
ally belongs to the family of graph partitioning problems
[2], [3], [4]. It is also related to graph bisection problem
[5], [6], vertex separator problems [7], [8] and the graph
layout problem [9]. Practical applications of VBMP include
route planning [10], very-large-scale-integration circuit de-
sign [11], network communications [12], image processing
[13], and distributed computing [14]. In terms of complexity
theory, VBMP is known to be NP-hard in the general case,
though there are polynomially solvable special cases (e.g.,
trees and hypercubes) [1].

Due to the theoretical and practical importance of VBMP,
a number of algorithms have been proposed for solving this
problem. Exact approaches include branch-and-bound algo-
rithms [15], integer linear programming formulation and
quadratic programming formulation [16], [17], [18]. These
algorithms can find optimal solutions for small graphs,
but meet difficulties in solving large problem instances. In
such cases, heuristics and metaheuristics are typically used
to provide solutions of sufficient quality with reasonable
computing efforts. The memetic algorithm of [19] applies
four construction heuristics for population initialization, a
specific crossover operator for offspring generation, and a

• Y. Jin, B.W. Xiong and K. He are with the School of Computer Science and
Technology, Huazhong University of Science and Technology, No. 1037,
Luoyu Road, 430074, Wuhan, China. (E-mail: yanjin.china@hotmail.com,
jinyan@mail.hust.edu.cn)

• J.K. Hao is with the Department of Computer Science, LERIA, University
of Angers, 2 Boulevard Lavoisier, 49045 Angers, France and the Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France.

• C.M. Li is with the Faculty of Computer Science, MIS, University of
Picardie Jules Verne, 33 Rue St. Leu 80039 Amiens Cdex 01, France.

• * Corresponding author. Z.H. Fu is with the Institute of Robotics and
Intelligent Manufacturing, the Chinese University of Hong Kong, Shen-
zhen, and the Shenzhen Institute of Artificial Intelligence and Robotics for
Society, China.(E-mail: fuzhanghua@cuhk.edu.cn)

IEEE Transactions on Computers, https://doi.org/10.1109/TC.2021.3128504

local search procedure for solution improvement. The vari-
able neighborhood search heuristic of [20] iterates a solution
construction phase (using a simple random method and
two greedy randomized adaptive search methods), and an
improvement phase by means of six local search strategies
based on swap, drop/add and multiple drop/add moves.
The cellular processing heuristic of [21] uses a set of inde-
pendent processing cells to explore different local optima by
a limited-effort heuristic and gather useful information, and
then uses the acquired information to help the processing
cells to jump out local optima traps. The new construc-
tive algorithm of [22] is based on the greedy randomized
adaptive search procedure and generates the solutions very
quickly, which can be embedded in local search algorithms
and memetic algorithms.

Even if important progresses on solution methods for
VBMP have been reached in recent years, research in this
area can be considered to be quite limited compared to
other related graph partitioning problems. Moreover, the
performances of existing VBMP algorithms typically vary
according to the sizes and types of problem instances. In this
work, we aim to advance the state-of-the-art of practically
solving VBMP by introducing the first CLUstering driven
Iterated Hybrid Search (CLUHS) algorithm, which proves
to be highly competitive compared to existing methods. The
main contributions of this work are summarized as follows.

First, the proposed CLUHS algorithm is based on the
original idea of using clusters within its search procedures.
We first introduce a specific similarity metrics to measure
the resemblance between two vertices in line with the
objective function of VBMP, and then apply a hierarchical
clustering algorithm to the vertices of the graph to group
vertices with similar properties in the same clusters. After
obtaining the clusters, the CLUHS algorithm uses them to
guide the construction of its initial solution, constrain its
local search process and perform search diversification.

Second, experimental studies on a set of 137 VBMP
benchmark instances in the literature show that the pro-
posed algorithm can attain the best known results for all
the instances except five ones. In particular, the proposed

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 2

algorithm finds improved solutions (new upper bounds) for
18 instances.

The rest of the paper is organized as follows. The
next section formally introduces related definitions and
notations. Section 3 shows the hierarchical clustering algo-
rithm with a new similarity measure. Section 4 introduces
the proposed CLUHS, including the overall framework,
cluster-based construction procedure, cluster-constrained
local search and cluster-guided perturbation. Section 5
presents computational results and analysis, followed by the
conclusion.

2 PRELIMINARIES

Definitions and notations
Given a simple undirected graph G = (V,E) with a set

V of n vertices and a set E of m edges, we use N(v) to
denote the set of adjacent vertices (also called neighbors)
of vertex v, and N [v] to denote N(v) ∪ {v}. The degree of
vertex v is then given by d(v) = |N(v)|. The Vertex Bisection
Minimization Problem consists in partitioning V into two
disjoint vertex subsets B and B′ of equal sizes when
|V | is even or the sizes differ by 1 when |V | is odd, i.e.,
B∪B′ = V,B∩B′ = ∅, |B| = b|V |/2c, |B′| = d|V |/2e, such
that the cardinality of a subset C (C ⊆ B) is minimized,
where C contains all the vertices in B that are adjacent to at
least one vertex in B′, i.e., ∀v ∈ C,∃u ∈ B′ : u ∈ N(v).

Scoring function
A feasible candidate solution S is any partition of the

vertex set V into two sets B and B′ of approximately equal
size. Its quality is given by the scoring (objective) function
score(S), which counts the number of vertices in C (C ⊆
B) whose vertices are adjacent to at least one vertex in B′.
Formally, for a vertex v ∈ C , let σB(v) denote |N(v) ∩ B|
and σB′(v) denote |N(v) ∩B′|. Then score(S) is given by:

score(S) = |{v ∈ C : σB′(v) > 0}|. (1)

v10v10

v1v1 v2v2

v4v4
v3v3

v6v6

v7v7v5v5

v8v8 v9v9

v1 v2

v4
v3

v6

v7v5

v8 v9 v10

v1 v2

v4
v3

v6

v7v5

v8 v9

Fig. 1. An example graph with 10 vertices.

Given two candidate solutions S1 and S2, S1 is better
than S2 if and only if score(S1) < score(S2). For example,
Figure 1 illustrates a simple graph with 10 vertices and
13 edges, while Figure 2 shows its two feasible solutions.
Solution (b) is better than solution (a) since the score of (b) is
smaller than the score of (a) (2 < 3).

v10v10

v1v1 v2v2

v4v4v3v3

v6v6

v7v7

v5v5

v8v8 v9v9

v1 v2

v4v3

v6

v7

v5

v8 v9

B B’

（a）

v10v10

v1v1v2v2 v4v4

v3v3

v6v6

v7v7

v5v5

v8v8 v9v9

v1v2 v4

v3

v6

v7

v5

v8 v9

B B’

（b）

Fig. 2. Two feasible solutions: (b) is better than (a).

3 HIERARCHICAL CLUSTERING WITH SIMILARITY

Hierarchical clustering is an unsupervised machine learning
technique which builds, from a set of given objects, a tree-
like hierarchy of clusters called dendrogram on the basis of
a similarity metric [23], [24]. According to the hierarchy of
clusters being formed in a merging (bottom-up) or split-
ting (top-down) way, hierarchical clustering methods are
divided into agglomerative clustering and divisive cluster-
ing. For the purpose of this work, we adopt agglomerative
clustering to cluster the vertices in a graph.

A clustering algorithm needs a similarity measure to
quantify the resemblance of the objects. In the context of
solving VBMP, we design the following vertex similarity
metric, which relies on the shared neighbors of two vertices.
Let A denote the adjacency matrix of a graph G = (V,E)
and I denote the identity matrix of order |V | × |V |. The
similarity matrix M is calculated by M = (A+ I) · (A+ I),
i.e., ∀vi, vj ∈ V, i 6= j,Mij = |N [vi] ∩ N [vj]|. This metric
considers that two vertices are more (less) similar if they
share more (less) common adjacent vertices. For the studied
VBMP problem, similar vertices will be grouped in the same
cluster and placed in one subset of a vertex bisection to
favor the minimization of the objective function. In Figure
1, the element M13 of the similarity matrix is equal to
|N [v1] ∩N [v3]| = 5.

To reinforce that any two vertices in the same cluster
have a high similarity, we use the complete linkage [25] to
measure the similarity between two clusters. Note that we
apply an agglomerative algorithm to build an incomplete
tree, which means the clustering process will stop and
return the clustering result Π when the maximum similarity
between clusters goes below a threshold τ .

Figure 3 illustrates the hierarchical tree produced
by the agglomerative clustering on the graph of Fig-
ure 1 based on the above similarity metric. Suppose
that the similarity threshold τ is set to 2, an incom-
plete tree is returned with the clustering result Π =
{{v1, v2, v3, v6}, {v4, v10}, {v5, v8}, {v7}, {v9}}.

4 ITERATED HYBRID SEARCH ALGORITHM

Our CLUstering driven iterated Hybrid Search (CLUHS) al-
gorithm relies on a joint use of the popular hierarchical
clustering technique and the powerful iterated local search

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 3

Fig. 3. Hierarchical clustering for the example graph.

framework. A key feature of our approach is to tackle VBMP
with a set of operators guided by vertex clusters. Traditional
local search algorithms for VBMP typically perform opera-
tions on vertices such as swap, drop and add. However,
some vertices could be revealed to be closely related to each
other by a hierarchical clustering and this information can
be beneficially exploited by the search algorithm. This is the
general idea in CLUHS, in which the search operators are
guided by the vertex clustering result of the graph.

As shown in Algorithm 1, CLUHS starts with a hier-
archical clustering step to obtain a clustering Π typically
composed of multiple vertex clusters (line 3). Based on these
clusters, CLUHS constructs a feasible solution S0 composed
of two subsets B and B′ by merging clusters and adjusting
the sizes of the subsets (line 4). Then, starting from S0,
the algorithm performs local optimization to find solutions
of better quality (lines 6–11), which repeatedly alternates
between the cluster-constrained local search procedure (line
7) and the cluster-guided perturbation procedure (line 10).
The algorithm stops when the predefined maximum compu-
tation time TMAX is reached and returns the best solution
S∗ found during the search.

4.1 Cluster-based construction procedure

CLUHS builds an initial solution S0 = (B,B′) based on
the clustering result Π provided by hierarchical clustering.
The cluster-based construction procedure is composed of
two steps: a greedy construction phase to create two initial
subsets B and B′ and an adjustment phase to establish
the feasibility of the solution (see Algorithm 2). The greedy
construction phase starts with B = ∅ and B′ = V (line 3).
Then, it performs the following operations (lines 4 – 14).
Determine a vertex v in B′ with the minimum degree and
further find the cluster Πa that contains v (lines 5, 6). Move
the vertices in cluster Πa and their adjacent vertices in B′

fromB′ toB. These operations are repeated untilB contains
bn/2c vertices. This procedure favors grouping vertices of
the same cluster to the same subset and helps to minimize
the objective function of the initial solution.

Algorithm 1: Scheme of CLUHS for VBMP.

Input: A graph G = (V,E)
Output: The best solution found S∗

1 CLUHS(G)
2 begin
3 Π← HClustering(G)
4 S0 ← Construction(Π) // see Section 4.1

5 S ← S0, S
∗ ← S0

6 repeat
7 S′ ← CCLS(S) // Cluster- constrained

local search, see Section 4.2

8 if S′ is better than S∗ then
9 S∗ ← S′

10 S ← Perturbation(S′) // see Section 4.3

11 until Time > TMAX

12 return S∗

If moving the vertices of Πa to B leads to |B| > bn/2c,
the solution will become infeasible. In this case, Πa is not
added to B (lines 7, 8), the cluster-based construction proce-
dure finishes the greedy construction phase and switches
to the adjustment phase to move vertices from B′ to B
one by one until a feasible solution S0 (i.e., with two
approximately equal-sized subsets) is reached (lines 15 – 18).
The adjustment phase repetitively selects a vertex v with
the maximum σB(v) in B′ to optimize the initial solution,
and moves v from B′ to B until B contains bn/2c vertices.
Note that the vertices of some clusters are dispatched into
B and B′ during the adjustment phase. This cluster-based
construction procedure generally provides an initial feasible
solution S0 of good quality that serves as the input for
the iterated local search procedure for further improvement.
The complexity of the construction procedure is O(n2).

4.2 Cluster-constrained local search
4.2.1 General working scheme
The key idea of the cluster-constrained local search (CCLS)
is to effectively explore the search space of bisections by the
cluster constrained 1-move operator (see the next section).
For the obtained initial solution S0 = (B,B′), if all vertices
of a cluster Πa belong to one subset (B or B′), the cluster Πa

has the “locked” status and the cluster Πa with its vertices
will not take part in the following local search. Otherwise,
if the vertices of cluster Πa are dispatched into two subsets,
Πa has the “unlocked” status and its vertices are eligible for
1-move operations.

The general CCLS procedure is described in Algorithm
3. The search of CCLS is constrained by the clusters and
focuses on moving the vertices of “unlocked” clusters. This
constraint has an immediate consequence of effectively re-
ducing its search space. Basically, from an initial solution S0,
CCLS finds all the clusters with the “unlocked” status (line
6). It selects a vertex v in the subset B with the best move
gain based on the fast evaluation function (see below) and v
is not in the tabu list (line 7). Then, CCLS applies the 1-move
operator to displace vertex v fromB toB′, adds v to the tabu
list and updates the related move gains (lines 8–10). At this
point, the new solution S′ becomes infeasible (unbalanced).

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 4

Algorithm 2: Cluster-based construction.
Input: A hierarchical clustering result Π
Output: A feasible initial solution S0

1 Construction(Π)
2 begin
3 B ← ∅, B′ ← V

// Greedy construction phase

4 while |B| < bn/2c do
5 v = arg min

v∈B′
d(v)

6 Find the cluster Πa that contains v
7 if |Πa ∩B′|+ |B| > bn/2c then
8 break

9 else
10 B ← B ∪ (Πa ∩B′)
11 B′ ← B′\(Πa ∩B′)
12 for each neighbor u of each vertex in Πa do
13 if u ∈ B′ and |B| < bn/2c then
14 Move u from B′ to B

// Adjustment phase

15 while |B| < bn/2c do
16 v = arg max

v∈B′
σB(v)

17 B ← B ∪ {v}
18 B′ ← B′\{v}
19 return S0 = (B,B′)

Then, CCLS selects a vertex u in the larger subset B′ with
the best move gain and u is not in the tabu list, applies
the 1-move operator (see below) to move u from B′ to B,
adds u to the tabu list and updates the related move gains
(lines 11–14). The two subsets B and B′ are now recovered
to be of approximately equal size, and the resulting solution
becomes the new current S. Finally, Sb is used to record the
best solution found during the CCLS procedure (line 16).
CCLS stops and returns the best solution Sb found when Sb

cannot be improved for Ψ consecutive solution transitions.

4.2.2 Move operators and neighborhood
CCLS explores candidate solutions of a cluster-constrained
search space by making transitions from the current solution
to a neighboring solution. Each transition is performed
with the 1-move operator. Formally, let S = (B,B′) be
the current solution, v be a vertex belonging to a cluster
with the “unlocked” status and X = B or B′. The 1-
move(X, v) operation displaces vertex v from the subsetX to
its opposite subset (see examples in Figures 4 and 5). We use
S′ = S ⊕ 1-move(X, v) to denote the neighboring solution
S′ obtained by applying 1-move to S.

Let η be the number of vertices appearing in any cluster
with the “unlocked” status and these vertices are not in
the tabu list. Then there are η possible neighboring so-
lutions. After a 1-move operation involving vertex v, the
vertex is added to the tabu list T and forbidden to join its
original subset during the next tt (randomly selected from
{1,2,. . . ,η}) iterations. Note that, CLUHS always performs
two consecutive applications of the 1-move operator to main-
tain the feasibility of new solutions.

Algorithm 3: Cluster-constrained local search.

Input: A solution S0 = (B,B′)
Output: A local optimum solution Sb = (B,B′)

1 CCLS(S0)
2 begin
3 ω = 0
4 Sb ← S0, S ← S0

5 while ω < Ψ do
6 Find all “unlocked” clusters {Πi}
7 Select a vertex v with the best move gain

from clusters {Πi} in the subset B and v is
not in tabu list T

8 S′ = S⊕ 1-move(S, v)
9 Add v to tabu list T

10 Update move gains // Move gains are
recorded in a bucket data
structure

11 Select a vertex u with the best move gain
from clusters {Πi} in subset B′ and u is not
in tabu list T

12 S = S′⊕ 1-move(S′, u)
13 Add u to tabu list T
14 Update move gains
15 if score(S) < score(Sb) then
16 Sb ← S
17 ω = 0

18 else
19 ω = ω + 1

20 return Sb

v10v10

v1v1 v2v2

v4v4v3v3

v6v6

v7v7

v5v5

v8v8 v9v9

v1 v2

v4v3

v6

v7

v5

v8 v9

B B’

v10

v1 v2

v4v3

v6

v7

v5

v8 v9

B B’

v10v10

v1v1 v2v2

v4v4v3v3

v6v6

v7v7

v5v5

v8v8 v9v9

v1 v2

v4v3

v6

v7

v5

v8 v9

B B’

v10

v1 v2

v4v3

v6

v7

v5

v8 v9

B B’

Fig. 4. An example of 1-move(B, v10) operation.

4.2.3 Fast evaluation function
To ensure the computational efficiency of the algorithm, it
is critical to be able to identify quickly the most favorable
1-move operation for solution transition at each iteration.
For this purpose, we adopt a streamlining technique which
enables a fast evaluation of the objective function value of a
neighboring solution without recalculating it from scratch.
This technique is inspired by [6] and based on bucket
sorting.

For a 1-move(X, v) operation applied to S = (B,B′),
we define the move gain ∆(X, v) as the decrease in the
objective value when S is changed into the neighboring
solution S′, i.e., ∆(X, v) = score(S) − score(S′), where

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 5

v10v10

v1v1 v2v2

v4v4v3v3

v6v6

v7v7

v5v5

v8v8 v9v9

v1 v2

v4v3

v6

v7

v5

v8 v9

B B’

v10

v1 v2

v4v3

v6

v7

v5

v8 v9

B B’

v10v10

v1v1v2v2 v4v4

v3v3

v6v6

v7v7

v5v5

v8v8 v9v9

v1v2 v4

v3

v6

v7

v5

v8 v9

B B’

v10

v1v2 v4

v3

v6

v7

v5

v8 v9

B B’

Fig. 5. An example of 1-move(B′, v2) operation.

score is the scoring function defined in Eq. (1). We illustrate
the calculation of the move gain ∆(B, v) of 1-move(B, v) as
follows (∆(B′, v) is computed in the same way). ∆(B, v) is
composed of two values: δ+(v) and δ−(v). The value δ+(v)
represents the increase in the objective function value if v is
moved from B to B′, and is obtained in two steps: 1) find
all the adjacent vertices N(v) of v in B; 2) calculate δ+(v) as
the number of vertices u in N(v)∩B that are not adjacent to
any vertex in B′ (these vertices will have an adjacent vertex
in B′ if v is moved into B′). The value δ−(v) represents
the decrease in objective function value if v is moved from
B to B′. If v has adjacent vertices in B′, δ−(v) is 1 (v will
no longer be counted in the objective function if it is moved
into B′), otherwise, δ−(v) is 0. To sum, ∆(B, v) is computed
as follows.

∆(B, v) = δ−(v)− δ+(v) (2)

δ+(v) = |{u ∈ N(v) ∩B : σB′(u) = 0}| (3)

δ−(v) = 1 if σB′(v) > 0; 0 otherwise (4)

For example, given the solution S in Figure 4 (left graph),
and applying 1-move(B, v10) to S leads to the neighboring
solution shown in the right graph of Figure 4. ∆(B, v10)
is given by ∆(B, v10) = δ−(v10) − δ+(v10) = 1 − 0 = 1,
indicating that this 1-move(B, v10) leads to a neighboring
solution of better quality with an objective gain of 1.

Each 1-move(X, v) operation involves searching for the
vertex v with the best move gain, recomputing the move
gains for the affected vertices and updating the bucket
structure. This structure always keeps the vertices ordered
by their move gains in increasing order such that the most
favorable vertex can be quickly identified and the unnec-
essary search for the best move is avoided. Moreover, once
1-move(X, v) is performed, it is necessary to update σB and
σB′ for each vertex u ∈ N(v), as well as to update the move
gain for each vertex u′ ∈ N [u] when σB′ of u changes. The
vertex with the best move gain can be found in constant
time O(1) and the complexity of recomputing move gains is
in linear time O(n).

Another commonly used operator for the graph bisection
problems in the literature is the swap operator [5], [6], [26],
which exchanges a pair of vertices that belong to two differ-
ent subsets and leads to a neighborhood of size O(n2). Since

the best swap should be chosen from n2 pairs of vertices in
every step, it is more challenging to apply the swap operator
while keeping fast evaluation of operation gains. However,
the potential of the swap operator is presumably greater than
the 1-move operator. We believe that applying the cluster
guided approach to design a fast evaluation function for the
swap operator deserves future study.

4.3 Cluster-guided perturbation
The above local search procedure is able to visit differ-
ent local optimal solutions by avoiding short term cycles
with the tabu list. Still the search may get stuck in deep
local optima traps. This happens when the best solution
Sb cannot be improved for Ψ consecutive iterations. To
enable the algorithm to continue its search, CLUHS applies
a cluster-guided perturbation procedure to move the search
to unexplored regions.

As presented in Algorithm 4, the cluster-guided pertur-
bation first picks an “unlocked” cluster ΠU at random (line
3). Then, it selects randomly a “locked” cluster ΠB from B
with probability ρB

ρB+1 and changes its status from “locked”
to “unlocked”, where ρB counts the number of “locked”
clusters of B. Similarly, a “locked” cluster ΠB′ from B′ is
selected randomly and its status is changed to “unlocked”
(lines 4 –6). Note that locking clusters allows to intensify
the search in more constrained and promising space, but
can make the search trapped in local optima. However,
perturbation procedure needs to diversify the search, which
is why it randomly selects a locked cluster in B and a
locked cluster in B and unlocks them. Finally, we group
the vertices of ΠU into the same subset (chosen between B
and B′ at random) and then change the status of ΠU from
“unlocked” to “locked” (lines 7–12). To ensure a balanced
partition, when a vertex of ΠU is moved from one subset
to the other subset (say from B to B′), a vertex from an
“unlocked” cluster in B′ is randomly selected and moved
from B′ to B. After the perturbation procedure, CLUHS
returns to the CCLS procedure with the perturbed solution
as its new starting solution.

5 EXPERIMENTS

In this section, we carry out experiments to evaluate the
proposed CLUHS algorithm on 137 Harwell-Boeing Sparse
Matrix Collection instances1 which are commonly used for
testing VBMP algorithms. These instances come from vari-
ous sources and have quite different structures and scales.

CLUHS was programmed in C++ and compiled by g++ -
O3. All the experiments were conducted on a computer with
an Intel Core i7-8750H processor (2.2GHz and 32GB RAM)
running Ubuntu 18.04. Due to the stochastic characteristic of
CLUHS, each instance was independently solved 10 times
with different random seeds. The timeout limit TMAX per
run was set to 100 seconds for the tested graphs. CLUHS
requires two main parameters τ and Ψ. Recall that τ is the
similarity threshold used in hierarchical clustering and is set
to be the maximum similarity of all vertex pairs × 0.2, i.e.,
max(Mij)× 0.2, i, j = 1, . . . , n. If the obtained τ is smaller
than 2, then τ = 2. If it is larger than 5, then τ = 5. The Ψ

1. https://goo.gl/NmX2yq

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 6

Algorithm 4: Cluster-guided perturbation.

Input: A solution S = (B,B′)
Output: A perturbed solution S′ = (B,B′).

1 Perturbation(S)
2 begin
3 ΠU ← Randomly select an “unlocked” cluster
4 Let ρB (ρB′) be the number of “locked” clusters

of B (B′)
5 Randomly select a “locked” cluster ΠB (ΠB′)

from B (B′) with probability ρB
ρB+1 (ρB′

ρB′+1)
6 Change the status of ΠB and ΠB′ to “unlocked”
7 Randomly select a subset X in {B,B′} and let Y

be the other subset
8 for each vertex v ∈ ΠU and v ∈ X do
9 Move v from X to the other subset Y

10 Randomly select an “unlocked” cluster ΠY

from Y , and a vertex u from ΠY

11 Move u from Y to X

12 Change the status of ΠU to “locked”
13 return S′ = (B,B′)

is the maximum number of non-improving moves for CCLS
and is set to be 250. In order to identify an appropriate value
for a given parameter, we varied its values within a reason-
able range (τ = max(Mij) × α, α ∈ [0.1, 0.2, 0.3, 0.4, 0.5],
Ψ ∈ [150, 200, 250, 300]) and compared their performances.
For the experiment on parameter setting, we used a random
sample of 20 benchmark instances.

5.1 Comparison with the leading algorithms
To assess the proposed algorithm, we compare CLUHS
with the five leading algorithms: CVBP [22], AMAGP [19],
MAVBMP [19], CPA-MA [21], and VNS [20], which together
hold the best known results for the 137 benchmark in-
stances. CVBP was run on a computer with an Intel Core
i7 − 7500 CPU (2.7 GHz and 32GB RAM) and terminated
when the number of vertices in B is dn/2e. AMAGP and
MAVBMP were performed on a Dual Xeon, 6 core each
machine with 24GB RAM and terminated when the number
of generations is 200. CPA-MA was implemented in C++
and run on a computer with an Intel Core i5 processor
(2.3GHz and 4GB RAM), and used the same timeout limit of
100 seconds as the stopping condition. We ran the VNS code
(kindly shared with us by the authors) on our computer
with the same timeout limit (100 seconds) used by CLUHS.

Table 1 and 2 present the computational results of
CLUHS in comparison with those of the reference algo-
rithms (CVBP, AMAGP, MAVBMP, CPA-MA and VNS) on a
total of 137 benchmark instances. The 74 instances of Table
1 have less than 500 vertices, while the 63 instances of Table
2 have more than 500 vertices. Column 2-5 give the best
results obtained by CVBP, AMAGP, MAVBMP and CPA-
MA respectively. These results are directly extracted from
their corresponding papers, CVBP, AMAGP and MAVBMP
only report results on a subset of the considered 137 in-
stances. The following columns give the detailed results
of VNS (columns 6–10) and CLUHS (columns 11–15): the
best scoring (objective) function value score∗, the average

best scoring function value Avg., the best running time t∗

to reach the best objective value score∗ (in seconds), the
average running time tavg to reach score∗ across each of
the 10 runs (in seconds) and the successful runs Suc for
reaching score∗ over the 10 independent runs. The slash ‘/’
symbol indicates that the given reference algorithm did not
report results for the given test instance.

Furthermore, we summarize the comparative results
between CLUHS and each reference algorithm in Table 3.
Column 1 gives the pairs of two compared algorithms,
column 2-4 show the number of instances for which CLUHS
obtains a better, equal and worse result according to the
score∗ indicator. The last column gives the p-values from the
Wilcoxon signed-rank test, which indicates whether there
exists a statistically significant difference in performance
between CLUHS and the reference algorithms. In addition,
considering the different computing platforms of the ref-
erence algorithms other than VNS, we halved the timeout
limit by 50 seconds and included the comparison numbers
in parentheses in Column 2-5.

From Table 1 and 2, one notices that CLUHS obtains
best solutions of equal or better quality compared to the
five reference algorithms for all the tested instances except
5 ones (in italic). Moreover, CLUHS improves the best
known results for 6 out of 74 instances with less than 500
vertices, and 12 out of 63 instances with more than 500
vertices (in bold). This indicates that CLUHS is particularly
suitable for solving large graphs, although it also performs
very well on small graphs. Moreover, CLUHS obtains better
average results for 47 instances, equal average results for 77
instances and worse average results for 13 ones compared
to VNS. Besides, an interesting observation is that CLUHS
substantially improves the best solutions of the reference
algorithms. This is especially true for mbeacxc, mbeaflw
and most improved instances with more than 500 vertices.
From Table 3, we can observe that CLUHS performs the
best in terms of the objective values (score∗). Even if the
timeout limit is reduced by half, CLUHS performs better
than CVBP, AMAGP, MAVBMP and CPA-MA. From the p-
value, the statistical test reveals a significant difference in
performance between CLUHS and each reference algorithm
(p-value ≤ 0.05), which also shows the efficiency of the
proposed CLUHS.

This experiment confirms the high competitiveness of
our CLUHS algorithm compared to the leading VBMP
algorithms. The improved new upper bounds for the 18
instances are valuable references for future research on the
problem.

5.2 Analysis of the cluster guided strategy

The proposed CLUHS algorithm specifically exploits vertex
cluster information from hierarchical clustering within its
construction and search components. In this subsection, we
report additional experiments to analyze the impacts of
the cluster-based construction and cluster guided search
strategy on the performance of CLUHS.

First, we compare the cluster-based construction with
the following greedy construction. It starts with B′ = V
and B = ∅ and selects a vertex v in B′ with the minimum
degree to move to B. This operation is repeated until B

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 7

TABLE 1
Comparison of CLUHS against the most recent VBMP algorithms on 74 instances with less than 500 vertices.

Instance CVBP AMAGP MAVBMP CPA VNS CLUHS
-MA score∗ Avg. t∗ tavg Suc score∗ Avg. t∗ tavg Suc

494 bus 26 / / 9 6 6 2.72 23.65 10/10 6 6 3.89 7.90 10/10
arc130 8 15 8 8 8 8 0.02 0.07 10/10 8 8 0.00 0.00 10/10
ash85 9 7 7 7 7 7 0.00 0.01 10/10 7 7 0.00 0.00 10/10
ash292 / / / 18 9 9.3 0.08 5.90 7/10 9 9 0.03 0.34 10/10
bcspwr01 5 3 3 3 3 3 0.00 0.00 10/10 3 3 0.00 0.00 10/10
bcspwr02 3 2 2 2 2 2 0.00 0.02 10/10 2 2 0.00 0.00 10/10
bcspwr03 8 6 5 5 4 4 0.02 0.42 10/10 4 4 0.01 0.02 10/10
bcspwr04 32 / / 14 7 7 1.28 20.39 10/10 7 7 0.21 4.16 10/10
bcspwr05 33 / / 14 7 7 1.50 6.39 10/10 7 7 0.12 1.06 10/10
bcsstk01 12 / / 12 12 12 0.00 0.01 10/10 12 12 0.00 0.00 10/10
bcsstk04 24 / / 24 24 24 0.10 0.19 10/10 24 24 0.00 0.01 10/10
bcsstk05 17 / / 16 16 16 0.06 0.10 10/10 15 15 0.01 0.05 10/10
bcsstk06 68 / / 36 36 36 1.25 34.49 10/10 36 36 0.06 2.85 10/10
bcsstk07 / / / 36 36 36 1.03 24.66 10/10 36 36 0.08 1.38 10/10
bcsstk20 / / / 8 7 7.4 4.80 14.63 9/10 10 14.4 48.05 57.65 2/10
bcsstk22 6 4 5 4 4 4 0.02 0.05 10/10 4 4 0.01 0.01 10/10
bcsstm07 / / / 36 36 37 0.63 48.23 6/10 36 36 0.09 1.33 10/10
can 144 6 6 6 6 6 6 0.03 0.11 10/10 6 6 0.00 0.01 10/10
can 161 16 22 24 16 16 16 0.11 2.21 10/10 16 16 0.01 0.06 10/10
can 292 27 / / 25 18 18 0.25 5.28 10/10 18 18 0.03 0.06 10/10
can 445 53 / / 44 38 39.6 4.32 18.45 2/10 38 38 0.12 2.96 10/10
curtis54 7 6 5 4 4 4 0.00 0.03 10/10 4 4 0.00 0.00 10/10
dwt 209 27 / / 15 15 15 0.03 5.90 10/10 15 15 0.02 0.06 10/10
dwt 221 7 / / 8 8 8.2 0.09 28.83 8/10 8 8 0.01 0.15 10/10
dwt 234 9 5 4 4 4 4 0.01 0.02 10/10 8 8 0.00 0.00 10/10
dwt 245 21 / / 11 8 8.7 1.33 0.61 3/10 8 8.7 7.50 5.42 3/10
dwt 310 8 / / 17 8 8 0.06 0.17 10/10 8 8 0.02 0.03 10/10
dwt 361 14 / / 14 14 14 0.05 0.14 10/10 14 14 0.03 0.03 10/10
dwt 419 24 / / 18 16 16 0.25 1.25 10/10 16 16 0.05 0.09 10/10
fs 183 1 / / / 20 15 15 0.15 1.06 10/10 15 15 0.08 0.47 10/10
fs 183 3 / / / 20 15 15 0.20 0.83 10/10 15 15 0.05 0.26 10/10
fs 183 4 / / / 20 15 15 0.17 0.51 10/10 15 15 0.06 0.37 10/10
fs 183 6 / / / 20 15 15 0.21 0.59 10/10 15 15 0.05 0.45 10/10
gent113 21 21 19 13 13 13 0.03 0.41 10/10 13 13 0.00 0.01 10/10
gre 115 22 22 20 18 18 18 0.01 0.04 10/10 18 18 0.00 0.01 10/10
gre 185 24 21 20 20 20 20 0.01 0.14 10/10 20 20 0.01 0.01 10/10
gre 343 / / / 28 28 28 0.04 0.13 10/10 28 28 0.03 0.04 10/10
gre 216a / / / 21 21 21 0.02 0.05 10/10 21 21 0.01 0.01 10/10
gre 216b / / / 21 21 21 0.03 0.05 10/10 21 21 0.01 0.01 10/10
hor 131 / / / 33 33 33.3 0.08 8.38 7/10 33 33.7 0.05 7.02 3/10
ibm32 / / / 9 9 9 0.00 0.01 10/10 9 9 0.00 0.00 10/10
impcol a / / / 20 20 20 0.02 10.84 10/10 20 20 0.01 3.48 10/10
impcol b 19 18 17 15 15 15 0.00 0.01 10/10 15 15 0.00 0.00 10/10
impcol c 22 29 23 21 21 21 0.03 0.14 10/10 21 21 0.00 0.01 10/10
impcol d / / / 18 17 17.5 0.15 1.44 5/10 17 17 0.03 0.05 10/10
impcol e / / / 31 30 30 0.03 3.74 10/10 30 30 0.01 0.01 10/10
lns 131 16 14 11 12 11 11 0.06 0.20 10/10 11 11 0.01 0.03 10/10
lund a / / / 21 20 20 0.08 0.51 10/10 20 20 0.01 0.05 10/10
lund b / / / 21 20 20 0.21 3.37 10/10 20 20 0.00 0.04 10/10
mbeacxc / / / 210 206 207.3 35.66 34.04 2/10 187 187.1 4.23 32.44 9/10
mbeaflw / / / 210 206 208.5 45.76 38.87 1/10 187 187 5.71 28.95 10/10
mbeause / / / 182 199 201.1 16.18 13.05 1/10 178 178 0.19 3.52 10/10
mcca / / / 20 18 18 0.18 0.22 10/10 18 18 0.01 0.03 10/10
nnc261 / / / 12 11 11 0.53 5.74 10/10 11 11 0.02 0.53 10/10
nos1 / 3 3 3 3 3 0.03 0.19 10/10 3 3 0.01 0.08 10/10
nos4 10 8 7 7 7 7 0.00 0.08 10/10 7 7 0.00 0.01 10/10
plat362 44 / / 27 27 27.1 0.50 13.33 9/10 27 27 0.04 0.10 10/10
plskz362 / / / 17 10 10 0.47 1.63 10/10 10 10 0.03 0.07 10/10
pores 1 / / / 7 7 7 0.00 0.00 10/10 7 7 0.00 0.00 10/10
pores 3 / / / 12 12 12 0.77 6.86 10/10 12 12 0.07 0.24 10/10
saylr1 / / / 14 14 14 0.03 0.10 10/10 14 15.2 0.00 0.00 8/10
steam1 / / / 42 39 39 0.16 0.77 10/10 39 39 0.01 0.02 10/10
steam3 4 4 4 4 4 4 0.02 0.06 10/10 4 4 0.00 0.00 10/10
str 0 / / / 88 81 84 24.20 23.91 1/10 81 81.2 2.59 26.55 8/10
str 200 / / / 99 95 96.4 6.93 14.70 1/10 95 95 4.66 22.91 10/10
str 600 / / / 107 104 104.4 3.19 21.17 6/10 102 102.6 35.36 48.69 6/10
west0132 26 29 22 19 18 18 0.01 0.31 10/10 18 18 0.00 0.01 10/10
west0156 30 35 35 26 26 26 0.02 0.29 10/10 26 26 0.03 0.09 10/10
west0167 19 25 32 19 19 19 0.01 0.47 10/10 19 19 0.00 0.06 10/10
west0381 / / / 116 111 112.2 2.84 11.48 2/10 110 110.5 3.62 15.99 5/10
west0479 / / / 80 75 76.1 6.95 24.39 2/10 75 75 0.49 2.56 10/10
west0497 / / / 51 44 46.3 56.92 37.56 4/10 44 44.8 3.14 15.35 2/10
will57 5 4 4 3 3 3 0.00 0.01 10/10 3 3 0.00 0.00 10/10
will199 62 72 65 54 52 52 0.38 14.42 10/10 52 52 0.01 0.04 10/10

contains bn/2c vertices. For this comparison, we used the
63 large benchmark graphs with more than 500 vertices. The
computational results show that the cluster-based construc-
tion obtains initial solutions of better and worse quality for
42 and 21 instances respectively compared to the greedy
construction, which shows the benefit of the cluster-based
construction. However, one observes that there are large
gaps between the initial solution and the best solution found
by CLUHS. Hence, the following cluster-constrained local
search is more critical to the performance of CLUHS.

Then, we investigate the influence of this cluster guided

search strategy by comparing CLUHS with a CLUHS vari-
ant (denoted as TS) where the main cluster guided com-
ponents are disabled and replaced by conventional com-
ponents. Specifically, TS applies, instead of the cluster-
constrained 1-move and cluster-guided perturbation, the
classical 1-move operator for its local search and a random
perturbation for diversification, in which the search space
is not constrained by the clusters and all vertices in B and
B′ should be considered at each step. TS shares the other
components of CLUHS such as the tabu list and the fast
move gain evaluations.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 8

TABLE 2
Comparison of CLUHS against the most recent VBMP algorithms on 63 instances with more than 500 vertices.

Instance CVBP AMAGP MAVBMP CPA VNS CLUHS
-MA score∗ Avg. t∗ tavg Suc score∗ Avg. t∗ tavg Suc

685 bus 54 / / 19 8 9.6 7.95 33.73 2/10 8 8.6 0.39 10.82 5/10
bcsstk08 / / / 70 60 62 5.33 31.24 5/10 60 61.5 1.45 5.17 5/10
bcsstk09 / / / 73 61 61 7.79 24.69 10/10 61 61 0.57 1.04 10/10
bcsstk11 / / / 48 102 138.3 92.09 88.35 1/10 36 36 1.13 6.09 10/10
bcsstk12 / / / 48 103 151.3 82.13 84.84 1/10 36 36 1.31 8.12 10/10
bcsstk19 / / / 4 4 7.1 5.93 35.61 8/10 4 4 2.68 20.04 10/10
bcsstk27 / / / 41 367 487.1 98.02 95.18 1/10 41 42.6 2.16 34.17 8/10
bcsstm27 / / / 41 413 490.7 98.71 95.91 1/10 41 41.8 2.06 17.03 8/10
blckhole / / / 63 62 62.9 65.20 31.99 1/10 61 61.8 4.93 23.12 5/10
bp 0 / / / 178 154 156.8 89.94 27.40 1/10 153 153.8 0.53 37.00 3/10
bp 200 / / / 191 184 185.6 10.82 26.78 4/10 175 175.9 20.71 49.59 2/10
bp 400 / / / 208 190 196.1 13.67 15.22 2/10 184 185 17.19 32.10 1/10
bp 600 / / / 211 195 201.5 30.99 31.48 1/10 195 197 7.62 28.46 1/10
bp 800 / / / 218 202 205.6 78.55 33.87 1/10 199 199.6 7.04 27.34 4/10
bp 1000 / / / 220 207 210 27.19 44.10 1/10 203 204.2 19.54 31.96 1/10
bp 1200 / / / 222 210 216.7 68.42 34.97 1/10 207 208.9 9.08 23.12 1/10
bp 1400 / / / 226 213 218.7 29.55 38.66 1/10 211 211.4 25.64 35.41 6/10
bp 1600 / / / 230 213 217.8 99.78 37.64 1/10 211 211.9 18.93 38.06 2/10
can 715 / 50 36 36 35 36.9 7.43 34.02 7/10 35 35.2 1.03 17.13 9/10
can 838 / / / 41 34 35 22.27 28.28 4/10 34 34.7 45.26 58.08 3/10
can 1054 / / / 45 28 29.4 39.00 72.68 6/10 32 32.5 11.94 32.12 5/10
can 1072 / / / 56 30 37 32.87 62.10 3/10 30 31 28.18 49.08 4/10
dwt 503 53 / / 37 26 32.3 1.92 22.07 4/10 26 26 0.11 2.89 10/10
dwt 592 29 / / 25 22 22.4 1.00 3.28 8/10 22 22 0.18 1.79 10/10
dwt 878 / / / 22 18 18 0.58 3.67 10/10 18 18 0.34 0.40 10/10
dwt 918 / / / 69 22 22 1.26 25.17 10/10 22 22 0.64 6.08 10/10
dwt 992 / / / 66 34 34 16.89 43.41 10/10 34 34 0.38 0.46 10/10
dwt 1005 / / / 77 33 33 8.82 19.90 10/10 33 33 0.54 6.93 10/10
dwt 2680 / / / 70 29 56.7 5.68 62.97 5/10 29 40.5 10.12 33.46 7/10
fs 541 1 / / / 19 19 19 4.05 7.31 10/10 19 19 0.31 3.10 10/10
fs 541 2 / / / 19 19 19 2.15 4.84 10/10 19 19 0.22 2.19 10/10
fs 541 3 / / / 19 19 19 1.69 4.69 10/10 19 19 0.54 2.22 10/10
fs 541 4 / / / 19 19 19 0.31 5.64 10/10 19 19 0.43 4.60 10/10
fs 680 1 / / / 12 6 6 0.33 1.49 10/10 6 6 0.14 0.18 10/10
fs 680 2 / / / 12 6 6 0.62 1.42 10/10 6 6 0.17 0.36 10/10
fs 680 3 / / / 12 6 6 0.63 1.84 10/10 6 6 0.17 0.25 10/10
fs 760 1 / / / 22 22 22 0.19 2.37 10/10 22 22 0.16 0.22 10/10
fs 760 2 / / / 22 22 22 0.34 2.61 10/10 22 22 0.17 0.24 10/10
fs 760 3 / / / 22 22 22 0.38 2.24 10/10 22 22 0.19 0.32 10/10
gr 30 30 / / / 43 30 30 1.61 3.19 10/10 30 30 0.37 0.82 10/10
gre 512 / / / 36 36 36 0.07 0.36 10/10 36 36 0.08 0.10 10/10
gre 1107 / / / 90 90 96.2 0.32 10.96 3/10 90 91 0.89 2.30 5/10
jagmesh1 / / / 26 26 26 0.34 0.67 10/10 26 26 0.42 0.53 10/10
jagmesh2 / / / 31 31 31 0.42 6.55 10/10 31 31 0.51 0.62 10/10
jagmesh3 / / / 33 33 33 0.76 2.79 10/10 33 33 0.64 0.78 10/10
jagmesh7 / / / 25 14 14.7 0.83 4.46 3/10 14 18.4 0.69 17.93 5/10
jpwh 991 / / / 87 63 64 1.64 6.45 5/10 63 64.8 1.41 2.26 1/10
lns 511 / / / 33 31 31.6 2.36 12.14 4/10 31 31.9 3.47 37.04 1/10
lshp1009 / / / 31 31 31 0.34 11.01 10/10 31 31 0.52 0.72 10/10
mcfe / / / 91 101 135.7 92.72 71.86 1/10 89 89.2 3.00 33.89 8/10
nnc666 / / / 18 18 18.2 6.91 38.13 8/10 18 18 1.79 12.15 10/10
nos2 / / / 3 5 6.2 5.55 25.13 5/10 3 3.4 7.28 25.63 8/10
nos3 / / / 62 40 44.8 28.06 49.26 5/10 40 40 0.38 0.58 10/10
nos6 27 / / 15 15 15 0.18 1.75 10/10 15 15 0.01 0.01 10/10
nos7 / / / 66 65 65 0.28 0.84 10/10 65 67.4 0.01 0.01 6/10
orsirr 2 / / / 67 50 53.2 7.25 26.09 5/10 51 51 0.20 0.31 10/10
saylr3 / / / 31 30 30.5 0.91 0.80 5/10 30 51.2 7.09 7.92 1/10
sherman1 / / / 30 30 30.7 0.55 0.82 3/10 30 51.2 8.30 15.03 1/10
sherman4 / / / 24 22 22.8 0.12 1.88 6/10 22 30.6 0.75 5.05 4/10
shl 0 / / / 102 82 82.1 4.63 22.99 9/10 82 82 1.79 24.04 10/10
shl 200 / / / 108 90 90.7 5.86 37.88 4/10 90 91 4.16 28.88 1/10
steam2 / / / 60 60 60 6.47 11.34 10/10 60 60 0.08 0.09 10/10
west0655 / / / 115 108 109.9 4.85 16.87 2/10 108 108.4 0.15 12.15 8/10

TABLE 3
Summarized Comparisons of CLUHS against each reference algorithm

on a total of 137 benchmark instances.

Algorithms #Better #Equal #Worse p-value
CLUHS vs. CVBP 33(33) 9(9) 1(1) 4.4e-7(4.4e-7)
CLUHS vs. AMAGP 17(17) 7(7) 1(1) 6.2e-4(6.2e-4)
CLUHS vs. MAVBMP 14(14) 10(10) 1(1) 6.2e-7(3.9e-3)
CLUHS vs. CPA-MA 77(71) 58(55) 2(11) 3.7e-14(5.5e-8)
CLUHS vs. VNS 21 112 4 1.2e-3

To compare CLUHS with TS, we also used the 63 large
benchmark graphs with more than 500 vertices and ran both
CLUHS and TS 10 times to solve each instance under the
same timeout limit as before (i.e., 100 seconds per run). To
ensure a fair comparison, each run of CLUHS and TS was
started with an initial solution provided by the construction
procedure of Section 4.1. The comparison between TS and
CLUHS shows that TS obtains 2 better results, 43 equal

results and 18 worse results under the same timeout limit,
indicating a clear performance deterioration without the use
of clustering information in the local search and perturba-
tion procedures.

Furthermore, Figure 6 shows the evolution profiles of
CLUHS and TS on the bp 0 instance and can 1054
instance: the best scoring (objective) function value vs. the
number of iterations over 1 run and the average best scoring
function value vs. the average number of iterations over
10 runs. One observes that CLUHS with the cluster guided
search strategy converges more quickly toward high quality
solutions than TS with the classic 1-move operator for local
search and a random perturbation either over 1 run or over
10 runs. This experiment confirms thus the relevance of the
joint use of hierarchical clustering and iterated local search.

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 9

(a) bp 0 over 1 run (b) bp 0 over 10 runs

(c) can 1054 over 1 run (d) can 1054 over 10 runs

Fig. 6. Analysis of the cluster-guided strategy.

5.3 Analysis of Convergence

This subsection provides a convergence analysis of the
proposed CLUHS algorithm and tries to explain why some
instances are particularly hard for CLUHS. We selected 6
representative instances including 4 instances for which
CLUHS failed to achieve the best known results, and 2
instances whose best known results were improved by
CLUHS. We ran CLUHS 10 times on each instance with a
cutoff time of 100 seconds per run. We collected the best
objective value and the current objective values every 100
iterations.

In order to investigate the running behaviors of CLUHS
in an intuitive way, we provide the running profiles in Fig-
ure 7, where X-axis represents iterations and Y-axis shows
the average best objective values and average current objec-
tive values over 10 runs along the iterations. One notices
that the solution quality of all instances is significantly
improved in the initial search iterations and gradually con-
verges to the best solution. For the four failed instances
(orsirr 2, dwt 234, bcsstk20, can 1054), we observe that the
solution quality on orsirr 2 and dwt 234 fluctuates slightly
or even without fluctuations, such that the search cannot
escape from the local optima. In addition, we find that the
vertices of the largest cluster are more than half of the total
vertices and the clustering is very uneven, so the cluster
based strategy plays a small role on these two instances.
Besides, we observe that the solution quality on bcsstk20
and can 1054 fluctuates greatly, such that the search may
skip the region with the best solution. For the two im-
proved solutions (bcsstk11 and bp 0), the quality of
the solution fluctuates appropriately to allow the search to

escape many local optima to reach the solutions with better
objective values.

In summary, these convergence profiles indicate the ap-
propriate fluctuates of the solution quality are beneficial for
the search and explain to some extent why CLUHS does not
perform well on some particular instances.

6 CONCLUSION

We presented a novel heuristic algorithm that combines
hierarchical clustering and iterated local search for solving
the NP-hard vertex bisection minimization problem. It uses
a specific similarity measure between vertices to create
clusters of vertices and employs the clusters within the
main search components to generate good initial solutions,
explore promising candidate neighboring solutions and per-
form search diversification.

Computational results on 137 benchmark instances from
the literature showed that the proposed CLUHS algorithm
is highly competitive compared to the most recent leading
algorithms for the problem. In particular, CLUHS achieved
all the current best known results except 5 instances and im-
proved the previous best-known solutions for 18 instances.
Additionally, we verified the impacts of the cluster-guided
search strategy over the performance of the algorithm.

This work focused on designing cluster-guided local
search operators. It would be interesting to study other
operators with the help of clustering information such as
swaps in local search or crossovers in population-based
algorithms. Also, to some extend, the underlying idea of
using clustering information with local search is of general
nature. Given the excellent performance of the proposed

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 10

(a) orsirr 2 (b) dwt 234 (c) can 1054

(d) bcsstk20 (e) bcsstk11 (f) bp 0

Fig. 7. Analysis of convergence charts of CLUHS.

algorithm for vertex bisection minimization, it is worth
investigating the usefulness of this approach for solving
other related graph partitioning problems.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for valu-
able suggestions and comments which have helped
us to improve the paper. This work was supported
by the National Natural Science Foundation of China
(Grants No. 61602196,61972449) and the Shenzhen Sci-
ence and Technology Innovation Commission under grant
JCYJ20180508162601910, the National Key R&D Program of
China under Grant 2020YFB1313300.

REFERENCES

[1] U. Brandes and D. Fleischer, “Vertex bisection is hard, too,” Journal
Graph Algorithms and Applications, vol. 13, no. 2, pp. 119–131, 2009.

[2] U. Benlic and J. Hao, “Hybrid metaheuristics for the graph
partitioning problem,” in Hybrid Metaheuristics, ser. Studies in
Computational Intelligence, E. Talbi, Ed. Springer, 2013, vol. 434,
pp. 157–185.

[3] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz,
“Recent advances in graph partitioning,” in Algorithm Engineering
- Selected Results and Surveys, ser. Lecture Notes in Computer
Science, L. Kliemann and P. Sanders, Eds., 2016, vol. 9220, pp.
117–158.

[4] T. N. Bui and B. R. Moon, “Genetic algorithm and graph partition-
ing,” IEEE Transactions on Computers, vol. 45, no. 7, pp. 841–855,
1996.

[5] G. Lin and W. Zhu, “An efficient memetic algorithm for the max-
bisection problem,” IEEE Transactions on Computers, vol. 63, no. 6,
pp. 1365–1376, 2013.

[6] F. Ma, J.-K. Hao, and Y. Wang, “An effective iterated tabu search
for the maximum bisection problem,” Computers & Operations
Research, vol. 81, pp. 78–89, 2017.

[7] R. J. Lipton and R. E. Tarjan, “A separator theorem for planar
graphs,” SIAM Journal on Applied Mathematics, vol. 36, no. 2, pp.
177–189, 1979.

[8] U. Benlic and J.-K. Hao, “Breakout local search for the vertex
separator problem,” in Twenty-Third International Joint Conference
on Artificial Intelligence, 2013, pp. 461–467.

[9] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout prob-
lems,” ACM Computing Surveys (CSUR), vol. 34, no. 3, pp. 313–356,
2002.

[10] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customiz-
able route planning,” in International Symposium on Experimental
Algorithms, 2011, pp. 376–387.

[11] S. N. Bhatt and F. T. Leighton, “A framework for solving vlsi graph
layout problems,” Journal of Computer and System Sciences, vol. 28,
no. 2, pp. 300–343, 1984.

[12] R. Klasing, “The relationship between the gossip complexity in
vertex-disjoint paths mode and the vertex bisection width,” Dis-
crete Applied Mathematics, vol. 83, no. 1-3, pp. 229–246, 1998.

[13] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 8, pp. 888–905, 2000.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of data, 2010, pp. 135–146.

[15] P. Jain, G. Saran, and K. Srivastava, “Branch and bound algorithm
for vertex bisection minimization problem,” Advanced Computing
and Communication Technologies, pp. 17–23, 2016.

[16] N. Castillo-Garcı́a and P. H. Hernández, “Two new integer linear
programming formulations for the vertex bisection problem,”
Computational Optimization and Applications, vol. 74, no. 3, pp. 895–
918, 2019.

[17] H. Fraire, J. D. Terán-Villanueva, N. C. Garcı́a, J. J. G. Barbosa,
E. R. del Angel, and Y. G. Rojas, “Exact methods for the vertex

IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. XX, XXXX 2021 11

bisection problem,” in Recent Advances on Hybrid Approaches for
Designing Intelligent Systems, 2014, pp. 567–577.

[18] P. Jain, G. Saran, and K. Srivastava, “A new integer linear pro-
gramming and quadratically constrained quadratic programming
formulation for vertex bisection minimization problem,” Journal
of Automation Mobile Robotics and Intelligent Systems, vol. 10, pp.
69–73, 2016.

[19] ——, “On minimizing vertex bisection using a memetic algo-
rithm,” Information Sciences, vol. 369, pp. 765–787, 2016.

[20] A. Herrán, J. M. Colmenar, and A. Duarte, “A variable neighbor-
hood search approach for the vertex bisection problem,” Informa-
tion Sciences, vol. 476, pp. 1–18, 2019.

[21] J. D. Terán-Villanueva, H. J. Fraire-Huacuja, S. I. Martı́nez, L. Cruz-
Reyes, J. A. C. Rocha, C. G. Santillán, and J. L. Menchaca, “Cellular
processing algorithm for the vertex bisection problem: Detailed
analysis and new component design,” Information Sciences, vol.
478, pp. 62–82, 2019.

[22] N. C. Garcı́a and P. H. Hernández, “Constructive heuristic for
the vertex bisection problem,” Journal of Applied Research and
Technology, vol. 18, no. 4, pp. 187–196, 2020.

[23] F. Murtagh and P. Contreras, “Algorithms for hierarchical cluster-
ing: an overview,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 2, no. 1, pp. 86–97, 2012.

[24] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,
M. J. Er, W. Ding, and C. Lin, “A review of clustering techniques
and developments,” Neurocomputing, vol. 267, pp. 664–681, 2017.

[25] W. H. Day and H. Edelsbrunner, “Efficient algorithms for agglom-
erative hierarchical clustering methods,” Journal of Classification,
vol. 1, no. 1, pp. 7–24, 1984.

[26] Q. Wu and J.-K. Hao, “Memetic search for the max-bisection
problem,” Computers & Operations Research, vol. 40, no. 1, pp. 166–
179, 2013.

Yan Jin is currently an associate professor in the
School of Computer Science and Technology,
Huazhong University of Science & Technology
(HUST), Wuhan, China. She received the Ph.D.
degree in computer science from University of
Angers, France, in 2016. Her research inter-
ests include reinforcement learning based intel-
ligence computing and metaheuristics for solv-
ing large-scale combinatorial optimization prob-
lems, including graph coloring problem, max-
imum clique, packing, scheduling and vehicle

routing problems.

Bowen Xiong currently works in NetEase Com-
pany, Guangzhou, China. He received his M.S.
degree in the School of Computer Science and
technology, Huazhong University of Science and
Technology (HUST) in 2020, and his B.S de-
gree in the School of philosophy, HUST in 2018.
His research interests include combinatorial op-
timization problem and NP-hard problems such
as maximum clique problem, maximal clique
enumeration and graph bisection.

Kun He is currently a professor in the School
of Computer Science and Technology, HUST,
Wuhan, P.R. China, and a Mary Shepard B.
Upson Visiting Professor in Engineering, Cor-
nell University, NY, USA. She received her Ph.D.
degree in the Department of Automatic Control
from HUST in 2006; her B.S degree in the De-
partment of Physics from Wuhan University in
1993, and her M.S. degree in the Department of
Computer Science from Huazhong Normal Uni-
versity in 2002, Wuhan, P.R. China. Her research

interests include algorithm design and analysis for NP hard problems,
social networks and deep learning.

Jin-Kao Hao received the B.S. degree in com-
puter science from the National University of De-
fense Technology, China, in 1982; the M.S. de-
gree in computer science from the National Insti-
tute of Applied Sciences, Lyon, France, in 1987;
the Ph.D. degree in constraint programming
from the University of Franche-Comté, France,
in 1991 and the Professorship Diploma (HDR,
Habilitation Diriger des Recherches) from the
University of Science and Technology of Mont-
pellier, France, in 1998. Since 1999, he holds a

full Professor position with the Computer Science Department at the
University of Angers, France. His research lies in the design of effective
algorithms and intelligent computational methods for solving large-scale
combinatorial search problems. He is interested in various application
areas including data science, complex networks, and transportation. He
has authored or co-authored more than 250 peer-reviewed publications
and co-edited 9 books in Springers LNCS series. He has served as an
Invited Member of more than 200 Program Committees of International
Conferences and is on the Editorial Board of 7 International Journals.
Dr. Hao became a Distinguished Professor in 2010 and Senior Fellow of
the Institut Universitaire de France since 2015.

Chu-Min Li received the B.S. and Ph.D. de-
grees in computer science from the University of
Technology of Compiegne, France, in 1985 and
1990, respectively. He is currently a Professor of
computer science with the University of Picardie
Jules Verne. His research interests include the
practical resolution of NP-hard problems, includ-
ing SAT, CSP, MaxSAT, MinSAT, MaxClique, and
GCP. He is particularly interested in the intrinsi-
cal relationships between these problems. One
of his research directions is to find and exploit

these relationships to solve them. A recent example is the exploitation of
the relationships between MaxSAT and MaxClique to solve MaxClique.

Zhang-Hua Fu was born in Jiangxi, China, in
1984. He received the B.S. degree in commu-
nication engineering, the M.S. and Ph.D. de-
grees in computer science from the Huazhong
University of Science and Technology, China,
in 2005, 2007, and 2011, respectively. From
2012 to 2015, he was a Postdoctoral Researcher
with the LERIA Laboratory, University of Angers,
France. He is currently a Research Fellow with
the Chinese University of Hong Kong, Shen-
zhen, China. He has published more than 20 in-

ternational journal or conference papers. His research interests include
combinational optimization, graph theory, operations research, artificial
intelligence, and multiagent systems. He was the winner of several
competition tracks of the 11th DIMACS Implementation Challenge in
Collaboration with ICERM: Steiner tree problems (Providence, USA,
2014).

