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In this note we give an upper bound on the Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators with constant coefficients in the class of bounded functions, using a simple extension of Frostman's lemma in Euclidean space with an additional power decay.

INTRODUCTION

Given a linear differential operator P(x, D) with smooth coefficients in R n , n ≥ 2, one calls a closed set S ⊆ R n removable for the equation P(x, D) f = 0 with respect to a space F of locally integrable functions (scalar or vector-valued), provided that for any f ∈ F satisfying (in the sense of distributions) the equation P(x, D) f = 0 outside S, one has P(x, D) f = 0 in R n (in the sense of distributions). The nomenclature "removable" is hence self-explanatory.

The following result dates back to Harvey and Polking [5, Theorem 4.1, (b)], where H s will stand for the s-dimensional Hausdorff (outer) measure in R n . Theorem 1.1. If P(x, D) is a linear differential operator of order m < n with smooth coefficients and if the closed set S ⊆ R n satisfies H n-m (S) = 0, then S is removable for the equation P(x, D) f = 0 with respect to the space L ∞ loc (R n ) of locally (essentially) bounded functions. Removable sets for several linear equations have been studied, and sometimes characterized completely, in the literature. For the scalar Laplace equation, removable sets with respect to Lipschitz functions have been subject of a very deep study; for example, it follows from works by Calderón [START_REF] Calderón | Cauchy integrals on Lipschitz curves and related operators[END_REF], David and Mattila (n = 2) [START_REF] David | Removable sets for Lipschitz harmonic functions in the plane[END_REF] and Nazarov, Tolsa and Volberg (n > 2) [START_REF] Nazarov | The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions[END_REF] that a compact set S ⊆ R n satisfying H n-1 (S) < +∞ is removable for the Laplace equation with respect to Lipschitz functions, if and only if it is purely (n -1)-unrectifiable, i.e. if and only if the intersection of S with any (n -1)-rectifiable set, is H n-1 -negligible; (un)rectifiability hence plays a fundamental role for determining whether or not a set is removable in this context.

The situation is very different for the divergence equation with respect to bounded vector fields, even though the Laplace equation can be written ∆ f = div(∇ f ) = 0 and ∇ f is a bounded vector field for any Lipschitz function f and hence every removable set for the divergence equation with respect to bounded vector fields is removable for the Laplace equation w.r.t. Lipschitz functions.

It was first proven by the second author in [START_REF] Moonens | Removable singularities for the equation div v = 0. Real Anal. Exchange[END_REF] that a compact set S ⊆ R n is removable for the equation div f = 0 with respect to L ∞ (R n , R n ), if and only if one has H n-1 (S) = 0. The proof there used a decomposition of S into Borel subsets S 1 and S 2 , one of which is (n -1)-rectifiable, the other one being purely (n -1)-unrectifiable, relying then on results by Th. De Pauw [START_REF] De | On the exceptional sets of the flux of a bounded vectorfield[END_REF] for purely (n -1)-unrectifiable sets, and on the fact that (n -1)-rectifiable sets of positive (n -1)-dimensional Hausdorff measure are not removable for the Laplace equation w.r.t. Lipschitz functions (and hence also not removable for the divergence equation w.r.t. bounded vector fields, as discussed just above). Obviously, such a proof heavily relies on the fact that one deals with the divergence operator, and cannot be carried out to other differential operators (even of order one).

Shortly after, Phuc and Torres [START_REF] Nguyen | Characterizations of the existence and removable singularities of divergence-measure vector fields[END_REF] obtained, among other results, a new proof of the abovementioned characterization of (compact) removable sets for the divergence equation w.r.t. bounded vector fields, this time relying on a new strategy to prove that a compact set S ⊆ R n with H n-1 (S) > 0, cannot be removable for the divergence equation. Exhibiting first, with use of Frostman's lemma [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF]Theorem 8.8], a non-trivial Radon measure µ supported in such a set S enjoying that µ(B[x, r]) ≤ r s for all x ∈ R n and r > 0, and using a boxing inequality together with a co-area formula, they obtain an inequality of the form:

ˆRn ϕ dµ ≤ C ∇ϕ L 1 ,
for smooth test functions ϕ, implying in turn that µ is in the dual space X * of the space X of test functions endowed with the norm ∇ϕ L 1 . Then, since the operator -∇ :

X → L 1 (R n , R n ) is ( 
obviously) an isometry, it follows that the adjoint operator:

div = (-∇) * : L ∞ (R n , R n ) = L 1 (R n , R n ) * → X *
is surjective, and hence that the equation div

f = µ has a solution in L ∞ (R n , R n ). As a consequence, S cannot be removable for the divergence equation w.r.t. L ∞ since one has div v = 0 outside S (recall that µ is supported in S) but div f = µ = 0 in R n .
The very specific role of the gradient vs divergence, arising through the co-area formula in the latter argument, suggests that it does not adapt easily to obtain removability results for other operators than the divergence operator. Very recently, the first and third authors obtained in [START_REF] Biliatto | A note on lebesgue solvability of elliptic homogeneous linear equations with measure data[END_REF], for a special class of elliptic homogeneous differential operators A(D) : D(R n , E) → D(R n , F) of order 0 < m < n in R n (see the Section 3 for details), sufficient conditions on the Radon measure µ in order to obtain solvability results in Lebesgue spaces for the equation:

(1.1) A * (D) f = µ,
where A * (D) is the (formal) adjoint operator associated to the homogeneous linear differential operator A(D). In particular, the following solvability result in L ∞ for equation ( 

(1.2) sup r>0 |µ|(B[0, r]) r n-m < +∞,
as well as, uniformly on x ∈ R n :

(1.3) ˆ|x| 2 0 |µ|(B[x, r]) r n-m+1 dr 1, then there exists f ∈ L ∞ (R n , F * ) satisfying the equation (1.1) in R n in the sense of distributions.
Here |µ| denotes the total variation of the vector-valued Radon measure µ. Note also that, in the latter statement:

• The assumption (1.2) is weaker than requiring |µ|(B[x, r]) ≤ Cr n-m for all x ∈ R n and all r > 0, since the supremum only extends, in (1.2), to balls centered at the origin. • Any scalar Radon measure which satisfies, for each x ∈ R n and each 0 < r <

|x| 2 : (1.4) ν(B[x, r]) ≤ C 2 |x| -m r n ,
automatically satisfies (1.3); hence (1.4) is a stronger condition than (1.3). • The integration boundary |x|/2 in (1.3) can be replaced by a|x|, where 0 < a < 1 is any fixed constant -the holding of (1.4) for any x ∈ R n and 0 < r < a|x| then being again stronger that the modified version of (1.3). • An example of measure ν satisfying (1.2) and (1.3) is given by ν

= |x| -m L n for n ≥ 2,
where L n denotes Lebesgue's outer measure in R n . • The canceling property appearing in the statement (and defined precisely below in (3.1))

is due to J. Van Schaftingen (see [START_REF] Van Schaftingen | Limiting sobolev inequalities for vector fields and canceling linear differential operators[END_REF]); it characterizes the validity of an L 1 Sobolev-Gagliardo-Nirenberg inequality for elliptic homogeneous differential operators, recovering several a priori L 1 estimates for divergence-vector fields and chains of complexes. In this note we present a necessary condition for a compact set S ⊆ R n to be removable for the equation A * (D) f = 0 associated to an elliptic and canceling homogeneous differential operator A(D), using Theorem 1.2 and a slightly improved version of Frostman's lemma. Our main result is the following: Theorem A. Assume that A(D) is an elliptic and canceling homogeneous differential operator on R n of order 0 < m < n, from a finite-dimensional vector space E to a finite-dimensional vector space F. If the closed set S ⊆ R n is removable for the equation A * (D) f = 0 in L ∞ (R n , F * ), then S has Hausdorff dimension less than or equal to nm. REMARK 1.1: Since it follows from Harvey and Polking's result (see Theorem 1.1) that if S is H n-m -negligible, then S is removable for the equation A * (D) f = 0 w.r.t. L ∞ , it hence only remains to understand whether or not some sets with Hausdorff dimension nm yet positive (nm)dimensional Hausdorff measure, may be removable in this context.

We shall organize the paper as follows. In Section 2, we shall present a version of Frostman's Lemma with an additional power decay condition. In Section 3, we shall then recall precisely the context of elliptic and canceling operators, before proving our main Theorem A.

A "FROSTMAN'S LEMMA" WITH DECAY

Our goal in this section is to provide a result ensuring at least that, given integers 0 < m < n and a closed set S ⊆ R n satisfying H n-m+α (S) > 0 for some α > 0, there exists a (nonnegative) non-trivial Radon measure supported in S and satisfying conditions (1.2) and (1.3) above. This will result from observing that one can impose, in the statement of Frostman's Lemma, a decay condition; this is what the next result expresses. Lemma 2.1 (Frostman's Lemma with power weight decay). Assume that 0 < α < s < n are fixed and that B ⊆ R n is a Borel set satisfying H s (B) > 0. Then there exists a non-zero scalar Radon measure µ supported in B satisfying:

(2.1) sup r>0 µ(B[0, r]) r s-α < +∞,
and such that, for any x ∈ R n and any 0 < r < 1 2 |x|, one has:

(2.2) µ(B[x, r]) |x| -α r s .
PROOF: Start by using Frostman's Lemma [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF]Theorem 8.8] to find a non-zero (nonnegative) Radon measure ν supported in B satisfying ν(B[x, r]) ≤ r s for all x ∈ R n and all r > 0. Now define A k := {x ∈ R n : k ≤ |x| < k + 1} for k ∈ N and introduce the Radon measure µ defined by:

µ := ∞ ∑ k=0 2 -kα ν A k .
Observe first that for 0 < r < 1 one has:

µ(B[0, r]) r s-α = ν(B[0, r]) r s-α ≤ r s r s-α = r α ≤ 1,
while if one has j ≤ r < j + 1 for some j ∈ N * there holds:

µ(B[0, r]) ≤ j-1 ∑ k=0 2 -kα ν(B[0, k + 1]) + 2 -jα ν(B[0, r]) ≤ j-1 ∑ k=0 2 -kα (k + 1) s + 2 -jα r s ,
and hence:

µ(B[0, r]) r s-α ≤ 1 r s-α j-1 ∑ k=0 2 -kα (k + 1) s + 2 -jα r α ≤ j-1 ∑ k=0 2 -kα (k + 1) s + [2 -j ( j + 1)] α ≤ C α,s < +∞, with for example C α,s := 1 + ∑ ∞ k=0 2 -kα (k + 1)
s since one has ( j + 1)2 -j ≤ 1 for all j ∈ N * . This finishes to establish that (2.1) holds.

To prove (2.2), fix x ∈ R n and 0 < r ≤ |x| 2 . Choosing j ∈ N such that one has j ≤ |x| < j + 1, one finds r ≤ j+1 2 and hence also, for y ∈ B[x, r]:

|y| ≥ |x| -|x -y| ≥ j - j + 1 2 = j -1 2 and |y| ≤ |x| + |y -x| < j + 1 + j + 1 2 = 3 2 ( j + 1), so that there holds B[x, r] ∩ A k = / 0 for k < m j := j-1 2
and k > n j := 3 2 ( j + 1) . We can hence compute:

(2.3) µ(B[x, r]) ≤ n j ∑ k=m j 2 -kα ν(B[x, r]) ≤ r s n j ∑ k=m j 2 -kα .
Yet one has:

(2.4)

n j ∑ k=m j 2 -kα = 2 -m j α n j -m j ∑ k=0 2 -kα = 2 -m j α 1 -2 -[1+(n j -m j )]α 1 -2 -α = 2 -m j α -2 -(n j +1)α 1 -2 -α ≤ 1 1 -2 -α 2 -m j α ≤ 1 1 -2 -α 2 -j-1 2 -1 α) = 2 3 2 α 1 -2 -α 2 -j 2 α .
Writing then: 

(2.5) 2 -j 2 α = |x| -α |x| 2 j 2 α ≤ |x| -α j + 1 2 j 2 α ≤ 3 
µ(B[x, r]) ≤ 2 α 2 • 3 α 1 -2 -α • |x| -α r s ,
which establishes (2.2).

HAUSDORFF DIMENSION OF REMOVABLE SETS FOR ELLIPTIC AND CANCELING HOMOGENEOUS OPERATORS

Let A(D) be a homogeneous linear differential operator on R n of order 0 < m < n, from a finitedimensional complex vector space E to a finite dimensional complex vector space F, i.e. an operator of the form:

A(D) = ∑ |α|=m c α ∂ α : D(R n , E) → D(R n , F),
where c α ∈ L (E, F) is a linear operator from E to F, for each |α| = m. Here, D(R n , X ) stands for the set of all smooth functions with compact support defined on R n with values in a finite dimensional complex vector space X (itself endowed with a fixed norm).

Recall that one associates to A(D) its symbol A(ξ ) : E → F defined by:

A(ξ ) := ∑ |α|=m c α ξ α , ξ ∈ R n .
We then say that A(D) is: (i) elliptic in case its symbol A(ξ ) is injective for any ξ ∈ R n \ {0};

(ii) canceling in case one has:

(3.1)

ξ ∈R n \{0} A(ξ )[E] = {0}.
We also denote by

A * (D) : D(R n , F * ) → D(R n , E * ) the formal adjoint of A.
An important class of operators satisfying (i) and (ii) is given by the gradient operator A(D) = -∇, where E = R and F = R n . Clearly the operator is elliptic, since its symbol is A(ξ ) = ξ , and canceling for n ≥ 2 since one has:

ξ ∈R n \{0} A(ξ )[E] = ξ ∈R n \{0} ξ • R = {0}.
Note that A * (D) = div. Then, for a positive (scalar) measure µ = |µ| satisfying (1.2) and (1.3), Theorem 1.2 gives a solution f ∈ L ∞ (R n , R n ) for the equation (1.1).

We are now ready to prove our main Theorem A.

3.1. The proof of Theorem (A). If the Hausdorff dimension of S were larger than nm, then there would exist α > 0 such that H n-m+α (S) > 0. The above Frostman Lemma with power decay -Lemma 2.1 -applied to B := S and s := nm + α ensures the existence of a non-zero Radon measure supported in S satisfying (1.2) and such that, for any x ∈ R n and any 0 < r < r α-1 dr ≤ 1 2 α α , so that (1.3) is also satisfied uniformly in x ∈ R n , x = 0. Hence it follows from Theorem 1.2 that there exists f ∈ L ∞ (R n , F * ) solving A * (D) f = µwhich implies that S is not removable for the equation A * (D) f = 0, since one has A * (D) f = 0 outside S (in the sense of distributions) but A * (D) f = µ = 0 in R n (in the sense of distributions).
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 2 |x|, one has: µ(B[x, r]) |x| -α r n-m+α . Yet then, if e ∈ E * is fixed, and if one defines µ e (B) := µ(B)e for any B ⊆ R n , there holds: sup r>0 |µ e |(B[0, r]) r n-m = e E * sup r>0 µ(B[0, r]) r n-m < +∞, meaning that (1.2) above is fullfilled.We also get, for any x ∈ R n , x = 0:

  [START_REF] Calderón | Cauchy integrals on Lipschitz curves and related operators[END_REF] 

		α
		|x| -α ,
	since one has k+1 2 k 2	≤ 3 2 for any k ∈ N, we finally get, combining (2.3), (2.4) and (2.5):
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