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Abstract
The inference systems proposed for solving SAT are unsound for solving MaxSAT and MinSAT, because they preserve
satisfiability but not the minimum and maximum number of clauses that can be falsified, respectively. To address this problem,
we first define a clause tableau calculus for MaxSAT and prove its soundness and completeness. We then define a clause
tableau calculus for MinSAT and also prove its soundness and completeness. Finally, we define a complete clause tableau
calculus for solving both MaxSAT and MinSAT, in that the minimum number of generated empty clauses provides an optimal
MaxSAT solution and the maximum number provides an optimal MinSAT solution.

Keywords: Boolean optimization, MaxSAT, MinSAT, tableaux, calculus, completeness.

1 Introduction

MaxSAT and MinSAT are nowadays competitive generic problem solving approaches that are able to
solve challenging optimization problems in different areas (see e.g. [2–7, 15, 17, 19, 21, 23, 27–34]
and the references therein for related work). MaxSAT is to find a truth assignment that minimizes the
number of unsatisfied clauses in a multiset of clauses, while MinSAT is to find a truth assignment
that maximizes the number of unsatisfied clauses.

The inference systems proposed for solving SAT are unsound for solving MaxSAT and MinSAT,
because they preserve satisfiability but not the maximum and minimum number of clauses that can
be falsified. Thus, we first need to define inference rules meeting that condition and then show that
their correct application allows one to derive as many empty clauses as the minimum number of
clauses that can be falsified in the case of MaxSAT, and as the maximum number of clauses that can
be falsified in the case of MinSAT.

Resolution-style calculus have been defined for MaxSAT [9, 10, 20] and MinSAT [22], and the
proposed variable elimination algorithms provide optimal solutions. The MaxSAT and MinSAT
resolution rule states that the complementary clauses x ∨ l11 ∨ · · · ∨ l1m and ¬x ∨ l21 ∨ · · · ∨ l2n
can be replaced with the usual resolvent l11 ∨ · · · ∨ l1m ∨ l21 ∨ · · · ∨ l2n and the following m + n
compensation clauses: x ∨ l11 ∨ · · · ∨ l1m ∨ ¬l21, . . ., x ∨ l11 ∨ · · · ∨ l1m ∨ l21 ∨ · · · ∨ l2n−1 ∨ ¬l2n,
¬x ∨ l21 ∨ · · · ∨ l2n ∨¬l11, . . ., ¬x ∨ l21 ∨ · · · ∨ l2n ∨ l11 ∨ · · · ∨ l1m−1 ∨¬l1m. The role of the compensation
clauses is to ensure that the two parent clauses are replaced by a collection of clauses that preserve
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2 Clause Tableaux for Maximum and Minimum Satisfiability

the number of unsatisfied clauses. The difference between MaxSAT and MinSAT lies in the way the
variable elimination algorithms saturate the variables. Refinements of the previous resolution rule
have been incorporated into branch-and-bound MaxSAT and MinSAT algorithms and have produced
important speedups [1, 2, 20, 23, 24, 28].

In this paper, we first extend the clause tableau calculus for SAT [12, 16] to solve both MaxSAT
[26] and MinSAT [25]. An essential issue to address is how to derive simpler subproblems in such
a way that the minimum/maximum number of unsatisfied clauses is preserved. The proposed clause
MaxSAT tableau calculus and the clause SAT tableau calculus are quite similar, in that they use
the same rules but applied differently. The clause MinSAT tableau calculus has an inference rule
that does not resemble the rules of the SAT and MaxSAT calculi. It is worth noticing that a clause
MinSAT tableau calculus must be able to derive contradictions from satisfiable instances because
they can have interpretations that falsify some clauses.

From the insights gained after analysing clause MaxSAT and MinSAT tableaux, we then propose
a clause tableau calculus that is valid for both MaxSAT and MinSAT. It preserves adequately the
number of unsatisfied clauses in the generated subproblems. The leaf nodes of a completed search
tree contain a number of empty clauses ranging between the minimum and the maximum number of
unsatisfied clauses in the input formula, and there is at least one branch with the minimum value and
there is at least one branch with the maximum value. This calculus also provides optimal MaxSAT
and MinSAT assignments by inspecting the optimal branches.

This is a journal version of three conference papers. It unifies results on clause MaxSAT tableaux
appeared in [26], on clause MinSAT tableaux appeared in [25] and on a tableau-based procedure for
MaxSAT and MinSAT appeared in [8].

The paper is structured as follows. Section 2 defines basic concepts. Section 3 reviews how
clause tableaux can be used to solve SAT. Section 4 defines a complete clause tableau calculus
for MaxSAT. Section 5 defines a complete clause tableau calculus for MinSAT. Section 6 describes
a complete clause tableau calculus that is valid for both MaxSAT and MinSAT. Section 7 gives the
conclusions.

2 Preliminaries

Given a set of propositional variables {x1, . . . , xn}, a literal is a variable xi or its negation ¬xi. A
weighted clause is a pair (c, w), where c is a disjunction of literals and w, its weight, is a positive
integer.

A truth assignment assigns to each variable either 0 (false) or 1 (true). It satisfies literal xi (¬xi)
if xi evaluates to 1 (0), it satisfies weighted clause (c, w) if it satisfies a literal of c and it satisfies
a multiset of clauses if it satisfies all its clauses. The weight w is the penalty of violating clause c.
When all clauses have the same weight, their weights are omitted.

The Weighted Partial MaxSAT problem, or WPMaxSAT, for a multiset of clauses φ is to find an
assignment that satisfies all the hard clauses and minimizes the sum of the weights of the unsatisfied
soft clauses. The most common subproblems of WPMaxSAT are the following ones: Weighted
MaxSAT (WMaxSAT), which is WPMaxSAT without hard clauses; Partial MaxSAT (PMaxSAT),
which is WPMaxSAT when all the soft clauses have the same weight; and MaxSAT, which is
PMaxSAT without hard clauses.

The Weighted Partial MinSAT problem, or WPMinSAT, for a multiset of clauses φ is to find an
assignment that satisfies all the hard clauses and maximizes the sum of the weights of the unsatisfied
soft clauses. The most common subproblems of WPMinSAT are the following ones: Weighted
MinSAT (WMinSAT), which is WPMinSAT without hard clauses; Partial MinSAT (PMinSAT),
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Clause Tableaux for Maximum and Minimum Satisfiability 3

TABLE 1. Expansion rules of a complete clause tableau calculus for SAT

which is WPMinSAT when all the soft clauses have the same weight; and MinSAT, which is
PMinSAT without hard clauses. The SAT problem is PMaxSAT/PMinSAT without soft clauses.

We represent MaxSAT and MinSAT instances as multisets of clauses. Repeated clauses cannot be
collapsed into one clause as in SAT, because then the maximum/minimum number of unsatisfied
clauses might not be preserved. For example, the multiset of unit clauses {x1, ¬x1, x1, ¬x1} has
a minimum of two unsatisfied clauses while {x1, ¬x1} has just one unsatisfied clause. In fact,
{x1, ¬x1, x1, ¬x1} is equivalent to the multiset of weighted clauses {(x1, 2), (¬x1, 2)}. Clauses can
be represented by the set of its literals as in SAT because repeated literals can be collapsed into one
literal without affecting the preservation of the number of unsatisfied clauses.

Let φ be a multiset of clauses and let l1, . . . , lr be literals that occur in φ. The instantiation of
l1, . . . , lr in φ, denoted by φl1|···|lr , is the multiset of clauses resulting of eliminating from φ all the
occurrences of ¬l1, . . . , ¬lr and removing all the clauses with occurrences of l1, . . . , lr.

3 Clause tableaux for SAT

It is common to view the tableau method for solving SAT as a proof by case distinction that allows
one to systematically generate subcases until elementary contradictions are reached [14, 35]. In the
context of SAT, a clause tableau is a tree with a finite number of branches whose nodes are labelled
with clauses, and a branch is a maximal path in a tree with a finite number of nodes. A branch is
closed if there are two nodes labelled with complementary unit clauses; otherwise, it is open. A
clause tableau is closed iff all its branches are closed.

Given a set of clauses φ = {C1, . . . , Cm}, we start by creating an initial tableau that has a single
branch with m nodes, where each node is labelled with a clause of φ. This process is known as the
application of the initial tableau rule. Then, we select an open branch B and a clause l1 ∨ . . . ∨ lr
of φ with r ≥ 2 that has not yet been expanded in B and append r sibling nodes below B, labelling
each node with a different unit clause from {l1, . . . , lr}. This process of creating r new branches from
B is known as the application of the extension rule. If there are two complementary unit clauses
in a branch, we close it by applying the contradiction rule. In this paper, closing a branch amounts
to deriving an empty clause. This process continues until either all the branches are closed, or the
application of the extension rule on a branch until saturation leaves it open. The set of clauses φ is
declared to be unsatisfiable in the first case and satisfiable in the second case. Table 1 shows the
expansion rules of a complete clause tableau calculus for SAT.

EXAMPLE 3.1
To determine the satisfiability of φ = {x1, ¬x1 ∨ x2, ¬x1 ∨ ¬x2} with clause tableaux we start by
creating the initial tableau (T0),
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4 Clause Tableaux for Maximum and Minimum Satisfiability

We then expand the second node (T1) and close the leftmost branch by applying the contradiction
rule to x1 and ¬x1, obtaining another clause tableau (T2):

Finally, we expand the third node on the rightmost branch (T3) and close the new leftmost (T4)
and rightmost branches (T5), obtaining a clause tableau proof of the unsatisfiability of φ,

Formally, a clause tableau proof of the unsatisfiability of a set of clauses φ is a sequence of
clause tableaux T0, . . . , Tn such that T0 is an initial tableau of φ, Tn is a closed tableau and
Ti has been obtained by a single application of the extension or contradiction rule on an open
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Clause Tableaux for Maximum and Minimum Satisfiability 5

branch of Ti−1 for i = 1, . . . , n. In a proof of satisfiability, Tn must have some open branch
after applying the extension rule on it until saturation. Besides, the literals occurring in the unit
clauses of the open branch provide a satisfying assignment of φ. It is common to say that Tn
is a clause tableau proof because it collapses all the sequence of tableaux. In Example 3.1, the
sequence T0, T1, T2, T3, T4, T5 is a clause tableau proof, although T5 alone is also considered to
be a proof.

We say that a clause tableau is completed when all its branches are closed or it contains an
open branch in which it was not possible to detect a contradiction with the expansion rules
of Table 1.

From a semantic perspective, given a set of clauses φ and a completed clause tableau T for φ,
we have that φ is satisfiable iff there is a branch of T such that the conjunction of all its literals is
satisfiable. Alternatively, φ is unsatisfiable iff all the branches of T are unsatisfiable.

4 Clause tableaux for MaxSAT

The clause SAT tableau calculus is not valid for solving MaxSAT, but it can become sound and
complete by applying differently the expansion rules of Table 1.

Firstly, the application of expansion rules in a branch cannot stop once a contradiction is detected.
Since the aim of MaxSAT is to derive all the possible contradictions, the application of rules in a
branch should continue until no more expansion rules can be applied. Thus, a different notion of
completed tableau is needed.

Secondly, the application of rules in SAT leads to accumulate the newly added unit clauses
in the branch in such a way that satisfiability is preserved in at least one branch when the
input set of clauses is satisfiable. However, the addition of redundant clauses can lead to wrong
MaxSAT solutions. In clause MaxSAT tableaux, the goal should be to keep the minimum number
of unsatisfied clauses in at least one branch and not to decrease that number in the rest of branches.
As we show below, the rules of Table 1 satisfy that condition provided that we maintain active and
inactive clauses. In other words, once a clause has been used as a premise of a rule in a branch,
it cannot be used again in that branch and becomes inactive. For example, thanks to distinguishing
between active and inactive clauses, we will detect one contradiction in the multiset of unit clauses
{x1, ¬x1, ¬x1} and two in {x1, x1, ¬x1, ¬x1}. Without that, we could detect two contradictions in
the first case, obtaining a wrong answer. In fact, the inference rules of MaxSAT can be seen as
rewriting rules.

DEFINITION 4.1
A clause MaxSAT tableau is a tree with a finite number of branches whose nodes are labelled with
clauses. A branch is a maximal path in a tree, and we assume that branches have a finite number of
nodes.

DEFINITION 4.2
Let φ = {C1, . . . , Cm} be a multiset of clauses. A clause MaxSAT tableau for φ is constructed by a
sequence of applications of the following expansion rules:

Initialize A tree with a single branch with m nodes such that each node is labelled with a
clause of φ is a clause MaxSAT tableau for φ. Such a tableau is called initial tableau,
and its clauses are declared to be active.
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6 Clause Tableaux for Maximum and Minimum Satisfiability

Extension Given a clause MaxSAT tableau T for φ, a branch B of T and a node of B labelled
with an active clause l1∨· · ·∨lr with r ≥ 2, the tableau obtained by creating r sibling
nodes below B and labelling each node with a different unit clause from {l1, . . . , lr}
is a clause MaxSAT tableau for φ. The clause l1 ∨ · · · ∨ lr becomes inactive in the
new branches, and the unit clauses l1, . . . , lr are declared to be active.

Contradiction Given a clause MaxSAT tableau T for φ, a branch B of T and two nodes of B
labelled with two active unit clauses l and ¬l, the tableau obtained by appending a
node labelled with an empty clause (�) below B is a clause MaxSAT tableau for φ.
The unit clauses l and ¬l become inactive in B, and the added empty clauses (�) is
considered active.

DEFINITION 4.3
Let T be a clause MaxSAT tableau for a multiset of clauses φ, and let B be a branch of T . Branch B
is saturated when all its active clauses are unit or empty, and the contradiction rule cannot be further
applied on B. Tableau T is completed iff all its branches are saturated. The cost of a saturated branch
is the number of empty clauses in it. The cost of a completed clause MaxSAT tableau is the minimum
cost among all its branches.

The notion of saturation is crucial in MaxSAT because it indicates that the application of
expansion rules has been completed. As we show below, the minimum number of clauses that can
be falsified in a multiset of clauses φ is k iff the cost of any completed clause MaxSAT tableau for φ

is k. So, the systematic construction of a completed clause MaxSAT tableau for φ provides an exact
method for MaxSAT, and each completed tableau is a proof.

EXAMPLE 4.4
Let φ = {¬x1, ¬x2, ¬x3, x1 ∨x2, x1 ∨x3, x2 ∨x3} be a multiset of clauses. Figure 1 shows a completed
clause MaxSAT tableau T for φ, and Figure 2 shows the steps performed for saturating the leftmost
branch of T .

In Figure 2, we first create an initial tableau. Secondly, we apply the extension rule to clause
x1∨x2 and declare it inactive in the newly created branches (in the figure we write in bold the inactive
clauses in the leftmost branch, which is the branch on which we concentrate in this example). Thirdly,
we apply the contradiction rule to ¬x1 and x1 and declare these clauses inactive in the leftmost
branch. Fourthly, we apply the extension rule to x1 ∨ x3 and declare it inactive in the newly created
branches. Fifthly, we apply the extension rule to x2 ∨ x3 and declare it inactive. Sixthly, we apply
the contradiction rule to ¬x2 and x2 and declare these clauses inactive in the leftmost branch. No
more inference rules can be applied on the leftmost branch, and therefore, the branch is saturated,
having as active clauses {�, �, x1, ¬x3}. A similar process is repeated to create the rest of branches
in Figure 1.

The saturated branches of the tableau of Figure 1 have cost 2 except for branches 3 and 6
(counting from left to right) that have cost 3. The active clauses in each branch are {�, �, x1, ¬x3}
(branch 1), {�, �, x1, ¬x2} (branch 2), {�, �, �} (branch 3), {�, �, ¬x2, x3} (branch 4),
{�, �, x2, ¬x3} (branch 5), {�, �, �} (branch 6), {�, �, ¬x1, x2} (branch 7) and {�, �, ¬x1, x3}
(branch 8). Therefore, the minimum number of unsatisfied clauses in φ is 2.

4.1 Soundness and completeness of clause MaxSAT tableaux

We prove that the minimum number of clauses that can be falsified in a multiset of clauses φ is m iff
the cost of each completed clause MaxSAT tableau for φ is m.
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Clause Tableaux for Maximum and Minimum Satisfiability 7

FIGURE 1. A completed clause MaxSAT tableau for φ = {¬x1, ¬x2, ¬x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3}
that proves that the minimum number of unsatisfied clauses in φ is 2.

THEOREM 4.5
Soundness. Let φ be a multiset of clauses, and let T be a completed clause MaxSAT tableau for φ

of cost m. Then, the minimum number of clauses that can be falsified in φ is m.

PROOF. The clause MaxSAT tableau T was obtained by creating a sequence of clause MaxSAT
tableaux T0, . . . , Tn (n ≥ 0) such that T0 is an initial tableau for φ, Tn = T , and Ti was obtained by
a single application of the extension or the contradiction rule on a branch of Ti−1 for i = 1, . . . , n.
Assume that I is an optimal assignment of φ that falsifies k clauses, where k �= m. By induction
on n, we prove that the minimum number of active clauses that I falsifies among the branches of
T0, . . . , Tn (and in particular of T) is k.

Basis: T0 has a single branch whose nodes are labelled with the clauses of φ, and such clauses
are declared to be active in that branch. So, I falsifies k active clauses in T0, and k is the minimum
number of active clauses that can be falsified in T0.

Inductive step: Assume that the minimum number of active clauses that I falsifies among the
branches of Ti−1 is k. We prove that the minimum number of active clauses that I falsifies among
the branches of Ti is also k.

Since Ti was constructed from Ti−1 by applying either the contradiction rule or the extension rule
on a branch B of Ti−1 and the rest of branches of Ti−1 remain unchanged in Ti, we just need to
prove that I satisfies the same number of active clauses in B and in at least one of the newly created
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8 Clause Tableaux for Maximum and Minimum Satisfiability

FIGURE 2. Steps performed for saturating the leftmost branch of the completed clause MaxSAT
tableau for φ = {¬x1, ¬x2, ¬x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3} from Example 4.7.

branches and does not decrease that number in the rest of newly created branches. We distinguish
two cases:

• The contradiction rule was applied on B: two complementary unit clauses in B become inactive
and an empty clause is added to the new branch B′. Since exactly one of the newly inactive unit
clauses was falsified by I and we added one empty clause, I falsifies the same number of active
clauses in B and B′.

• The extension rule was applied on B: if I satisfies the extended clause C of B, then I satisfies
the leaf node of at least one of the newly created branches, say B′. The number of unsatisfied
active clauses is preserved in B′ and does not decrease in the rest of branches. If I falsifies C,
then I falsifies the leaf nodes of all the newly created branches, and the number of unsatisfied
active clauses is preserved in all these branches because C becomes inactive after the extension.

We proved that the minimum number of active clauses that I falsifies among the branches of
T0, . . . , Tn—and in particular of T—is k, but this is in contradiction with T being a completed
MaxSAT tableau for φ that has cost m; since T is completed, the active clauses of any branch B
of T with minimum cost is the union of a multiset with m empty clauses and a multiset of unit
clauses whose complementary unit clauses do not occur in it. The multiset of unit clauses is clearly
satisfiable, and so the minimum number of active clauses that can be falsified in B is m (not k) and
is at least m in the rest of branches of T . Hence, the minimum number of clauses that can be falsified
in φ is m. �
THEOREM 4.6
Completeness. Let φ be a multiset of clauses whose minimum number of clauses that can be falsified
is m. Then, each completed clause MaxSAT tableau for φ has cost m.

PROOF. Each clause MaxSAT tableau for φ can be completed after a finite number of steps. This
follows from the fact that the number of applications of extension rules in a branch is bound by the
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Clause Tableaux for Maximum and Minimum Satisfiability 9

number of clauses in the input multiset and the number of applications of the contradiction rules is
bounded by the number of literals occurring in the input multiset.

Assume that there is a completed MaxSAT tableau T for φ that does not have cost m. We
distinguish two cases:

(i) T has a branch B that has cost k, where k < m. Then, the active clauses of B are the union
of a multiset with k empty clauses and a satisfiable multiset of unit clauses (otherwise, B could not
be saturated because the contradiction rule could be applied). We define an assignment I of φ as
follows: I(x) = 1 (I(x) = 0) if x (¬x) is an active clause of B, and I(x′) = 0 if variable x′ does
not occur in any active clause of B. We next prove that I satisfies at least |φ| − k clauses of φ, or
equivalently, I falsifies at most k clauses of φ. I is clearly an optimal assignment of B. If we undo
all the applications of the contradiction rule in B, we get a branch B′ whose active clauses form a
multiset of unit clauses φ′ that contains as many unit clauses as clauses are in φ, and each literal of
each unit clause of φ′ was derived from a different clause of φ. Since the clause of φ′ are unit and
there are k complementary pairs of unit clauses, I satisfies |φ| − k clauses of φ′, and at least |φ| − k
clauses of φ. We have therefore an assignment of φ that cannot falsify more than k clauses, but this
is in contradiction with m being the minimum number of clauses that can be falsified in φ because
k < m.

(ii) T has no branch of cost m. This is in contradiction with m being the minimum number of
clauses that can be falsified in φ. Since the tableau rules preserve the minimum number of unsatisfied
clauses, T must have a saturated branch of cost m.

Hence, each completed clause MaxSAT tableau T for a multiset of clauses φ has cost m if the
minimum number of clauses that can be falsified in φ is m. �

From the proof of Theorem 4.6, it follows that we can derive an optimal MaxSAT assignment I
from a saturated branch B of minimum cost. The optimal assignment I sets a variable x to 1 (0) if B
has a node labelled with the active clause x (¬x); the rest of variables can be set to either 0 or 1.

4.2 Clause tableaux for WMaxSAT and WPMaxSAT

Many practical optimization problems admit more compact and natural MaxSAT encodings if they
are encoded using weighted clauses instead of unweighted ones, as well as considering hard and soft
clauses. To keep the description as simple as possible, we presented clause tableaux for unweighted
MaxSAT, but the proposed calculus can be extended to solve both WMaxSAT and WPMaxSAT.

In the case of WMaxSAT, we should keep in mind that a weighted clause (c, w) is equivalent to
having w copies of the unweighted clause c. So, the application of the contradiction rule to two unit
clauses (l, w1), (¬l, w2) amounts to adding an active empty clause with weight w = min(w1, w2)

(i.e.; (�, w)), declare the clauses (l, w1), (¬l, w2) to be inactive and add the active clauses (l, w1 −w)

and (¬l, w2 − w) in the newly created branch. Clauses with weight 0 are not added. The application
of the extension rule to a weighted clause (l1 ∨ · · · ∨ lr, w) amounts to appending r nodes below the
current branch, labelling each node with a different unit weighted clause from {(l1, w), . . . , (lr, w)}.
Finally, to get a complete calculus, we need to define a contraction rule: if a branch contains two
active clauses (C, w1) and (C, w2), inactivate these clauses and add the active clause (C, w1 + w2) in
the newly created branch.

EXAMPLE 4.7
Let φ = {(¬x1, 3), (¬x2, 2), (x1 ∨ x2, 2)} be a multiset of weighted clauses. Figure 3 shows a
completed clause WMaxSAT tableau T for φ. We first apply the extension rule to (x1 ∨ x2, 2) and
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10 Clause Tableaux for Maximum and Minimum Satisfiability

FIGURE 3. A completed clause WMaxSAT tableau for the multiset of weighted clauses
φ = {(¬x1, 3), (¬x2, 2), (x1 ∨ x2, 2)} that proves that the minimum sum of weights of unsatisfied
clauses in φ is 2.

derive two new branches. In the leftmost branch, the application of the contradiction rule to (¬x1, 3)

and (x1, 2) yields (�, 2) and (¬x1, 1). In the rightmost branch, the application of the contradiction
rule to (¬x2, 2) and (x2, 2) yields (�, 2). The two saturated branches of the tableau have cost 2. The
active clauses in each branch are {(¬x2, 2), (�, 2), (¬x1, 1)} (left branch) and {(¬x1, 3), (�, 2)} (right
branch). Therefore, the minimum sum of weights of unsatisfied clauses in φ is 2.

In the case of WPMaxSAT, we should add, to each hard clause, a weight greater than the sum
of weights of the input soft clauses and proceed as in WMaxSAT. Moreover, we could prune those
branches in which a contradiction is detected between hard clauses or clauses derived from hard
clauses.

5 Clause tableaux for MinSAT

We showed in the previous section that the minimum number of empty clauses among the branches
of a completed clause MaxSAT tableau for a multiset of clauses φ is equal to the number of clauses
falsified by an optimal MaxSAT assignment of φ. Nevertheless, the maximum number of empty
clauses among the branches of a completed clause MaxSAT tableau for φ is not the maximum
number of clauses that can be falsified in φ, i.e. clause MaxSAT tableaux cannot solve MinSAT.
This is so because the extension rule is unsound for MinSAT in the sense that it does not preserve
the maximum number of clauses that can be falsified.

In the rest of the section, we first define a clause MinSAT tableau calculus that incorporates
a sound extension rule. We then prove the soundness and completeness of the proposed calculus.
Finally, we present how our results can be extended to deal with WMinSAT and WPMinSAT
instances. Note that, in MinSAT, we also need to derive contradictions from satisfiable instances
because the maximum number of clauses that can be falsified in a satisfiable instance other than the
empty multiset is always greater than or equal to one.

DEFINITION 5.1
A clause MinSAT tableau is a finite tree whose nodes are labelled with multisets of clauses. A branch
is a maximal path in a tree.
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Clause Tableaux for Maximum and Minimum Satisfiability 11

FIGURE 4. Completed clause MinSAT tableau for φ1 = {¬x1, ¬x2, x1 ∨ x2}.

Note that we now label the nodes of a tableau with multisets of clauses instead of clauses. Also
note that clause MinSAT tableaux do not need to declare clauses either as active or inactive.

DEFINITION 5.2
Let φ be a multiset of clauses. A clause MinSAT tableau for φ is constructed by a sequence of
applications of the following rules:

Initialize A tree with a single branch with a single node labelled with the multiset of clauses φ is
a clause MinSAT tableau for φ. Such a tableau is called initial tableau.

Extension Given a clause MinSAT tableau T for φ, and a branch B of T whose leaf node is labelled
with a multiset φ′ = φ′′ ∪ {l1 ∨ · · · ∨ lr}, the tableau obtained by appending a new left
node below B labelled with the multiset φ′¬l1|···|¬lr

and a new right node below B labelled
with the multiset φ′′ is a clause MinSAT tableau for φ.

In the definition of the extension rule, note that φ′¬l1|···|¬lr
= {�} ∪ φ′′¬l1|···|¬lr

.

DEFINITION 5.3
Let T be a clause MinSAT tableau for a multiset of clauses φ, and let B be a branch of T . Branch B
is saturated iff its leaf node is labelled with the empty multiset or with a multiset of empty clauses.
Tableau T is completed iff all its branches are saturated. The cost of a saturated branch is the number
of empty clauses in its leaf node. The cost of a completed clause MinSAT tableau is the maximum
cost among all its branches.

EXAMPLE 5.4
Let φ1 = {¬x1, ¬x2, x1 ∨ x2} and φ2 = {x1 ∨ x2, ¬x1 ∨ x3, ¬x2 ∨ ¬x3} be multisets of clauses.
Figures 4 and 5 show completed clause MinSAT tableaux for φ1 and φ2, respectively. The leaf
nodes of the branches of the tableau for φ1 have at most cost 2 and of the tableau for φ2 have at most
cost 1. Therefore, the maximum number of clauses that can be falsified in φ1 is 2 and in φ2 is 1.
Note that φ2 is satisfiable.

5.1 Soundness and completeness of clause MinSAT tableaux

We first prove that the extension rule preserves the maximum number of unsatisfied clauses among
the branches of a clause MinSAT tableau and then the soundness and completeness of the clause
MinSAT tableau calculus.
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12 Clause Tableaux for Maximum and Minimum Satisfiability

FIGURE 5. Completed clause MinSAT tableau for φ2 = {x1 ∨ x2, ¬x1 ∨ x3, ¬x2 ∨ ¬x3}.

LEMMA 5.5
Let φ = φ′ ∪ {l1 ∨ · · · ∨ lr} be a multiset of clauses, and let minsat(ψ) denote the maximum
number of clauses that can be falsified in the multiset of clauses ψ . It holds that minsat(φ) =
max(minsat(φ′), minsat(φ¬l1|···|¬lr)).
PROOF. We first prove the following inequalities: minsat(φ) ≥ minsat(φ′) and minsat(φ) ≥
minsat(φ¬l1|···|¬lr).

Since φ′ ⊂ φ and the maximum number of clauses that can be falsified in every subset of φ

cannot be greater than the maximum number of clauses that can be falsified in φ, it holds that
minsat(φ) ≥ minsat(φ′).

Assume that there is an optimal assignment I ′ of φ¬l1|···|¬lr that falsifies more clauses than an
optimal assignment I of φ. Then, we could extend I ′ by setting I ′(li) = 0 for i = 1, . . . , r and get
an optimal assignment of φ that falsifies more clauses than I ; if we restore the occurrences of the
literals l1, . . . , lr in the clauses of φ¬l1|···|¬lr in which such literals were eliminated when ¬l1, . . . , ¬lr
were instantiated in φ, we get a multiset φ′′ such that φ′′ ⊆ φ. It holds that the number of clauses
that I ′ falsifies in φ¬l1|···|¬lr and φ′′ is the same because I ′ falsifies the added literals, but this is in
contradiction with I being optimal. Therefore, minsat(φ) ≥ minsat(φ¬l1|···|¬lr).

Taking into account the previous inequalities, we prove that minsat(φ) = max(minsat(φ′),
minsat(φ¬l1|···|¬lr)). Let I be an optimal assignment of φ. We distinguish two cases:
i) I satisfies l1 ∨ · · · ∨ lr. Then, I falsifies the same clauses in φ and φ′ and is also an optimal
assignment of φ′ because minsat(φ) ≥ minsat(φ′). Since minsat(φ) = minsat(φ′) and minsat(φ) ≥
minsat(φ¬l1|···|¬lr), it follows that minsat(φ) = max(minsat(φ′), minsat(φ¬l1|···|¬lr)).
ii) I falsifies l1 ∨ · · · ∨ lr. Then, I sets l1, . . . , lr to 0, and I falsifies the same number of clauses in φ

and φ¬l1|···|¬lr . Since minsat(φ) ≥ minsat(φ¬l1|···|¬lr), it follows that I is also an optimal assignment
of φ¬l1|···|¬lr . Since minsat(φ) = minsat(φ¬l1|···|¬lr) and minsat(φ) ≥ minsat(φ′), it follows that
minsat(φ) = max(minsat(φ′), minsat(φ¬l1|···|¬lr)). �

THEOREM 5.6
Soundness. Let φ be a multiset of clauses, and let T be a completed clause MinSAT tableau for φ

that has cost m. Then, the maximum number of clauses that can be falsified in φ is m.

PROOF. The clause MinSAT tableau T was obtained by creating a sequence of clause MinSAT
tableaux T0, . . . , Tn (n ≥ 0) such that T0 is an initial tableau for φ, Tn = T , and Ti was obtained by a
single application of the extension rule on a leaf node of a branch of Ti−1 for i = 1, . . . , n. Assume
that I is an optimal assignment of φ that falsifies k clauses, where k �= m. By induction on n, we
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Clause Tableaux for Maximum and Minimum Satisfiability 13

prove that the maximum number of clauses that I falsifies among the leaf nodes of the branches of
T0, . . . , Tn (and in particular of T) is k:

Basis: T0 has a single branch with one node labelled with the clauses of φ. So, I falsifies k clauses
in T0, and k is the maximum number of clauses that can be falsified in T0.

Inductive step: assume that the maximum number of clauses that I falsifies among the leaf nodes
of the branches of Ti−1 is k. We prove that the maximum number of clauses that I falsifies among
the leaf nodes of the branches of Ti is also k.

Ti was constructed from Ti−1 by applying the extension rule on a branch B of Ti−1. If I falsifies k
clauses of the leaf node of B, by Lemma 1, the maximum number of clauses that I falsifies among
the branches of Ti remains k. If I falsifies r clauses of the leaf node of B, where r < k, then I falsifies
k clauses of the leaf node of a branch B′ of Ti (B′ �= B and B′ is also a branch of Ti−1), and I cannot
falsify more than k clauses in the leaf nodes of any of the two branches derived from B because
otherwise we could define an assignment that falsifies more than k clauses of the leaf node of B.

We proved that the maximum number of clauses that I falsifies among the leaf nodes of the
branches of T0, . . . , Tn—and in particular of T—is k, but this is in contradiction with T being a
completed clause MinSAT tableau for φ that has cost m. Since T is completed and has cost m, the
leaf nodes are labelled with either a multiset of empty clauses or the empty formula, and there is
at least a branch B whose leaf node is a multiset with m empty clauses. So, the maximum number
of clauses that can be falsified in the leaf node of B is m (and not k) and is, at most, m in the
rest of leaf nodes of branches of T . Hence, the maximum number of clauses that can be falsified
in φ is m. �

THEOREM 5.7
Completeness. Let φ be a multiset of clauses whose maximum number of clauses that can be
falsified in φ is m. Then, any completed clause MinSAT tableau for φ has cost m.

PROOF. Each clause MinSAT tableau T for φ can be completed after a finite number of steps. This
follows from the fact that the extension rule either eliminates one clause or replaces one clause
with an empty clause at each application of the rule. Moreover, the instantiation of literals neither
increases the number of clauses nor increases the number of literals per clause. Thus, after a finite
number of applications of the extension rule, T is transformed into a completed clause MinSAT
tableau.

Assume that there is a completed clause MinSAT tableau T for φ that does not have cost m. We
distinguish two cases:

(i) T has a branch B that has cost k, where k > m. Then, the leaf node of B has k empty clauses,
and each empty clause is derived from a clause of φ; let C1, . . . , Ck be such clauses. We define an
assignment I of φ as follows: I(x) = 1 (I(x) = 0) if ¬x (x) occurs in {C1, . . . , Ck}, and I(x) = 0 if
variable x does not occur in {C1, . . . , Ck}. Note that {C1, . . . , Ck} only contain literals with both the
same variable and polarity because the corresponding literals with opposite polarity occur in clauses
that were eliminated. Assignment I falsifies at least k clauses of φ because each literal occurring in
{C1, . . . , Ck} is unsatisfied by I . Since k > m, this is in contradiction with m being the maximum
number of clauses that can be falsified in φ.

(ii) T has no branch of cost m. This is in contradiction with m being the maximum number
of clauses that can be falsified in φ. Since an optimal assignment falsifies m clauses of the
initial tableau and the leaf nodes of a completed clause MinSAT tableau are labelled with
either a multiset of empty clauses or the empty formula, by Lemma 5.5, T must have a branch
of cost m. �
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14 Clause Tableaux for Maximum and Minimum Satisfiability

From the proof of Theorem 5.7 it follows that, for building an optimal assignment I from a
completed tableau, we have to consider a branch with a maximum number of empty clauses in
its leaf node and identify the input clauses that became empty. Then, for each one of such clauses,
say l1 ∨ · · · ∨ lm, we define I(li) = 0 for i = 1, . . . , m, and the variables that do not appear in such
clauses can be set to an arbitrary value. For example, in the tableau for φ1 = {¬x1, ¬x2, x1 ∨ x2} of
Figure 4, the input clauses that became empty in the branch with maximum cost are {¬x1, ¬x2}, and
therefore, I(x1) = I(x2) = 1 is an optimal assignment of φ1.

5.2 Clause tableaux for WMinSAT and WPMinSAT

We presented clause tableaux for unweighted MinSAT to keep the description as simple as possible.
We now describe how the clause MinSAT tableau calculus can be extended to deal with WMinSAT
and WPMinSAT instances.

In the case of WMinSAT, we use the same tableau rules but keeping the weights of the clauses.
Note that the extension rule either removes clauses or eliminates literals. When a literal is eliminated
from a clause, the shortened clause maintains the same weight. In addition, we also could need
to collapse several weighted clauses of the form (C, w1), . . . , (C, wk) into a single weighted clause
(C, w1 + · · · + wk).

EXAMPLE 5.8
Let φ = {(x1, 1), (¬x2, 3), (x1 ∨¬x2, 5), (x1 ∨¬x3, 2), (x2 ∨x3, 1)} be a multiset of weighted clauses.
Figure 6 shows a completed clause WMinSAT tableau T for φ. The leaf nodes of the branches of T
have at most cost 11. Therefore, the maximum sum of the weights of the clauses that can be falsified
in φ is 11.

In the case of WPMinSAT, we must first derive an equivalent WMinSAT instance and then solve
the derived instance as explained above. We will assume that there is an assignment that satisfies all
the hard clauses, since otherwise no feasible solution exists.

Given a WPMinSAT instance φ whose number of hard clauses is #hard and whose sum of the
weights of all its soft clauses is w, we derive a WMinSAT instance φ′ by adding (i) all the soft
clauses in φ and (ii) the soft clauses (¬l1, w + 1), (l1 ∨ ¬l2, w + 1), . . ., (l1 ∨ l2 ∨ · · · ∨ ¬lk , w + 1)

for each hard clause h = l1 ∨ l2 ∨ · · · ∨ lk in φ.
Observe that an assignment I satisfies h iff I falsifies exactly one clause among ¬l1, l1 ∨

¬l2, . . . , l1 ∨ l2 ∨ · · · ∨ ¬lk , or equivalently, I falsifies h iff I satisfies all these clauses. Since the
clauses derived from hard clauses have weight w + 1 and we assumed that the hard part of φ is
satisfiable, every optimal solution of φ′ falsifies exactly one clause derived from a hard clause and is
also an optimal solution of φ. Besides, if the maximum sum of the weights of the unsatisfied clauses
in φ′ is m, then the maximum sum of the weights of the unsatisfied clauses in φ is m−#hard×(w+1).
The treatment of hard clauses in MinSAT tableaux is not as in MaxSAT tableaux, where it is enough
to add the weight w + 1 to each hard clause and solve the resulting WMaxSAT instance.

6 Clause tableaux for MaxSAT and MinSAT

After defining a clause tableau calculus for MaxSAT and another for MinSAT, a natural question to
ask is whether there exists a calculus that is valid for both MaxSAT and MinSAT. In this section,
we propose a tableau calculus for MaxSAT and MinSAT that preserves adequately the number of
unsatisfied clauses in the generated subproblems. The leaf nodes of a completed tableau contain a
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16 Clause Tableaux for Maximum and Minimum Satisfiability

FIGURE 7. Proof tree for {¬x1, ¬x1, ¬x2, ¬x2, x1 ∨ x2} using SAT clause branching.

number of empty clauses ranging between the minimum and the maximum number of unsatisfied
clauses in the input formula, and there is at least one branch with the minimum value and at least
one branch with the maximum value. This scheme also generates optimal MaxSAT and MinSAT
assignments by inspecting the optimal branches.

A natural extension of clause tableaux is to perform some kind of local inference at each node, as
in fact MinSAT tableaux do in one of the branches when assigning the variables occurring in a select
clause to force its violation. In SAT, assuming that the initial tableau contains a single node with the
input set of clauses, we can introduce local inference by applying the following extension rule: if
the leaf node of a branch B is labelled with the set of clauses φ = φ′ ∪ {l1 ∨ · · · ∨ lk}, then append
k sibling nodes below B labelled with φl1 , . . . , φlk . Then, the input set of clauses is unsatisfiable iff
the empty clause has been derived in each branch. Actually, if the local inference applied is unit
propagation instead of the instantiation of literal li (i.e., φli), also known as unit clause rule, we get
the DPLL procedure [13] with clause branching [18].

Unfortunately, the outlined SAT approach is unsound for MaxSAT and MinSAT because it does
not preserve neither the maximum nor the minimum number of unsatisfied clause. For example, if
we consider the multiset of clauses φ = {¬x1, ¬x1, ¬x2, ¬x2, x1 ∨ x2}, the generated tableau has
two leaf nodes with two empty clauses, as Figure 7 shows. Note that we first branch on x1 (labelling
the node with φx1 ) and x2 (labelling the node with φx2 ) and then instantiate ¬x2 in the left branch
and ¬x1 in the right branch. However, the MaxSAT solution of φ is one and the MinSAT solution
is four. Also note that branching on l1, . . . , lk is sound in MaxSAT tableaux but becomes unsound
when local inference is added to each node.

The key point to integrate MaxSAT and MinSAT is to define an extension rule that preserves
both the maximum and the minimum number of unsatisfied clause. This is what we do in the clause
MaxMinSAT tableau defined below.

DEFINITION 6.1
A clause MaxMinSAT tableau is a finite tree whose nodes are labelled with multisets of clauses.
A branch is a maximal path in a tree.

DEFINITION 6.2
Let φ be a multiset of clauses. A clause MaxMinSAT tableau for φ is constructed by a sequence of
applications of the following rules:

Initialize A tree with a single branch with a single node labelled with the multiset of clauses φ is
a clause MaxMinSAT tableau for φ. Such a tableau is called initial tableau.

Extension Given a clause tableau T for φ, and a branch B of T whose leaf node is labelled with a
multiset φ = φ′ ∪{l1 ∨· · ·∨ lk}, the tableau obtained by appending k +1 new left nodes
below B labelled with the multisets φl1 , . . . , φlk , φ¬l1,...,¬lk is a clause MaxMinSAT
tableau for φ.
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FIGURE 8. A completed clause MaxMinSAT tableau for {¬x1, ¬x1, ¬x2, ¬x2, x1 ∨ x2}.

DEFINITION 6.3
Let T be a clause MaxMinSAT tableau for a multiset of clauses φ, and let B be a branch of T . Branch
B is saturated iff its leaf node is labelled with the empty multiset or with a multiset of empty clauses.
Tableau T is completed iff all its branches are saturated. The cost of a saturated branch is the number
of empty clauses in its leaf node. The MaxSAT cost of a completed clause MaxMinSAT tableau is
the minimum cost among all its branches, and the MinSAT cost of a completed clause MaxMinSAT
tableau is the maximum cost among all its branches.

We prove below that the branches with MaxSAT and MinSAT costs provide optimal MaxSAT and
MinSAT solutions, respectively.

EXAMPLE 6.4
We consider again the multiset of clauses φ = {¬x1, ¬x1, ¬x2, ¬x2, x1 ∨ x2} of Figure 7. Figure 8
displays a completed clause MaxMinSAT tableau for φ. The MaxSAT cost of the tableau is 1 and
the MinSAT cost is 4. Hence, the minimum number of clauses that can be falsified in φ is 1, and the
maximum number is 4.

The next two lemmas prove that the MaxMinSAT extension rule preserves both the maximum and
the minimum number of unsatisfied clauses. In other words, we prove its soundness. Based on these
results, we then prove the completeness of the clause MaxMinSAT tableau calculus.

LEMMA 6.5
MaxSAT clause branching. Let φ be a multiset of clauses, let l1 ∨ · · · ∨ lk be a clause of φ and let
maxsat(φ) be the minimum number of unsatisfied clauses in φ. Then,

maxsat(φ) = min(maxsat(φl1), . . . ,maxsat(φlk ),maxsat(φ¬l1,...,¬lk )). (1)

PROOF. Let I be an optimal MaxSAT assignment. We prove that the minimum number of unsatisfied
clauses in φ is the same as the minimum number of unsatisfied clauses in at least one of the multisets
φl1 , . . . , φlk , φ¬l1,...,¬lk and is not smaller in the rest of multisets. We distinguish two cases:

1. I satisfies l1 ∨ · · · ∨ lk : if I satisfies li, 1 ≤ i ≤ k, then maxsat(φ) = maxsat(φli) because
deleting the clauses containing li and removing the occurrences of ¬li preserve the number
of unsatisfied clauses between φ and φli for every assignment. Since at least one literal li is
satisfied by I , the minimum number of unsatisfied clauses is preserved in one of the derived
multisets.

2. If I does not satisfy lj, 1 ≤ j ≤ k, then maxsat(φ) ≤ maxsat(φlj). Assume that there exists
an assignment I ′ of φlj that falsifies less than maxsat(φ) clauses. If we extend I ′ by assigning
I ′(lj) = true, we get an assignment of φ that falsifies less than maxsat(φ) clauses. But this is
in contradiction with I being optimal. So, it holds that maxsat(φ) ≤ maxsat(φlj).
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3. Finally, we have to prove that maxsat(φ) ≤ maxsat(φ¬l1,...,¬lk ). Observe that
maxsat(φ¬l1,...,¬lk ) = maxsat(. . . (maxsat(maxsat(φ¬l1)¬l2)...)¬lk ). The literals ¬li,
1 ≤ i ≤ k, which are satisfied by I preserve the number of unsatisfied clauses, and the literals
¬lj, 1 ≤ j ≤ k, which are not satisfied by I , can increase the number of unsatisfied clauses.
Since I satisfies l1 ∨ · · · ∨ lk , I does not satisfy at least one literal in {¬l1, . . . , ¬lk}, and
therefore, maxsat(φ) ≤ maxsat(φ¬l1,...,¬lk ).

4. The last two cases guarantee that the number of unsatisfied clauses does not decrease in any
case.

5. I does not satisfy l1 ∨· · ·∨ lk : in this case, I does not satisfy any literal in the clause. As shown
above, maxsat(φ) ≤ maxsat(φli) for every i, 1 ≤ i ≤ k. On the other hand, maxsat(φ) =
maxsat(φ¬l1,...,¬lk ) because I satisfies ¬l1, . . . , ¬lk , and deleting the clauses containing ¬lj
and removing the occurrences of lj preserve the number of unsatisfied clauses in this case. �

LEMMA 6.6
MinSAT clause branching. Let φ be a multiset of clauses, let l1 ∨ · · · ∨ lk be a clause of φ and let
minsat(φ) be the maximum number of unsatisfied clauses in φ. Then,

minsat(φ) = max(minsat(φl1), . . . ,minsat(φlk ),minsat(φ¬l1,...,¬lk )). (2)

PROOF. Let I be an optimal MinSAT assignment. We can prove, using the arguments of
Lemma 6.5, that the maximum number of unsatisfied clauses in φ is the same as the maximum
number of unsatisfied clauses in at least one of the multisets φl1 , . . . , φlk , φ¬l1,...,¬lk and is not greater
in the rest of multisets. We have to take into account the following facts: (i) if I satisfies a literal
li, 1 ≤ i ≤ k, then φli clearly preserves the number of unsatisfied clauses and so minsat(φ) =
minsat(φli). (ii) If I does not satisfy lj, 1 ≤ j ≤ k, then minsat(φ) ≥ minsat(φlj). Assume that
there exists an assignment I ′ of φlj that falsifies more than minsat(φ) clauses. If we extend I ′ by
assigning I ′(lj) = true, we get an assignment of φ that falsifies more than minsat(φ) clauses. But
this is in contradiction with I being optimal. So, it holds that minsat(φ) ≥ minsat(φlj). �
THEOREM 6.7
A completed clause MaxMinSAT tableau for a multiset of clauses φ provides an optimal MaxSAT
assignment and an optimal MinSAT assignment.

PROOF. The root node of a completed MaxMinSAT tableau is labelled with the input formula.
Such a tableau is finite because each descendant has at least one variable less than its parents:
at least one less variable in the descendants labelled with φl1 , . . . , φlk and at least k less variables
in the descendants labelled with φ¬l1,...,¬lk . Thus, after a finite number of steps, the leaves of a
tableau contain either the empty formula or a multiset of empty clauses. By Lemma 6.5, all the
branches with the minimum number of empty clauses correspond to optimal MaxSAT solutions. By
Lemma 6.6, all the branches with the maximum number of empty clauses correspond to optimal
MinSAT solutions. Besides, Lemmas 6.5 and 6.6 guarantee that the cost of each branch ranges
between the maximum and minimum number of unsatisfied clauses in φ.

The clauses became empty because of the literals that were instantiated at each node that allowed
to remove the complementary literals. Thus, in the optimal branches, the assignments that set those
literals to true and the rest of literals appearing in the input formula to an arbitrary value are optimal
assignments. �

All the results of this section also hold if we replace the proposed extension rule with the following
rule: if the leaf node of a branch B is labelled with the multiset φ = φ′ ∪ {l1 ∨ · · · ∨ lk}, then append
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k + 1 sibling nodes below B labelled with φl1 , φ¬l1,l2 , . . . , φ¬l1,...,¬lk−1,lk and φ¬l1,...,¬lk . This result
can be proved with the same arguments of Lemmas 6.5 and 6.6.

The extension of our approach to weighted MaxSAT/MinSAT and weighted partial MaxSAT/Min-
SAT is as in branch-and-bound MaxSAT and MinSAT algorithms [2, 24, 28]. Roughly speaking,
in weighted MaxSAT/MinSAT, we just need to propagate weights, and given a multiset of empty
weighted clauses {(�, w1), . . . , (�, wk)}, we replace it with {(�, w1 +· · ·+wk)}. In weighted partial
MaxSAT/MinSAT, we can apply the same inference as in SAT in the hard part.

7 Conclusions

We have defined three complete logical calculi for MaxSAT and MinSAT. The first calculus is valid
for MaxSAT, the second is valid for MinSAT and the third is valid for both MaxSAT and MinSAT.
One interesting aspect of these calculi is that they allow one to solve optimization instead of decision
problems using logical tools and look at MaxSAT and MinSAT from a different angle.

As future work we plan to analyse how the proposed tableau calculi can be extended to non-
clausal MaxSAT and MinSAT, as well as to deal with first-order logic formulas. We also plan to
study how the calculi can be extended to many-valued logics. The results of this paper inspired a
natural deduction MaxSAT calulus [11].
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