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ABSTRACT The classic p-center problem consists of choosing a set of p vertices in an undirected graph
as facilities in order to minimize the maximum distance between each client vertex and its closest facility.
The problem is equivalent to covering all vertices by no more than p circles with the smallest possible
radius, which can be tackled by solving a series of the decision version of set covering subproblems with
the same cardinality constraint (< p) and gradually decreasing the covering radius. In this paper, we solve
the p-center problem via set covering and SAT. We first transform the p-center problem into a series of set
covering subproblems and simplify them by some reduction rules. Then, we present two kinds of encoding
methods to convert them into CNF format and solve them with several state-of-the-art SAT solvers. Tested
on three sets of totally 70 benchmark instances, our proposed approach can improve the previous best known
results for 3 instances using the heuristic SAT solvers while proving the optimality for 59 instances using
the exact SAT solvers. The computational results demonstrate the effectiveness of the proposed approach in
terms of both solution quality and computational efficiency. In addition, the main advantage of our approach
is twofold: The independence of the subproblems allows the problem to be solved in parallel; The approach
to transform the original problem into SAT is flexible such that various state-of-the-art SAT solvers can be

used.

INDEX TERMS p-center problem, set covering, SAT, encoding method, reduction rule.

I. INTRODUCTION

The p-center problem is a classical facility location problem
which has important applications in the fields of telecommu-
nication industry, transportation science, public services and
so on. It consists of seeking the location of p facilities and
assigning clients to them in order to minimize the maximum
distance between a client and its nearest facility.

Hakimi [1] first introduced the absolute center problem
to find a center C in a graph G such that the maximum
distance from C is minimized. The absolute center problem
can be considered as the p-center problem when p = 1.
However, there may be multiple centers that need to locate
in real applications. Therefore, Hakimi [2] extended the
absolute center problem to the p-center problem for more
general applications. The p-center problem has been proven
to be NP-hard [3] and many algorithms including exact
and heuristic methods have been proposed for solving this
problem.
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Most exact methods are based on solving a finite series
of related subproblems, for example, the set covering prob-
lem. Minieka [4] proposed the first set covering based
approach to solve the p-center problem by decreasing the
covering radius step by step until the optimal value of the
set covering subproblem within the current radius is greater
than p. Garfinkel et al. [5] improved the approach proposed
by Minieka [4] by using a binary search technique for the
selection of the covering radius to reduce the search space.
Elloumi et al. [6] proposed a new integer programming for-
mulation (ELP) which is also based on the set covering sub-
problem and is better than the classical formulation proposed
by Daskin [7]. Calik and Tansel [8] developed new integer
programming formulations and an exact algorithm based on
decomposition to their models (IP) for solving the p-center
problem, which provides a tighter lower bound than the
approach proposed by Elloumi e? al. [6]. Daskin [9] presented
an algorithm where the covering radius is also searched by a
binary search, but the subproblem is replaced by the maxi-
mal set covering problem which consists of maximizing the
number of covered clients by no more than p facilities within
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the given radius. Ilhan and Pinar [10] proposed a two-phase
method based on a feasibility subproblem where it checks
whether it is feasible to cover all the clients by no more than
p facilities within a given radius. In this method, it first solves
the linear programming (LP) feasibility problems to obtain a
suitable lower bound and then solves a series of IP feasibility
problems starting from the lower bound. Al-Khedhairi and
Salhi [11] proposed modifications (IP* and Daskin*) to the
previous algorithms: They enhanced the algorithm proposed
by Ilhan and Pinar [10] by reducing the number of ILP
iterations needed to find the optimal solution, and modified
the approach proposed by Daskin [7] with tighter initial
lower and upper bounds and a more appropriate binary search
method which can reduce the number of subproblems to be
solved.

There are also various effective heuristic and metaheuristic
algorithms for the p-center problem. Mladenovic et al. [12]
presented a basic variable neighborhood search (VNS) and
two tabu search (TS) heuristics for this problem. Their
experiments showed that the proposed VNS and two TS
algorithms are superior to previous classical heuristics, and
VNS performs the best on average in terms of both the
solution quality and computational time. However, TS per-
forms slightly better for the instances with smaller p values.
Pullan [13] proposed a memetic genetic algorithm (PBS),
which is a population-based meta-heuristic that uses pheno-
type crossover and directed mutation operators to generate
new starting points for a local search. For larger p-center
instances, PBS is able to effectively utilize a number
of computer processors. It can get high quality solu-
tions for the classical benchmarks. Yin et al. [14] pro-
posed a greedy randomized adaptive search procedure with
path-relinking (GRASP/PR) algorithm, which combines both
GRASP and path-relinking. In their algorithm, each iteration
of GRASP/PR consists of the construction of a random-
ized greedy solution, followed by a tabu search procedure.
GRASP/PR was considered to be the best heuristic for it
can obtain the optimal solutions for most of the public
benchmarks.

Satisfiability (SAT) is the problem of determining if there
exists an assignment of boolean variables that satisfies a
given Boolean formula and is the first problem proven to be
NP-complete [15]. There are many literatures about solving
combinatorial optimization problems based on SAT. Van [16]
proposed a method for solving graph coloring problem by
encoding it into SAT. They improved the previous lower
bounds for the classical benchmarks such as DSJC125.5. Soh
et al. [17] proposed a SAT based exact approach for solving
the two-dimensional strip packing problem (2SPP). They
showed that their method is competitive with the previous
state-of-the-art 2SPP methods. In particular, they found better
solution for instance HTO8 than the best solution found by the
previous exact and heuristic methods.

In this paper, we present a method for solving the p-center
problem via set covering and SAT, since the SAT problem
has been intensively studied in the academic society over
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the last decades and a lot of progress has been made. Thus,
various state-of-the-art SAT solvers can be used, which is an
advantage of our method. To our best knowledge, our paper
establishes a bridge between the p-center problem and SAT
for the first time. We first transform the problem to a finite
series of the decision version of set covering subproblems
with the same cardinality constraint (< p) and gradually
decreasing covering radius. Then, we simplify these set cov-
ering subproblems by some data reduction rules which were
proposed by Alber ef al. [18] and encode them into CNF
format with two different encoding modes. We then solve
the p-center problem by solving these encoded subprob-
lems using the state-of-the-art SAT solvers. Note that these
encoded subproblems are independent and can be solved
in parallel. Our method is tested on three sets of totally
70 classical benchmarks of p-center problem and it can obtain
the optimal or best known solutions for all the 70 instances,
where the previous best known results are improved for
3 instances. Furthermore, we can prove the optimality for
59 out of 70 instances. To the best of our knowledge, there
are some instances which are proven to optimality for the first
time.

The rest of this paper is organized as follows. Section II
describes the formal definition of the p-center problem and
its decision version problem. Section III presents the method
for solving the p-center problem via set covering and SAT.
Section IV reports the computational results and comparison
with the state-of-the-art algorithms in the literature. Section V
analyzes and discusses the importance of data reduction,
how to prove the optimality for the p-center problem by
SAT and the performance differences of the two encoding
modes used in our algorithm. Section VI summarizes the
main contribution of this work and concludes the paper.

Il. PROBLEM DEFINITION
Given a complete undirected graph G = (N, E), where
N is the set of nodes and E is the set of edges. The dis-
tance between any two nodes u and v is denoted by d(u, v).
The p-center problem is to find a set of facilities S € N, such
that |S| = p and the objective function:

f = maxyenminyesd(u, v)
is minimized.

The p-center problem can be transformed from an
optimization problem to a series of decision subproblems.
Assuming that all distinguishing lengths of edges in G are
sorted in a decreasing order, i.e., d; > dy > ... > dk. Then,
we choose d; (i = 1,2,...,K) in decreasing order as the
coverage radius and remove all the edges whose lengths are
larger than d;. For every d;, we judge if there is a feasible
solution for the p-center problem. We repeatedly choose
next d; until d; is invalid, i.e., there does not exist a set
S C N which satisfies both |S| = p and max,eymingecs
d(u,v) < d;. Then, d;_; is the best solution for the original
p-center problem.

The methodology of solving an optimization problem by
transforming it into a series of decision problems is a popular
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technique for solving challenging combinatorial optimization
problems [19]-[21]. The reason lies in the fact that some
optimization problems are much more difficult to solve than
their corresponding decision problems. By transforming an
optimization problem to a decision one, the search space
of the problem becomes greatly narrowed and restricted.
In addition, it also becomes easy to identify the reason to
cause the infeasibility of a decision problem, which can
guide the search effectively and efficiently. For these reasons,
we employ this methodology to solve the p-center problem.

IIl. SOLVING P-CENTER PROBLEM VIA SET

COVERING AND SAT

The subproblem in the decision version of the p-center
problem can be transformed to the decision version of set
covering problem, which can be encoded into CNF format
and then solved with SAT solvers. Based on this idea, the
p-center problem can be solved via set covering and SAT.

A. TRANSFORMING THE SUBPROBLEM TO SET COVERING
Ilhan and Pinar [10] first transformed the subproblem of
p-center problem to the decision version of the set cover-
ing problem, which was formulated as an IP model. Based
on the model, we make a small modification such that it
can be encoded into CNF format. Given a complete graph
G = (N, E) and a coverage radius d, let E' = {(u, v)|(u, v) €
E and d(u, v) < d} such that the induced graph G’ = (N, E’)
used for the set covering subproblem can be obtained by
removing the edges that cannot cover a node, i.e., whose
length is greater than d. For each node u € N, we can get
a set S, € N such that for each node v € S, the distance
between u and v is less than or equal to d. Then, we can obtain
the set F = {S1,S52,...,S8,,...,8,}, where S, = {u}U{v €
N|(u,v) € E’}. Thus, judging if there exists a set § C N,
such that |S| = p and max,eymin,csd(u, v) < d is equivalent
to judging if there exists p sets in F which can cover all the
nodes, i.e., if there exists a subset F/ C F which satisfies
N = Ug,ep'Sy and |F’| = p. From another perspective, for
eachnode u € N, F' must have at least one set that contains u.
Furthermore, if F’ can cover all the nodes by less than p sets,
we can add arbitrarily p — |F’| sets to F" and F’ can definitely
cover all the nodes. The cardinality constraint |F’| = p can be
relaxed to |F’| < p. Let x, be a binary variable which means
that S, belongs to F’ if x, = 1, we can get the following

model.
Z x>1, u=12,....n 1)
ce{clueS.}
n
Y oxe<p 2
c=1

In this model, constraint (1) denotes that for eachnode u € N,
there exists at least one set S, which contains u belonging to
F’, and constraint (2) restricts that we can choose at most p
sets from F. Figure 1 shows an example of transforming a
p-center problem into set covering problems with different
radii.
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FIGURE 1. An example of transforming a p-center problem into set
covering problems with different radii where p = 2. (a) shows the original
graph, while (b), (c) and (d) present the graphs of its corresponding set
covering problems when d = 3, 2 and 1, respectively. For the transformed
set covering problems, we can obtain a feasible solution by choosing
vertices 1 and 3 (labeled with red) in (b), and vertices 2 and 4 in (c) as
centers, while there is no feasible solution in (d).

B. ENCODING SET COVERING INTO CNF
In order to solve the subproblem with SAT solvers, we need
to encode the model into CNF format where the formula
is conjunction of clauses and each clause is a disjunction
of literals; each literal is a propositional variable x or its
negation —x.

For constraint (1), we can encode it with:

\/ Xe, u=12...,n 3)

ce{clueS.}

Since the graphs of different set covering subproblems of a
p-center problem are different, constraint (1) may be differ-
ent for a vertex in two different subproblems. For example,
there are three sets (S, S2 and Sg) which contain vertex 1 in
Figure 1-(b). Thus, we can obtain a clause (x1 V x2 V xg) for
vertex 1 to ensure it to be covered, while the clause for vertex
1 in Figure 1-(c) is (x1 V x2).

Constraint (2) is the cardinality constraint, which is
independent of the specific graphs of both the original
p-center problem and the transformed set covering problems.
That is to say, it is only related to the values of n and p. We
encoded the cardinality constraint in sequential counter and
parallel counter encoding modes to maintain the cardinality
constraint.

The sequential counter encoding mode was introduced
in Sinz [22] for the ) "_,x. < p cardinality constraint.
The encoding mode works by encoding a sequential counter
circuit (Figure 2) that sequentially calculates the sums
si = _;—y Xj which is represented as unary number with p
bits (s 1, ..., ;ip), and sets the overflow bits v; to be true
if 5; exceeds p (i = 1,2,...,n). In addition, all of the
overflow bits v; should be zero to ensure that s; < p. Then,
the cardinality constraint ) »_, x. < p can be encoded with
2np + n — 3p — 1 clauses and n + (n — 1)p variables.
For example, the problem in Figure 1 with n = 6 and
p = 2 will introduce 23 clauses and 16 variables. For the
sake of space limit, we show a small example with n = 3
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X1 X2 X3

FIGURE 3. The parallel counter circuit when n = 5. The sub-circuits H; are
half-adders and the A; are full-adders.

and p = 2, where the constraint can be encoded with 8 clauses
and 7 variables as follows:

Ay = {(=x1 Vs1,1), (5s1.0)},
By = {(—x2 Vs2,1), (51,1 V 2,1,

(—x2 Vos11 Vv o$22), (712 V $22)],
Cs = {(mx2 vV =s12), (—x3 vV =s2.0) )

The clause set A calculates the sum s; which is decided
only by x1, and By calculates the sum s> which is decided
by both x; and s;. In addition, the clause set Cj is to set the
overflow bits v, and v3 to be zero.

Sinz [22] also introduced another encoding mode based
on a parallel counter circuit. The counter (Figure 3) recur-
sively splits the n-bit input bits x; (i = 1, ..., n) into two
halves where the number of true variables is respectively
counted. The results of the two halves are represented by
m-bit (m = logy |n|) binary numbers and added by a standard
binary adder to get the result of the current recursive layer.
In addition, the (m + 1)-bit output of the uppermost layer
is the result of the whole circuit. The counter is completely
implemented by full-adder and half-adder, both of which can
be encoded based on the well-known equations, where each
half-adder (a @ b) can be encoded by three clauses:

{(a V =bV Sour), (aV =b YV cour), (ma Vv bV Sout)}a

VOLUME 8, 2020

and each full-adder (a @ b & ¢) can be encoded by seven
clauses:

{(a VbV eV Ssou), (maNvbVceV sy,
(av —=bVcVsy), (maVv —bV -—cvV som)},
{(=aV =bV cou). (ma v =cV cour), (b V =V cour) -

In addition, there is a comparator circuit which forces the
(m 4+ 1)-bit output value of the parallel counter to be not
greater than p, and can be encoded by at most m + 1 clauses.
The encoding of the Y "_, x. < p constraint based on the
circuit below requires at most 7n — 3| logon| — 6 clauses and
3n — 2 variables. For example, when n = 3 and p = 2,
the constraint can be encoded as follows:

Ap + {(xl VXV x3 Vosg), (kx1 VX2 VX3 Vosg),

(x1 Vxp VX3 Vsg), (—maVv —-bV eV so)},
B, = {(=x1 vV Vo)), (mx Vs Vosp) (ko V s Vst b
Cp = {ﬁsl V =)

The clause sets A, and B, are generated from the parallel
counter circuit which has just one full-adder. The clause set
C, is to ensure the cardinality to be not greater than 2 which
comes from the comparator circuit.

C. DATA REDUCTION FOR SET COVERING

Before encoding the model of set covering into CNF, we can
employ two reduction rules, which were introduced by
Alber et al. [18], to reduce the graph in the preprocessing
stage. These two rules are based on exploring local structures
of the graph and try to replace them by simpler structures.
It is worth mentioning that these rules are implemented with
polynomial-time complexity and can ensure that the solution
domain of the reduced graph is the same as the original graph
for the set covering problem. So, these rules do not change
the optimal solution for the set covering problem. Based on
this, we can use these two rules to reduce the graph for each
set covering subproblem.

Both rules can determine some vertices to be centers or
not, and remove these determined vertices. Given a graph
G = (N, E) and a covering radius d, the induced graph G’ =
(N, E') used for the set covering subproblem can be obtained
by removing the edges that cannot cover a node, i.e., whose
length is greater than d. Forv € N,letT'(v) = {u|{u, v} € E'}
be the neighborhood of v, and I'[v] = I'(v) U {v}. Rule 1 par-
titions I'(v) into three different sets called I'1(v), I'2(v) and
['3(v), respectively. I'1(v) consists of the vertices which are
linked to at least one vertex not in I"[v], while the vertices in
['>(v) are only linked to the vertices in I'[v] and are linked to
at least one vertex in I'1(v), and I'3(v) contains the remaining
vertices. Rule 1 suggests that, if I'3(v) is not empty, the vertex
v has to be a center, and excluding the vertices in I'2(v) and
I'3(v) from being centers never cuts off the optimal solution.
Then, these determined vertices can be removed from G. Rule
2 partitions the neighborhood set I'(v, w) = I'(v) U I'(w) of
vertices v and w in a similar way, but it judges if the vertices
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FIGURE 4. An example of the reduction rule 1 based on the graph
in Figure 1-(b).

can be fixed or removed in a more complex way. Interested
readers are referred to [18] for more details.

Let N, and N, respectively denote the set of vertices which
are determined to be centers, and the set of vertices which are
determined not to be centers. The solution of the set covering
subproblem with graph G and covering radius d contains all
the vertices in N, and does not contain any vertex in Ng.
Note that each vertex in Ny can be covered by one vertex
in N., so we need to find at most p — |N.| centers from
N\(N.UN,) to cover all the vertices of N\(N.UNy). By doing
this, all the vertices of N can be covered by a center and the
number of centers is no more than p. Let G” = (N”, E”) and
S/ = {u}U{v € N"|(u,v) € E"}, where N” = N\(N. U Ny)
and E” is obtained by removing all the edges related to the
vertices in N. U Ny, we will solve the following set covering
model via SAT solvers:

> xez1l ueN’ )
ce{c|lueS.}
n

> % <p—IN| ®)
c=1

Figure 4 gives an example of rule 1 based on the graph in
Figure 1-(b), which shows that the neighborhood of vertex 3 is
partitioned into I'{(3) = {2, 6}, '2(3) = {5} and ['3(3) = {4}.
Therefore, after employing the reduction rules for the graph
in Figure 4, vertex 3 is added into N,, while vertices 2, 4,
5 and 6 are added into N;. Then, we can obtain a reduced
graph which only contains vertex 1 by removing N. and
Ny and the set covering model will become x; > 1 and
x1 < 1, which can be encoded with only one clause (x1).
Thus, {x3, x1} is a feasible solution for this example.

IV. COMPUTATIONAL RESULTS

In this section we report the experimental results of different
SAT solvers on the classical standard benchmark instances of
the p-center problem and compare the performance of these
SAT solvers with the state-of-the-art algorithms.

A. SAT SOLVERS
The famous SAT Competition has been organized for
21 times to solve the satisfiability problem since 1992.

161236

There are many state-of-the-art SAT solvers submitted to
these SAT competitions. One advantage of our method
is that it can utilize different SAT solvers in paral-
lel. To solve our problem, we test 7 SAT solvers on
the instances from OR-lib [23] and TSP-Lib [24] and even-
tually choose 3 representative solvers including Maple_CM
solver [25], MapleLCMDistChronoBT solver [26] and
Sparrow2Riss-2018 solver [27], [28].

The Maple_CM solver is a new conflict-driven clause
learning (CDCL) solver which was developed by extend-
ing clause minimization to original clauses based on
Maple_LCM [29]. The Maple_LCM solver got the first
place of the main track in SAT Competition 2017 which
was obtained by implementing the learnt clause minimiza-
tion approach by using unit propagation based on the solver
MapleCOMSPS_DRUP [30], [31].

The MapleLCMDistChronoBT is the winner solver of the
main track of SAT Competition 2018. The solver was based
on the SAT Competition 2017 winner, Maple_LCM_Dist
[29], and was updated with chronological backtracking
(configuration {T" = 100, C = 4000}) based on the results
in [32].

The Sparrow2Riss-2018 solver is the first prize of the
random track of SAT Competition 2018 which is a combi-
nation of the solvers Sparrow [33] and Riss. Sparrow is a
Stochastic Local Search (SLS) solver that uses promising
variables and probability distribution based selection heuris-
tics, while Riss is a CDCL solver which is based on MINISAT
[34] search engine and GLUCOSE 2.2 [35], [36]. As SLS
solvers cannot prove unsatisfiability, they combined Sparrow
and Riss by first trying to solve the SAT problem with Spar-
row, which is limited for the execution with 5 - 108 flips,
and then running Riss which starts from the solution obtained
by Sparrow. By doing this, the solver’s overall behavior can
still be deterministic. However, Gaussian Elimination and
Cardinality Constraint reasoning are applied in the solver for
our experiments, which means that it cannot emit proof for
unsatisfiable instances.

B. PROBLEM INSTANCES AND EXPERIMENTAL PROTOCOL
We carry out computational experiments on three repre-
sentative sets of instances from OR-Lib [23] and TSP-Lib
[24], respectively, which were widely used by previous
state-of-the-art reference algorithms.

1) OR-LIB INSTANCES

The first set of instances consists of 40 randomly generated
instances with |N| ranging from 100 to 900 and p ranging
from 5 to 90. The graphs in this set are not complete, so we
need to calculate the shortest path between each pair of nodes
to get a complete graph.

2) TSP-LIB INSTANCES

Both the second and third sets of instances are from TSP-Lib,
which are real world application instances from the task of
drilling holes in printed circuit boards and are usually used
as the benchmarks for various routing and location problems.
The two sets respectively consist of 15 instances from u1060
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(JN| = 1060) and 15 instances from ul817 (|N| = 1817).
For these 30 instances, p ranges from 10 to 150 and the nodes
are given with two-dimensional coordinates. Thus, we need to
calculate the Euclidean distance between each pair of nodes
to get the whole distance matrix, i.e., a complete graph.

Our algorithm was programmed in C+4+ and the
experiments were conducted on a Linux PC with Intel Xeon
CPU E5-2609 v2 2.50 GHZ processor and 32 GB RAM with
8 cores. The time limit for each given radius of each instance
was set to 4 hours. Besides, we test each instance for five
times to get the average running time.

C. EXPERIMENTAL DESIGN

For each instance, we try all possible covering radii from
the previous best radius reported in the literature. Due to the
independence of set covering subproblems, we solve 8 (the
number of cores) subproblems with different covering radii
of an instance at the same time. Once a feasible solution
is obtained for a certain radius, all the subproblems with
larger radii are stopped and the subsequent smaller radii are
tried. The computation of an instance stops if a subproblem
with a radius d;—; outputs ‘SAT’ and a subproblem with a
radius d; outputs ‘UNSAT’, or when the time limit is met.
For each given radius, we can get a graph where all the
edges whose lengths are larger than the given radius are
deleted. First, we employ the data reduction rules mentioned
in Section III-C for the graph to get a simpler one. Next,
we encode the instance for the given radius with a simplified
graph into CNF format by sequential counter and parallel
counter. So, there are two different SAT instances to solve
with SAT solvers for each given radius. We finally solve these
SAT problems transformed from set covering subproblems
to judge if the given radius is feasible for the p-center prob-
lem by using Maple_CM, MapleLCMDistChronoBT and
Sparrow2Riss-2018.

Note that a SAT instance encoding a p-center instance
consists of a relatively small subset of very long clauses only
containing positive literals (constraint 1) and a large subset
of clauses encoding the cardinality constraints (constraint 2).
This fact is not exploited by the general-purpose SAT solvers
we test in this paper, but could be exploited by a SAT solver
specialized to solve the p-center problem.

D. RESULTS OF SAT SOLVERS

In this section, we conduct experiments for solving the fea-
sibility subproblems by the three SAT solvers on the three
sets of 70 instances. Table 1 shows the computational results
of the three solvers on instances from OR-Lib for the given
radius, while Table 2 and Table 3 respectively show the results
on the sets of ul060 and ul817 instances from TSP-Lib.
In these three tables, columns SEQ and PAR in Maple_CM,
MapleLCMDistChronnoBT and Sparrow2Riss-2018 show
the average CPU time (‘—’ means timeout) for each given
radius in the sequential counter encoding and the parallel
counter encoding modes. Note that there is just one row for
one instance if all the solvers can get the same minimum
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radius for both encoding modes in the given time limit.
Otherwise, there will be multi-row results for one instance
with different covering radius. From Tables 1-3, we can get
the minimum radius for all the instances in different encoding
modes that each solver can obtain within the time limit. The
minimum radius of one instance in certain encoding mode for
one solver is the best solution of the p-center problem that the
solver can obtain for the instance in the encoding mode. For
example, the best solution of pmed33 obtained by Maple_ CM
or MapleLCMDistChronnoBT in any encoding mode is 29,
while Sparrow2Riss-2018 can get 28 in the SEQ encoding
mode. Row Num. shows the number of instances for which
the solver can solve the instances to optimality or reach the
best known results and row Avg. gives the average time of
solving the instances to their corresponding best results.

From Table 1, one observes that in the same encoding
mode, for both SEQ and PAR, Maple CM and
MapleLCMDistChronnoBT can get the same best solu-
tion for all the 40 instances, which means that Maple_CM
is consistent with MapleLCMDistChronnoBT in terms of
the solution quality on these small instances in OR-Lib.
Sparrow2Riss-2018 has a little worse performance in terms
of the solution quality and computational time than other two
solvers in PAR encoding mode, but outperforms them in SEQ
encoding mode for it can obtain better results for 9 instances
in the SEQ mode. Besides, Sparrow2Riss-2018 in the SEQ
mode outperforms other two solvers for it has the smallest
average computational time. This experiment demonstrates
that both encoding mode and SAT solver have important
affects on the search performance of the algorithm.

From Table 2 and Table 3, one observes that in the same
encoding mode, whether SEQ or PAR, all the three solvers
perform the same in terms of the solution quality. It is
worth mentioning that they can obtain the optimal solu-
tions for all the 30 large instances from TSP-Lib in the
SEQ encoding mode. In addition, Maple_CM outperforms
MapleLCMDistChronnoBT in terms of the computational
time to reach the best results on the set of ul060 instances,
while it is opposite on the set of ul817 instances. Both
of them are better than Sparrow2Riss-2018 in terms of the
computational time.

E. COMPARISON WITH OTHER REFERENCE ALGORITHMS
In this subsection, we compare the best results of the
three SAT solvers with three exact algorithms (ELP, IP*
and Daskin*) and two metaheuristic algorithms (PBS and
GRASP/PR) in the literature. The total computational time of
each instance using SAT solvers can be taken as the computa-
tional time of the set covering subproblem with the smallest
radius that can be solved for the following reasons: 1) The set
covering subproblems with different radii of an instance can
be solved in parallel. 2) The initial coverage radius is set as
the previous best known result for each instance, which is a
common setting in solving many combinatorial optimization
problems, such as graph coloring [19], maximum clique [37],
etc. 3) The number of radii between the previous best known
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TABLE 1. Computational results of three SAT solvers on the set of 40 instances from OR-Lib.

Instance n p  radius Maple_CM (s) MapleLCMDistChronnoBT (s) Sparrow2Riss-2018 (s)
SEQ PAR SEQ PAR SEQ PAR

pmedOl 100 5 127 0.05 0.09 0.03 1.10 0.82 0.54
pmed02 100 10 98 0.13 0.22 0.66 2.65 0.69 0.20
pmed03 100 10 93 0.06 0.24 0.6 0.20 0.43 2.93
pmed04 100 20 74 0.03 0.02 0.03 0.04 0.3 0.20
pmed05 100 33 48 0.02 0.02 0.02 0.02 0.11 0.10
pmed06 200 5 84 0.86 0.45 5.05 478 1.05 0.54
pmed07 200 10 64 0.75 0.28 8.11 3.86 0.47 3.17
pmed08 200 20 55 0.28 0.13 5.76 102.32 0.29 12.73
pmed09 200 40 37 0.06 0.04 243 2.48 0.45 0.19
pmedl10 200 67 20 0.05 0.05 0.03 0.04 0.53 0.31
pmedll 300 5 59 1.85 2.19 11.35 14.38 2.33 7.27
pmedl2 300 10 51 1.86 2.71 9.33 10.63 1.26 17.74
pmed13 300 30 36 382047 29.74 2721.83 2359.05 0.79 1602.73
pmedl4 300 60 26 1.55 0.71 106.15 4.35 0.75 6.09
pmedl5 300 100 18 0.06 0.02 0.09 0.07 0.49 0.17
pmedl6 400 5 47 0.22 0.12 327 5.93 5.06 2.72
pmedl7 400 10 39 51.97 7.00 40.2 18.29 2.51 33.81
pmedl8 400 40 29  2698.59 10.37 28.29 18.54 1.31 1.42
28 - - - - 2.67 -

pmedl9 400 80 19 1.2 0.59 9.38 3.39 1.32 0.41
18 - - - - 6.34 -

pmed20 400 133 13 0.18 0.04 1.2 2.28 0.63 14.56
pmed21 500 5 40 0.9 0.70 11.54 5.93 5.48 5.17
pmed22 500 10 38  4365.15 527.03 920.76 966.53 24.79 8298.82
pmed23 500 50 23 32.55 25.11 2540.55 14.07 1.88 18.53
22 - - - - 15.45 -

pmed24 500 100 16 4.54 1.29 10.98 8.17 1.95 0.84
15 393348 1334.35 7603.2 1069.37 1.39 -

pmed25 500 167 11 0.44 0.05 3.44 2.97 0.46 3.03
pmed26 600 5 38 1.04 0.89 10.47 10.66 3.87 2.73
pmed27 600 10 32 2353 31.83 507.57 332.48 4.27 9.34
pmed28 600 60 19 4.57 0.68 11.12 5.78 2.23 0.55
18 - - - - 1.56 -

pmed29 600 120 13 19.09 0.48 16.75 13.81 1.42 3.67
pmed30 600 200 9 1.22 0.04 8.28 3.12 0.78 76.98
pmed31 700 5 30 3.52 3.67 19.6 10.87 6.47 8.66
pmed32 700 10 29 21.41  4408.36 3252.86 94.64 8.05 59.82
pmed33 700 70 17 21.59 0.68 18.96 12.26 3.74 1.07
16 - 210.51 - 493.53 3.56 7.49

15 - - - - 51.8 -

pmed34 700 140 11 4018.62 84.00 32.36 23.72 2.83 4.08
pmed35 800 5 30 2.6 1.91 21.27 10.59 5.35 7.26
pmed36 800 10 28 4.33 13.08 51.74 18.08 12.98 6.63
27 - - - - 39.81 -

pmed37 800 80 16 343.01 9.18 26.27 15.36 4.9 2.57
15 - - - - 10.53 -

pmed38 900 5 29 1.59 0.88 1.18 5.12 9.78 5.74
pmed39 900 10 24 2.62 0.65 17.98 16.61 17.6 16.11
23 - - - - 203.22 -

pmed40 900 90 14 84.91 21.57 7397.21 36.99 11.82 2.03
13 - - - - 28.01 -

Num. 31 31 31 31 40 30
Avg. 531.77 207.69 494.37 163.94 11.32 339.71

radius and the best radius that our algorithm can obtain is
less than 8 for each instance. Because the reduction rules
are designed for the set covering subproblems, the reference
algorithms cannot directly use these reduction rules since
these reference algorithms solve the original p-center prob-
lem where the objective is to minimize the coverage radius.
This is also one of the advantages of our approach that
existing reduction rules for set covering can be used. For this
reason, we just cited the existing results in the corresponding
references.

Table 4 presents the best results of SAT solvers on the
40 OR-Lib instances and makes comparison with ELP, IP*,
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Daskin*, PBS and GRASP/PR. Table 5 and Table 6 respec-
tively show the best results of SAT solvers on the ul060 and
ul817 instances and make comparison with ELP, PBS and
GRASP/PR. Columns fp.s; and cpu respectively show the
best values obtained by an algorithm and their corresponding
computational time (¢ = 0.001). Row Num. presents the
number of instances for which the optimal or the best known
results can be obtained for the corresponding solver. As PBS,
GRASP/PR and SAT solvers use floating point data but the
reference exact algorithms use integer data, a floating point
result is considered to be identical to the integer result if the
rounded floating point result obtained by PBS, GRASP/PR
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TABLE 2. Computational results of three SAT solvers on the set of instances from u1060.

Instance n P radius  Maple_CM (s) MapleLCMDistChronnoBT (s) Sparrow2Riss-2018 (s)
SEQ PAR SEQ PAR SEQ PAR

ul060 1060 10 2273.08 1.29 141 4.53 12.66 156.85 206.16
ul060 1060 20 1580.80 8.03 2042 18.36 26.74 154.08 182.95
ul060 1060 30 1207.77 643  10.94 15.08 29.11 178.17 181.81
ul060 1060 40  1020.56 9.17 18.09 22.13 19.74 194.75 170.74
ul060 1060 50 904.92 1491 68.39 20.23 64.77 194.37 204.01
ul060 1060 60 781.17 9.80 25.71 12.12 17.52 221.21 164.36
ul060 1060 70 710.75 846 26.34 13.71 25.37 314.30 165.44
ul060 1060 80 652.16 1441 18.81 14.04 17.99 460.26 177.11
ul060 1060 90 607.87  10.50 3.20 6.43 4.30 258.24 145.02
ul060 1060 100 570.01  16.28 6.05 7.05 9.64 170.50 144.72
ul060 1060 110 538.84 2454 6.46 11.79 11.19 441.83 144.87
ul060 1060 120 51027 13.97 4.57 11.91 6.78 450.63 147.70
ul060 1060 130 499.65 11.53 2.45 6.52 3.52 72.21 137.82
ulo60 1060 140 452.46 4.03 0.59 1.66 3.38 46.56 136.15
ulo60 1060 150 447.01 4.11 0.38 2.72 3.80 5.52 135.28
Num. 15 15 15 15 15 15
Avg. 10.50 14.25 11.22 17.10 221.30 162.94

TABLE 3. Computational results of three SAT solvers on the set of instances from u1817.

Instance n p  radius Maple_CM (s) MapleLCMDistChronnoBT (s) Sparrow2Riss-2018 (s)
SEQ PAR SEQ PAR SEQ PAR

ul817 1817 10 45791 14.62 14.32 42.61 39.86 219.16 263.48
ul817 1817 20 309.01 139.85 250.93 80.93 380.74 404.22 937.79
ul817 1817 30 240.99 190.07  1496.21 123.61 1208.47 773 8994.46
ul817 1817 40 209.45 190.48  1690.86 47.09 203.85 834.74 3012.15
ul817 1817 50 184.91 520.15  1245.65 173.81 1873.19 1409.76 10288.13
ul817 1817 60 162.64 184.80 378.75 134.17 308.36 821.99 3006.40
ul817 1817 70 148.11 79.56 126.39 46.17 165.86 945.34 832.86
ul817 1817 80 136.79 43.64 104.271 31.44 66.17 974.71 752.08
136.78 6684.76 - 2202.98 - 4014.11 -

136.77 1412.67 - 2313.89 - 2753.98 -

ul817 1817 90 129.52 331.26 99.52 146.26 148.82 1555.73 8982.34
129.51 548.72 - 370.95 - 3846.73 -

ul817 1817 100 126.99 200.96 4991 124.24 49.25 1010.77 355.09
ul817 1817 110 109.25 116.59 478.84 84.25 260.09 943.06 425.97
ul817 1817 120 107.76 79.46 27.47 54.48 26.41 929.37 214.41
ul817 1817 130 107.75 2829.27 87.93 151.78 52.9 1135.31 803.22
107.27 2268.75 - 6943.52 - 2806.46 -

104.74  12389.20 - 1558.68 - 6150.07 -

104.73 1117.65 - 941.17 - 3593.87 -

ul817 1817 140 101.6 679.78 743.96 385.56 197.89 1689.55 3651.55
ul817 1817 150 91.6 269.70 314.06 227.99 983.45 1230.56 5204.02
Num. 15 12 15 12 15 12
Avg. 383.00 568.11 343.39 474.79 1427.07 3098.86

or SAT solvers equals the integer result obtained by the exact
algorithms. There may be dozens of different edges in one
unit of solution, so the solutions obtained by the reference
exact algorithms are a little rough to some extent. Besides,
the fpes; column of ELP shows the optimal values obtained
by ELP, where the optimal solution that is not obtained by
ELP is marked with*“?”".

From Table 4, one observes that all the algorithms can
obtain the optimal solutions for all the 40 instances. We can
also observe that the average time of SAT solvers for the
40 OR-Lib instances is faster than [P* and Daskin* but slower
than ELP, PBS and GRASP/PR. The reason might lie in the
fact that these instances are relatively small and easy and
transforming these instances into SAT may miss the original
problem structure such that algorithms specially designed
for the p-center problem, such as PBS and GRASP/PR, can
solve them more easily. Table 5 shows that the results of SAT
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solvers can match the previous best known results for all the
ul060 instances. From Table 6, one observes that solving the
p-center problem via SAT solvers can improve the previous
best known results for 3 cases compared with GRASP/PR
(ul817 with p = 80, 130, 150). In addition, for the instances
of TSP-Lib, the SAT solvers can obtain the results showed
in Tables 5 and 6 with less average computational time, and
the results of TSP-Lib instances obtained by SAT solvers can
be proven to be optimal solutions (See Section V-B for the
proof).

In sum, we present the summarized computational
statistics of all the solvers on the two datasets (OR-Lib and
TSP-Lib) in Table 7, where column Sparrow gives the statis-
tics of the Sparrow2Riss-2018 solver, column Exact shows
the average statistics of the two exact SAT solvers (with the
SEQ encoding), and column Ref presents the statistics of
the best reference algorithm GRASP/PR since it outperforms

161239



I E E E ACC@SS X. Liu et al.: Effective Approaches to Solve P-Center Problem via Set Covering and SAT

TABLE 4. Comparison with the reference algorithms on the set of 40 instances from OR-Lib.

Instance n P fopt ELP IpP* Daskin* PBS GRASP/PR SAT Solvers
Soest CPU_ Joest Cpu_ frest CPU_ Jhest Cpu_ fpest CPU_ frest cpu
pmed0l 100 5 127 127 0.70 127 4.05 127 2.09 127 <€ 127 <e 127 0.82
pmed02 100 10 98 98 0.20 98 1.52 98 1.45 98 0.01 98 <e€ 98 0.69
pmed03 100 10 93 93 0.10 93 1.81 93 1.35 93 0.06 93  0.01 93 0.43
pmed04 100 20 74 74 0.10 74 1.01 74 0.92 74 <e€ 74 <e 74 0.3
pmed05 100 33 48 48 0.10 48 1.49 48 0.73 48 <e€ 48 <€ 48 0.11
pmed06 200 5 84 84 0.30 84 13.53 84 9.01 84 0.02 84 <e€ 84 1.05
pmed07 200 10 64 64 0.50 64 5.09 64 4.31 64 0.01 64 <e€ 64 0.47
pmed08 200 20 55 55 0.40 55 5.31 55 3.34 55 0.01 55 <e€ 55 0.29
pmed09 200 40 37 37 0.10 37 3.46 37 2.66 37 <e€ 37 <€ 37 0.45
pmedl10 200 67 20 20 0.30 20 2.76 20 2.57 20 <e€ 20 <e 20 0.53
pmedll 300 5 59 59 1.00 59 11.67 59 16.25 59 0.04 59  0.01 59 2.33
pmedl2 300 10 51 51 1.30 51 12.03 51 12.25 51 0.01 51 <€ 51 1.26
pmedl3 300 30 36 36 0.80 36 14.43 36 8.23 36 0.05 36 <e€ 36 0.79
pmedl4 300 60 26 26 0.90 26 6.61 26 6.81 26 0.01 26 <e€ 26 0.75
pmedl5 300 100 18 18 1.00 18 443 18 4.40 18 <e€ 18 <e 18 0.49
pmedl6 400 5 47 47 1.60 47 30.01 47 28.10 47 0.01 47 <e€ 47 5.06
pmedl7 400 10 39 39 2.10 39 30.88 39 27.06 39 0.02 39 <e€ 39 2.51
pmedl8 400 40 28 28 1.40 28 12.49 28 13.17 28 0.13 28  0.01 28 2.67
pmedl19 400 80 18 18 0.40 18 9.89 18 10.16 18 1.08 18 0.57 18 6.34
pmed20 400 133 13 13 1.80 13 13.53 13 9.30 13 0.10 13 0.03 13 0.63
pmed21 500 5 40 40 5.20 40 56.40 40 56.01 40 0.01 40  0.01 40 5.48
pmed22 500 10 38 38 4.30 38 495.20 38 60.78 38 1.12 38 024 38 24.79
pmed23 500 50 22 22 1.20 22 28.52 22 16.45 22 2.11 22 0.14 22 15.45
pmed24 500 100 15 15 4.50 15 14.64 15 12.59 15 0.06 15 0.04 15 1.39
pmed25 500 167 11 11 2.70 11 13.06 11 10.28 11 0.05 11 0.02 11 0.46
pmed26 600 5 38 38 6.10 38 401.60 38 104.20 38 0.03 38 <€ 38 3.87
pmed27 600 10 32 32 8.20 32 78.24 32 65.23 32 0.04 32 <e€ 32 4.27
pmed28 600 60 18 18 2.10 18 39.51 18 19.31 18 0.13 18 0.04 18 1.56
pmed29 600 120 13 13 5.10 13 32.00 13 23.61 13 0.05 13 0.03 13 1.42
pmed30 600 200 9 9 5.40 9 34.72 9 17.22 9 0.80 9 035 9 0.78
pmed31 700 5 30 30 8.10 30 303.00 30 122.60 30 0.03 30 <e 30 6.47
pmed32 700 10 29 29  45.20 29 447.00 29  116.80 29 0.31 29  0.05 29 8.05
pmed33 700 70 15 15 3.10 15 94.07 15 33.11 15 81.75 15 1.56 15 51.8
pmed34 700 140 11 11 6.50 11 50.23 11 29.66 11 0.04 11 0.04 11 2.83
pmed35 800 5 30 30 13.70 30 183.90 30 123.30 30 0.10 30 0.04 30 5.35
pmed36 800 10 27 27  34.50 27 3602.00 27  110.50 27 0.96 27 0.55 27 39.81
pmed37 800 80 15 15 2.00 15 105.80 15 49.02 15 0.27 15 0.08 15 10.53
pmed38 900 5 29 29  18.50 29 251.00 29 273.10 29 0.03 29  0.03 29 9.78
pmed39 900 10 23 23 27.30 23 5817.00 23 208.70 23 26.30 23 0.77 23 203.22
pmed40 900 90 13 13 7.80 13 240.80 13 462.90 13 0.46 13 0.25 13 28.01
Num. 40 40 40 40 40 40
Avg. 5.67 336.87 51.99 291 0.12 11.32
TABLE 5. Comparison with the reference algorithms on the set of TABLE 6. Comparison with the reference algorithms on the set of
instances from u1060. instances from u1817.
Instance nop fopt ELP PBS GRASP/PR SAT Solvers Instance nop Topt ELP PBS GRASP/PR SAT Solvers
Joest U Frest PU Jrest U frest  cpu Frest U Jheut CPU Jhest CpU fhest cpu
ul060 1060 10 227308 2273 53 227308 13811 227308 131 227308 129 ul817 1817 10 45791 458 2700 45791 531660 45791 60453 45791 4261
3}823 }823 §8 }23333 };gé ’Zgg };gggg 622-‘8‘3 gﬁggg lifg 53253 ggg ul817 1817 20 30901 3102 4920 30901 10243.00 309.01 4068.06 309.01  80.93
S o s pi s ims omoims ow oww o BT 70 209 300 165D M0 165D M09 IROT 0% (23
ul060 1060 50 90492 905 383 90492 23313 90492 21885 90492 1491 j : : e j i e :
o060 1060 60 78LL7 781 28 WLU 12 LT 175 8L 98 ul817 1817 50 18491 1877 9840 18491 112890 18491 47194 18491 17381
ul060 1060 70 71075 7iL 135 71076 10956 71075 11691 71075 846 ul817 1817 60 16264 163 1260 16265 83730 162.64 46943 162.64 134.17
ul060 1060 80  652.16 652 60 65216 14211 652.16  316.57 652.16 1441 ul817 1817 70 148.11 148 420 148.11 191.80 148.11 19.66 148.11 46.17
ul060 1060 90  607.87 608 38 60788 63.15  607.87 709 60787 105 ul817 1817 80 13677 137 1140 136.80 127.50  136.80 1242 13677 2313.89
ul060 1060 100 57001 570 29 57001 1754 57001 1904 57001 1628 ul817 1817 90 129.51 1307 7202 12954 296350 129.51 3859.05 129.51 37095
ul060 1060 110 53884 539 30 53884 16073 53884 6646 53884 2454 ul8l7 1817 100 12699 127 300 12701 14640 12699 235 12699 12424
ul060 1060 120 51027 510 44 51028 10765 51027 39785 51027 1397 ul8l7 1817 110 109.25 109 420 10925 1377240 109.25 695489 10925 8425
ul060 1060 130 499.65 500 4 49965 11871 49965 5818  499.65 11.53 ul817 1817 120 107.76 108 120 107.78 80.10 107.76 525 10776 5448
ul060 1060 140 45246 452 46 45246 31848 45246 12739 45246 403 ulgl7 1817 130 10473 1087 3720 10775 1120 10775  7.04 10473 94117

uos0 1060 150 44701 447 50 4701 1055 M701 437 4701 4l ul817 1817 140 10160 1052 4020 10161 494930 10160 3095 101.60 385.56

TJ’" 15 058 13 L 15 o057 13 1050 w817 1817 150 9160 947 5640 10160 31400 9244 123655 9160 227.99
= : : : : Num. 7 6 12 15
Avg. 331813 279208 1286.03 34339
other reference algorithms in terms of both solution quality
and run time. Rows Num. and Avg. present the number of From Table 7, one observes that for the random instances
instances for which the optimal or the best known results in OR-Lib Sparrow2Riss-2018, which is from the random

can be obtained and the average computational time to track and is a specialized solver for random instances, can hit
reach the best known results for the corresponding solvers, the lower bounds for all the instances in OR-Lib, while other
respectively. exact SAT solvers hit the lower bounds for only 31 instances.
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TABLE 7. The statistics of all solvers on two datasets OR-Lib and TSP-Lib.

OR-Lib TSP-Lib
Sparrow Exact Ref Sparrow Exact Ref
Num. 40 31 40 30 30 27
Avg. 11.32  513.07 0.12 824.15 187.03  688.44

40

351

30

25

20

Number of instances

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 >0.5
Ratios

FIGURE 5. The distribution of the ratios of k (the number of determined
centers) to p for the 70 instances.

For the real world application instances in TSP-Lib, all
the SAT solvers reach the best known results for all the
30 instances where the exact SAT solvers need much less
time than Sparrow2Riss-2018. This phenomenon shows that
the exact SAT solvers are more suitable for solving the real
world application instances while it is relatively easy for the
random solver Sparrow2Riss 2018 for solving the random
instances. In addition, although the reference algorithms in
the literature can obtain equal or better results with less
computational time than the SAT solvers on the random
instances, the exact SAT solvers can obtain better results
with less computational time than the reference algorithms
on the real world application instances, which is of practical
significance.

V. ANALYSIS AND DISCUSSION

A. IMPORTANCE OF DATA REDUCTION

In order to evaluate the effectiveness of the data reduction
rules to the p-center problem approach via SAT solvers,
we conduct experiments to compare the two versions of the
algorithm with and without the data reduction rules. Note
that the data reduction can determine some centers. Let k
be the number of centers determined by the data reduc-
tion. Figure 5 shows that the ratio k/p is less than 0.2 for
most instances, which means the impact of data reduction
is small for these instances. But for some instances, we can
improve the computational efficiency dramatically. Table 8
presents the computation results of the two versions of the
algorithm in the SEQ mode for some instances when using
the Maple_CM solver, where column #;(s) and #>(s) respec-
tively show the average computational time of the listed
instances with and without the data reduction rules, and
Ratio shows the ratio of the number of centers determined
by data reduction to p. From Table 8, one observes that
pmed29 can determine 30% centers by data reduction and
the time for solving pmed29 by Maple_CM with and without
data reduction is 19.09s and 3764.20s when the given radius
is 13 and the encoding mode is SEQ. Furthermore, data
reduction can improve the solution quality for 4 instances:
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TABLE 8. The computational results of two algorithms with and without
data reduction in the SEQ mode when using Maple_CM.

Instance n p  radius t1(s) to(s) Ratio
pmed08 200 20 55 0.28 5626  20.00%
pmed09 200 40 37 0.06 034  37.50%
pmed10 200 67 20 0.05 033 49.00%
pmed13 300 30 36 382047 10150.89 30.00%
pmedl14 300 60 26 0.64 2283.09  31.66%
pmed15 300 100 18 0.06 1.28 50.00%
pmed20 400 133 13 0.18 - 51.10%
pmed24 500 100 15 3933.48 - 37.00%
pmed25 500 167 11 0.44 2895.74  43.10%
pmed29 600 120 13 19.09 3764.20  30.00%
pmed30 600 200 9 1.22 - 51.10%
pmed34 700 140 11 4018.62 24.20%
ul060 1060 70 710.75 8.46 19.52  22.80%
ul060 1060 90 607.87 10.50 2286  31.10%
ul060 1060 130 499.65 11.53 27.89  34.60%
ul060 1060 140 452.46 4.03 2205  48.57%
ul060 1060 150 447.01 4.11 20.68  48.00%
ul817 1817 80 136.77 1412.67 2327.21 3.75%
ul817 1817 120 107.76 79.46 157.96 16.66%
ul817 1817 130 104.73 1117.65 2129.85 8.46%

ul817 1817 150 91.60 269.70 449.86 4.20%

pemd20, pmed24, pmed30 and pmed34, which shows the
importance of the data reduction rule.

B. THE PROOF OF OPTIMALITY

The p-center problem is transformed to a series of feasibil-
ity set covering subproblems with different covering radius
which are solved by SAT solvers. Note that if an exact SAT
solver tackles an unsatisfiable instance, the solver can prove
the unsatisfiability of the instance if it outputs ‘UNSAT’.
Thus, it is guaranteed that there are no feasible solutions for
a feasibility set covering subproblem if the output of the SAT
solver is ‘UNSAT’. Furthermore, we can prove that d;_; is
the optimal solution of the p-center problem if the output of
SAT solver is ‘SAT’ for d;_; and ‘UNSAT"’ for d;, because
this means that there does not exist a feasible solution for
the set covering subproblems with the radii which are shorter
than d;_1, i.e., there does not exist a feasible solution X with
f(X) < dj_ for the p-center problem..

Although Sparrow2Riss-2018 can get the optimal solutions
for all the 70 instances, it needs to apply the Gaussian Elimi-
nation and Cardinality Constraint reasoning which cause the
solver to be unable to emit proof for unsatisfiable instances.
So, we have to use Maple_CM or MapleLCMDistChron-
noBT, i.e., the exact SAT solvers to prove the optimality
for these 70 instances. We can prove the optimality for
29 out of 40 random instances in OR-Lib, and all the
30 real application instances in TSP-Lib, thus closing these
instances (the optimal solution of the 30 instances are listed
by fop: in Table 2 and Table 3). Although the previous exact
method ELP claimed to prove the optimality for 22 of the
30 instances in TSP-Lib, it can only give integer lower bound
for the p-center problem. That is to say, the exact solution
obtained by ELP is the rounded integer value of the real exact
solution. To our best knowledge, our proposed SAT-based
method proves the optimality for all the 30 TSP-Lib
instances by giving the real exact solutions for the first
time, showing its high performance for real world application
instances.
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FIGURE 6. Scatter plots comparing SEQ runtime (x-axis) and PAR runtime (y-axis) of the three solvers on the three sets of instances
(The three rows from top to bottom in sequence are pmed, u1060 and u1817. The three columns from left to right are Maple_CM,

MapleLCMDistChronnoBT and Sparrow2Riss-2018).

C. THE COMPARISONS OF ENCODING MODES

Figure 6 shows the scatter plots comparing SEQ and PAR
encoding modes for the three SAT solvers on the sets of
pmed, ul060 and ul817 instances. A point (x,y) in the
plots corresponds to an instance, where x(y) represents the
solving time in seconds of SEQ (PAR). A point (x,y)
where x = 14400 (y = 14400) means that the instance was
not solved within the time limit.

Although all the 70 instances have a much smaller number
of clauses and variables when using the PAR encoding
mode, which is very efficient in terms of used memory,
the solver’s performance may be worse due to the lack
of propagation strength in the PAR encoding mode. From
Figure 6a - Figure 6¢, one observes that the PAR encoding
mode outperforms SEQ on the pmed instances for most
instances when using Maple_CM and MapleLCMDistChron-
noBT, while it is opposite for Sparrow2Riss-2018.
Figure 6d - Figure 6f show that the two encoding modes
have similar performance in terms of computational effi-
ciency on the set of ul060 instances for all the three solvers.
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Figure 6g - Figure 6i show that the SEQ encoding mode
outperforms PAR in terms of computational efficiency on the
set of ul817 instances for all the three solvers.

VI. CONCLUSION

In this paper, we present a new method for solving the
p-center problem via set covering and SAT, which is the
first SAT-based method for solving the p-center problem
to our knowledge. Our proposed approach has the advan-
tage of allowing the problem to be solved in parallel due
to the independence of the set covering subproblems. The
method consists of transforming the problem to a finite
series of feasibility set covering subproblems, the simplifica-
tion of these feasibility set covering subproblems, encoding
them into CNF format with different encoding modes and
then solving the encoded subproblems using state-of-the-art
SAT solvers. The encoding modes that we use include
sequential counter and parallel counter, and the SAT solvers
consist of Maple_CM, MapleLCMDistChronoBT and
Sparrow2Riss-2018.

VOLUME 8, 2020



X. Liu et al.: Effective Approaches to Solve P-Center Problem via Set Covering and SAT

IEEE Access

We compare the computational results of 70 well-known
benchmark instances for different encoding modes when
using different SAT solvers. We find that Sparrow2
Riss-2018 is the best solver for solving these three sets
of 70 instances when using the sequential counter encoding
mode, for it can obtain the best solutions for all the instances.
However, it also has the worst time performance when using
the parallel counter mode, which indicates the importance of
choosing an appropriate encoding mode.

This work demonstrates that SAT-based approaches
provide a competitive alternative for solving the p-center
problem. In fact, our SAT based approach improves the pre-
vious best known results for 3 instances and equals the best
known ones for the remaining instances, meaning that our
SAT-based approach is better than the previous approaches
in terms of the best solution quality. Considering the notori-
ous NP-hardness of the p-center problem, we believe this is
significant.

In addition, this work establishes, for the first time
to our best knowledge, a bridge between the SAT and
p-center problems, opening promising perspectives. In fact,
the results presented in the paper are obtained by only using
general-purpose SAT solvers. On the one hand, SAT solving
is a very fast developing field and our results make it clear
that any progress in that field can be beneficial to solve the
p-center problem. On the other hand, SAT solvers could be
specialized for the p-center problem, by taking its particu-
lar features into account, which would greatly improve the
performance of SAT solvers for the p-center problem.

It is noteworthy that our proposed SAT-based method
proves the optimality for all the 30 TSP-Lib instances by
giving the real exact solutions for the first time and thus
closes these instances, showing its high performance for real
world application instances. Combined with the proof by the
the exact algorithms (ELP and IP*) in the literature on the
optimality of solutions for the instances from OR-Lib, we can
conclude that our proposed algorithm can obtain the optimal
solutions for all the 70 instances. The study in this work
inspires us that similar method can be applied for solving
other challenging combinatorial optimization problems.
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