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Abstract 

3D/4D printing offers significant flexibility in manufacturing complex structures with 

diverse range of mechanical responses, while also posing critical needs in tackling 

challenging inverse design problems. The rapidly developing machine learning (ML) 

approach offers new opportunities and has attracted significant interests in the field. In this 

perspective paper, we highlight recent advancements of utilizing ML for designing printed 

structures with desired mechanical responses. First, we provide an overview of common 

forward and inverse problems, relevant types of structures, and design space and responses 

in 3D/4D printing. Next, we review recent works that employ a variety of ML approaches 

for the inverse design of different mechanical responses, ranging from structural properties 

to active shape changes. Finally, we briefly discuss the main challenges, summarize 

existing and potential ML approaches, and extend the discussion to broader design 

problems in the field of 3D/4D printing. This paper is hoped to provide foundational guides 

and insights into the application of ML for the 3D/4D printing design. 

 

Keywords: 3D printing; 4D printing; machine learning; inverse design; mechanical 

responses. 
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1. Introduction 

3D printing, or additive manufacturing, enables the creation of complex physical objects 

from digital models. Multimaterial printing allows for the fabrication of composite 

structures with materials of different properties and different active responses [1-3]. Owing 

to the development of multimaterial printing and active materials, the emerging 4D printing 

technology takes a step further by introducing time as a dimension, allowing printed objects 

to change their shape, properties, or functionality when exposed to specific energy stimuli 

(e.g., light, heat, moisture, pH, solvent, electric/magnetic field, etc.) [4-8]. There exist 

many 3D printing techniques. Depending on how the raw material is deposited, these 

techniques can be classified into the following categories: extrusion-based methods such 

as direct ink writing (DIW) and fused filament fabrication (FFF), inkjet printing, vat-

photopolymerization methods such as digital light processing (DLP), stereolithography 

(SLA), and two-photon polymerization (TPP), powder bed fusion-based methods such as 

selective laser sintering (SLS), etc. We refer the readers to recent reviews [8, 9] for detailed 

descriptions of these techniques. 

 

Figure 1. Overview of forward and inverse problems in 3D/4D printing utilizing ML. The 

design space typically involves material distribution, topology, geometry, and stimulus 

fields. The output generally includes mechanical properties, load-displacement, physical 
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fields, and shape change.  

 

3D/4D printing offers significant manufacturing flexibility, especially in creating complex 

shapes and structures that exhibit functions and responses beyond those of printed materials. 

Here, we refer printed materials as those directly coming out of a printer without specially 

designed geometry or features. Their properties are only determined by the printing 

techniques and printer operating parameters. In 3D/4D printing, mechanical design plays 

an important role in harnessing its advantage to enable intelligent printing and advancing 

various engineering applications [10-20]. This entails defining the functional description 

of transformable or deployable systems according for various usage scenarios, on which 

computational reasoning is needed to embody knowledge and decisions related to 4D 

printing. To achieve the appropriate geometry and structure of shape-changing objects, 

decisions can be made on qualitative recommendation with the support of domain ontology 

(which is a component of symbolic artificial intelligence to formalize knowledge of an 

expertise domain with machine-interpretable description), as successfully demonstrated in 

the design of multimaterial 4D-printed objects [X,X]. However, addressing design for 

3D/4D printing via symbolic reasoning alone is insufficient and demands  both forward 

prediction of the properties, physical fields, load-displacement, and shape change of 

printed structures, and the inverse design of material distributions, topology, geometry, and 

stimulus fields (in terms of amplitude, location, and duration), as illustrated in Figure 1. 

The printed objects can range from digital composites at the pixel (2D) or voxel (3D) level, 

to metamaterials or architected materials, and other active or intelligent material systems. 

Microstructures can also be encoded in pixels or voxels to create a hierarchical or 

multiscale material system [21, 22]. The forward problem takes the inputs from the 

embodiment and detail design stages, such as material properties, material distributions, 

geometry, topology, hierarchies, and stimulus fields, and predicts mechanical-response 
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outputs such as structural properties (e.g., modulus, strength, and toughness, stiffness 

tensor for anisotropic systems), physical fields (e.g., strain and stress fields), nonlinear 

load-displacement response and, particularly, the shape or function changes of active 

material systems (which can be seen as deformation field) (Figure 1). The inverse design 

problem seeks to find appropriate design inputs for tasks such as extremizing property 

values and obtaining designated properties or responses (Figure 1).  

 

Motivated by the needs to fully utilize the manufacturing flexibility, significant 

advancements have been made in developing design strategies. Topology optimization (TO) 

[23] represents a large class of methods that optimize the geometric features within a design 

domain to achieve certain objectives. While initiated for maximizing structural 

performance and minimizing weight, TO has found significant applications to a wide range 

of design problems in 3D/4D printing [24, 25]. Examples include multiscale TO for 

enhanced structural performance [26-29] and programmed shape changes [30], anisotropic 

composite TO for enhanced performance [31, 32] and target actuated motions [33], and TO 

for programming force-displacement response [34], shape changes of various 4D-printed 

systems including active composites [35, 36], inflatable structures [37], rod-based 

structures [38, 39], and magnetoactive materials [40], and continuous shape morphing 

paths or motions of soft composites [41, 42]. In addition, TO has been used in the design 

of supports and infills for improved part printability [24]. Despite its great success, TO 

generally requires complicated mathematical derivations and can be time-consuming due 

to the computationally expensive physical simulations, mostly finite element (FE) based, 

especially when geometric and material nonlinearities are involved.  

 

Machine learning (ML), particularly deep learning [43], offers an alternative approach that 

can handle complex mapping efficiently, making them attractive tools in the design for 
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3D/4D printing. ML can be broadly categorized into three types: supervised learning (SL), 

unsupervised learning (USL), and reinforcement learning (RL). SL learns the mapping in 

labeled data, which is often used for classification and regression tasks, such as property 

prediction. USL identifies inherent structures in unlabeled data, which may be used for 

clustering, dimensionality reduction, and discovering new structures. RL involves an agent 

that takes actions in an environment to maximize a reward, which is often used for decision-

making and optimization tasks. The landscape of ML techniques is vast and consistently 

evolving. Here we list some popular methods used in design: support vector machine 

(SVM), decision trees (DT), neural networks (NN), convolutional neural networks (CNN), 

recurrent neural networks (RNN), graph neural network (GNN), generative adversarial 

networks (GAN), principal component analysis (PCA), variational autoencoders (VAE), 

gaussian process (GP), Bayesian learning (BL), active learning (AL), evolutionary 

algorithms (EA), among many others [44]. The readers are referred to textbooks (e.g., [44]) 

for working principles of these ML methods and to some recent reviews [45-47] for ML 

applications to the area of mechanics of materials. 

 

In this perspective article, we will review some recent works that apply ML methods to the 

design for 3D/4D printing. We primarily focus on the design for the mechanical properties 

or active responses of printed structures. While ML has many other applications in the 

entire field of 3D printing [48-52], such as processing parameter refinements [53, 54], in-

situ anomaly monitoring for quality controls [55], and printing material design and 

discovery [56-59], these are not the focus here. The paper is organized as follows. In 

Section 2, we will summarize existing works on ML in 3D/4D printing designs, which will 

be discussed in several categories of material systems and target properties/responses, 

corresponding to subsections 2.1 to 2.4. Section 3 is the last section for providing 

discussions and perspectives.  
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Figure 2. Applications of ML in various material systems with different design parameters 

and mechanical responses. (A) Optimized material distributions of composites for high 

toughness (top row) and strength (bottom row). (B) Hierarchical design units (left) and 

optimized designs for high toughness (right). Reproduced from Ref. [13] with permission 

from the Royal Society of Chemistry. (C) Predictions of stress and strain fields of 

composites with pixel-level material distributions using conditional GAN. (D) Inverse 

identification of material distributions based on boundary displacements using physics-
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informed ML. (E) VAE enabled low-dimensional, highly structured latent space of 

microstructures, which allows for generation of diverse architecture families with 

gradually varying geometries and stiffness. (F) Forward and inverse ML enabled two-way 

structure-property mapping, where the training of inverse NN is supervised by the 

pretrained forward NN.  

 

2. 3D/4D printing designs 

2.1 Mechanical properties of composites 

Composites that possess pixel- or voxel-level material distributions can be naturally 

encoded as number arrays, which are suitable to serve as input data for ML models. 

Extensive studies have been done on utilizing ML to predict or optimize various 

mechanical properties of composite (or heterogeneous) materials, such as effective 

modulus, strength, toughness, among others. Cecen et al. [60] employed 3D CNN to predict 

the effective modulus of 3D heterogeneous materials. Li et al. [61] utilized CNN to predict 

the effective modulus of 2D heterogeneous materials. Regarding strength and toughness, 

Buehler and coworkers [21, 62, 63] have made significant efforts in exploring the ML 

capability in composite optimizations. They developed an ML classification model [62] to 

evaluate 2D composite designs in terms of their strength or toughness, and distinguish them 

as either “good” or “bad”. The model, once trained with FE-generated data, can be used to 

assess the ranking of unseen designs, thus empowering the optimization to achieve high 

strength or toughness. The optimized designs based on this approach are shown in Figure 

2A. An ML regression model [63] was later developed and combined with EA for 

optimizing the composite strength and toughness under shear loadings. In composite 

designs based on pixels, the design space is often tremendous. To mitigate this issue, 

Buehler and coworkers [21] innovatively incorporated ML with the hierarchical design 

concept. This strategy uses specific microstructures containing numerous pixels as basic 
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design units and then performs the prediction or design in a coarse-grain manner. As shown 

in Figure 2B, they proposed three elementary design units with different anisotropies. The 

ML model was then employed to predict the mechanical properties of the composite system, 

which, in turn, enabled fast optimizations. In addition to NN and CNN, the application of 

other ML methods such as active learning [64] and reinforcement learning [65, 66] for the 

bioinspired composite designs have been explored. Furthermore, minimizing the overall 

compliance of irregular structural topologies (a form of heterogeneous materials) is a 

typical inverse problem in TO. A variety of ML models such as generative adversarial 

network (GAN) [67] and convolutional neural network (CNN) [68] have been developed 

for TO tasks. We will not elaborate on these works but refer the readers to a recent review 

[69]. 

 

2.2 Stress and strain fields 

2.2.1 Forward prediction and material distribution design 

Apart from macroscopic mechanical properties, the physical fields (e.g., stress and strain 

fields) in materials or composites are often of interest. One associated forward problem is 

the prediction of stress or strain fields given a structure. Nie et al. [70] proposed a CNN 

model that can accurately predict the stress fields of cantilever structures with moderately 

arbitrary topologies and loads. Buehler and coworkers [71] developed a conditional GAN-

based ML approach, which can accurately predict the stress and strain fields of composites 

with pixel-level material distribution, as shown in Figure 2C. The model also demonstrated 

the applicability to different component shapes, boundary conditions, and geometric 

hierarchies. Later on, they further extended this approach for the complete strain and stress 

tensor predictions, and demonstrated enhanced model generalization by enriching the 

training datasets with different hierarchies and component ratios [72].  
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The inverse problem, which manifests as various specific tasks and applications in different 

fields, has attracted significant interest. In the context of 3D printing, the goal is to design 

the material property distribution to achieve the target physical field under external loads. 

Montgomery et al. [22] managed to realize locally tunable anisotropy by using grayscale 

digital light processing (DLP) printed microstructural patterned units, where the CNN 

model was employed for the macroscale design of property field given target strain fields.  

 

2.2.2 Material characterization in experimental mechanics 

In experimental mechanics [46, 47], the inverse problem holds particular significance for 

the material characterization or elastography, i.e., to identify the mechanical property field 

based on measured deformation field. Various ML methods have been developed for this 

problem. Although it differs from the design problem in 3D/4D printing, the underlying 

objective for both problems is to establish a mapping from deformation to property, 

suggesting that ML methodologies developed for one might be adapted for the other. 

Therefore, we briefly discuss the ML strategies used in the material characterization here. 

Physics-informed neural networks (PINN), pioneered by Karniadakis and coworkers [73], 

have made significant advancements. PINN has been applied to various systems governed 

by partial differential equations (PDEs), both for forward and inverse problems. 

Specifically, Zhang et al. [74] implemented a PINN to determine the modulus field of 

nonhomogeneous hyperelastic materials subjected to external loads, based on the applied 

boundary displacement data. Later on, they expanded the approach to materials with 

heterogeneous inclusions or defects [75]. Using PINN, they were able to identify both the 

geometry (or topology) and elastic properties of the inclusions (Figure 2D), which was 

demonstrated for materials with various constitutive behaviors, possibly with large 

deformations or plasticity. Moreover, a similar PINN approach was recently proposed by 

Mowlavi et al. [76], who demonstrated the identification of inclusions with unknown 
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numbers, various properties and irregular shapes. In addition to the works above, other 

PINN methods have been proposed to identify nonhomogeneous mechanical properties 

using full-field experimental data [77-81]. One of major advantages of PINN is that it can 

integrate physical laws and data in the loss function, and thus require no or a small amount 

of data in many cases. Additionally, while PINN does not outperform conventional 

methods such as FE simulations for forward problems [82], it demonstrates superior 

performance for many inverse problems [47]. 

 

In essence, PINN represents an optimization method leveraging the strong expressivity of 

deep neural networks. Despite its strength, this optimization nature implies that a fresh 

optimization run is required for each unique deformation field, making individual tasks 

time-consuming. Supervised learning (SL), although requiring a large amount of labeled 

data, can function much faster once the training is complete and thus has also been 

employed for inverse material characterization tasks. For example, Liu et al. [83] 

developed an ML model that combines discrete cosine transform (DCT) and CNN for 

accurate modulus field identification. The DCT was used to transform data into the 

frequency domain, thereby achieving dimensionality reduction and noise filtering. The 

CNN was then utilized to learn the inverse mapping of frequency data from the strain to 

the modulus field. This demonstrates the importance of dimensionality reduction in SL 

tasks when the design or property space is huge. 

 

2.3 Mechanical metamaterials 

Mechanical metamaterials, or architected materials, represent a broad class of engineered 

structures whose properties are determined more by their geometric configurations than by 

the constituent materials. They often involve intricate microstructural units (or 

architectures), making them highly amenable to fabrication via 3D printing. Such 
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microstructures can yield exotic properties, such as tailorable anisotropy, unusual stress-

strain curves, negative Poisson's ratio, and tunable acoustic properties. Therefore, the 

inverse microstructural design for desired properties is a significant facet in the 3D/4D 

printing design. 

 

2.3.1 Anisotropic elasticity by generative models 

In the design of mechanical metamaterials, an important objective is to achieve the desired, 

often anisotropic, stiffness tensor. Here, the associated forward problem, i.e., predicting the 

homogenized elastic stiffness tensor of an architecture (often referred to as 

homogenization), is typically more tractable using supervised ML models. However, the 

inverse problem presents a significant challenge as it is ill-posed due to the infinite-

dimensional geometric design space and the one-to-many mapping nature from properties 

to structures. To tackle the inverse problem, deep generative models have been employed 

to spawn new complex architected designs. For example, Zhao and coworkers [84] 

developed a GAN model that learns microstructural features from the enormous database 

they built. This model was then used to generate a myriad of isotropic-elastic architectures 

that approach the Hashin-Shtrikman (HS) upper bounds under a wide range of porosity 

(from 0.05 to 0.75). Additionally, Li and coworkers [85] used a GAN to generate new 3D 

lattice structures whose compression strength were evaluated using a forward GP regressor 

[86], thus discovering novel lattice architectures with high compression strength. Moreover, 

they utilized a GP regressor for finding novel 2D lattices with high recovery stress [87]. 

 

Note that the design objective of these GAN-aided tasks is relatively limited, e.g., to 

extremizing a specific property. When we desire the target property to vary within a range, 

e.g., designing functionally graded metamaterials with spatially varying properties and 

microstructures, the problem becomes considerably more challenging. To tackle this 
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challenge, Chen and coworkers [88] utilized the VAE to aid the design process (Figure 

2E). After building a large database, the encoder within the VAE can compress the 

microstructure information into a low-dimensional, highly structured latent space, from 

which the initial structure can be restored by the decoder. A forward predictor (i.e., 

regressor) was further employed to learn the relationship between the latent variables and 

the stiffness. As shown in Figure 2E, by continuously sampling points in the latent space, 

they generated diverse architecture families with gradually varying geometries and 

stiffness. This, in conjunction with conventional macroscale TO, enabled the multiscale 

design of functionally graded metamaterials that achieve target shape changes. Later on, 

Chen and coworkers [89] further utilized the same approach for the design of metamaterial-

based mechanical cloaks. In addition to VAE, they also employed latent variable GP to 

obtain a latent space for the designs of 2D and 3D lattice metamaterials [90]. 

 

2.3.2 Anisotropic elasticity by forward ML-supervised inverse ML model 

Alternatively, Kochmann et al. proposed a general inverse design framework that 

ingeniously exploits a forward ML model to supervise an inverse ML model, and applied 

it to the spinodoid metamaterials [91]. Figure 2F illustrates the concept of this approach. 

The forward ML model, which takes the design parameters as input to predict the stiffness 

(property), is pre-trained using labeled data and then leveraged to train the inverse model 

through the following procedure. The inverse model takes the target property as input and 

yields a trial design, which is fed into the forward model to predict the trial property. The 

inverse ML model is trained by minimizing the discrepancy between the predicted and 

target properties. Once trained, the inverse model can instantaneously generate the 

optimized designs on-demand, while the forward and inverse models together also provide 

a computationally efficient two-way structure-property mapping. Moreover, their approach 

enables the design of spatially varying architectures for functional grading. Later on, they 
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extended this design framework to truss (or lattice) metamaterials by incorporating an 

appropriate design parameterization [92], as well as to the pore growth-based cellular 

metamaterials [93]. More recently, they incorporated the forward ML model into gradient-

based multiscale TO, where the ML allows for rapid forward homogenization given 

microstructure and efficient computation of gradients via automatic differentiation (AD), 

enabling the accelerated multiscale TO of functional graded spinodoid metamaterials [94]. 

 

2.3.3 Stress-strain response 

Owing to their unique microstructures, mechanical metamaterials often exhibit unusual 

stress-strain curves under external loads. The rational design of these structures, aimed at 

achieving diverse target load-deformation responses, holds significant engineering values. 

Given the vast geometric design space, ML has been exploited for accelerating the inverse 

design process. For instance, Wang et al. [95] combined an NN forward model and an EA 

to design novel central-symmetry, shell-based metamaterials with various target 

compressive stress-strain curves, such as strain hardening and softening. Note that a large 

amount of datapoints is needed to well represent a stress-strain curve, which implies high 

data dimensionality and can impair network performance. Employing multiple NNs can 

improve performance while also increasing computational cost [95]. This issue is 

addressed in an alternative study with a different metamaterial system, where Deng et al. 

[96] utilized PCA to condense the stress-strain data, obtaining their principal components. 

They then trained a NN to directly learn the relationship between the geometric design 

parameters and the resulting principal components, which achieves high prediction 

accuracy. Combining NN with an evolution strategy (a class of EA), they achieved an 

effective inverse design. Notably, they also attempted to use an inverse NN to learn the 

mapping from response to design, demonstrating that an inverse NN does not perform well 

due to the ill-posed nature of the inverse problem. Moreover, Bayesian ML has also been 
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used to design super-compressible metamaterial blocks [97].  

 

In addition to the mechanical response mentioned above, other physical properties of 

metamaterials, including acoustic and optical properties, have also attracted significant 

interests and inspired studies utilizing ML methods [98-101]. We will not elaborate on these 

here but refer the readers to a recent review [102]. 

 

2.4 Active shape-change response by 4D printing 

Integrating 3D printing with active materials (or stimuli-responsive materials) enables the 

emerging 4D printing technique [8]. The ability to spatially control mechanical properties 

of multimaterial 3D printing further offers a vast design space. In general, the 4D printing 

concept is not limited to shape changes, but also property or functionality changing. In this 

section, we mainly discuss works using ML for designing shape-change response in 4D 

printing, possibly involving general active material systems. Generally speaking, design 

for shape change could be more challenging than that for mechanical properties such as 

stiffness and toughness, as high-dimensional data are needed to fully describe a shape 

change.  

 

2.4.1 Finite element – evolutionary algorithm approach 

To exploit large design space offered by multimaterial 3D printing, the computational 

design integrating mechanical simulations and optimizations has become a highly capable 

tool. For example, the gradient-based TO has made great progress [35-42], yet it may suffer 

from low design efficiency and high numerical complexity when geometric and material 

nonlinearities are involved. Alternatively, gradient-free optimization algorithms such as EA 

have also achieved great success. For example, Hamel et al. [103] employed the FE and 

EA (FE-EA) for the inverse design of active composite (AC) beams with voxel-level 
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material distributions. The approach was later extended to magneto-AC beams by Wu et al. 

[104], who also developed voxel-level encoding approach in direct ink write 3D printing 

method. Athinarayanarao et al. [105] used FE-EA approach to design AC beams integrated 

with topological void voxels. The FE-EA approach is time-consuming and cannot deal with 

very complicated target shapes. This is because the EA typically requires numerous 

forward FE simulations to explore a large design space, thus suffering from high 

computational cost. To reduce computational cost, researchers have developed forward 

reduced order models (ROMs) to speed up evolutionary designs for different material 

systems, such as 3D voxel ACs [106, 107] and magneto-AC beams [108, 109]. Yet, faster 

forward models, preferably capable of handling vast amounts of data, are still highly 

desired to enable more efficient inverse designs. As such, the ML approach is particularly 

suited to deliver ultrafast, massive predictions and has been extensively exploited to 

address the inverse design problem.  

 

 
Figure 3. Applications of ML in various active material systems for designing active shape-

change response. (A) Forward predictions using RNN-based ML and inverse design using 
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ML-EA for 4D-printed AC structures. (B) Forward predictions using ResNet and inverse 

design using ResNet-empowered DABC algorithm for 4D-printed magneto-mechanical 

metamaterials. Reprinted (adapted) with permission from [104]. Copyright 2022 American 

Chemical Society. (C) Inverse design of inflatable composite membranes using an inverse 

NN. (D) Inverse design of buckling mesosurfaces using an inverse NN. 

 

2.4.2 Integrated forward ML and optimization algorithms 

One common approach is to use ML as forward predictive models, which is combined with 

optimization algorithms for the inverse design. In this case, it is crucial to select the 

appropriate network architecture based on the specific design problem (active material 

systems, target response, etc.). For AC beams, Zhang et al. [110] applied multiple ML 

models to the forward prediction problem and found the CNN performed best. Later on, 

Sun et al. [111] found the RNN is particularly suited for the beam problem as it inherently 

preserves a sequential data dependency similar to that arises from the beam deformation 

(Figure 3A). The RNN thus demonstrated remarkably high accuracy in the forward shape 

prediction based on material distributions, which then empowered EA to achieve highly 

efficient inverse designs of complicated, even hand-drawn, target shapes. For another AC 

system, magneto-mechanical metamaterials, Ma et al. [112] ingeniously encoded the 

magnetization distribution into a 2D array and utilized a deep residual network (ResNet) 

model to learn the relationship between magnetization distribution and active strain 

(Figure 3B). They further demonstrated the ResNet-empowered discrete artificial bee 

colony (DABC) algorithm can rapidly achieve inverse designs for various target active 

strains and Poisson's ratios. In addition, ML has also been used for designing shape changes 

of auxetic metamaterials with hierarchical pattern distributions [113] and for predicting the 

bending angle of soft pneumatic robots given geometric parameters [114].  
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2.4.3 Inverse ML approaches 

One alternative approach is to train an inverse ML model that maps from the target response 

to the optimized design. For example, for inflatable composite membranes, Forte et al. [115] 

successfully utilized an inverse NN to learn the mapping from 3D target inflated shapes to 

the optimized 2D pixel-level material distributions (Figure 3C). Similarly, for buckling 

mesosurfaces, Zhang and coworkers [116] trained an inverse NN to directly predict the 

optimized microlattice precursor configurations needed to realize complex target surfaces 

upon buckling (Figure 3D). More recently, they applied a similar strategy for the inverse 

design of buckling frame structures that can morph into complex target shapes [117]. Note 

that these inverse ML models were all trained to learn the inverse mapping directly from 

the data. Despite their successes, such models may struggle with complex inverse problems 

where multiple distinct designs can produce very similar responses (thus causing a one-to-

many issue that can be harmful to the training), as exemplified in metamaterials design 

[96]. In this case, the use of forward ML to supervise an inverse ML model [91] can 

facilitate learning the inverse map, as discussed in Section 2.3.2. Espinosa and coworkers 

[118] utilized this approach to program the shape changes of kirigami metamaterials upon 

tension-induced buckling. 

 

3. Perspective 

It is typically more tractable to learn the forward mapping from designs to responses given 

labeled data. However, the inverse problem is challenging as it is ill-posed due to the large, 

often infinite-dimensional, design space and the one-to-many mapping nature from 

responses to designs. Moreover, in many design tasks, instead of simply optimizing or 

extremizing a single property, the target response is desired to vary within a range, such as 

achieving the various target mechanical properties or attaining different target shape 

transformations under external/internal stimuli. This scenario makes the inverse design 
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more challenging, particularly when the target response involves high-dimensional data, 

such as the shape-change response based on the material distribution in 3D space and 

stimuli distribution over both time and space. ML holds significant promise in tackling 

these challenges. In the following, we briefly summarize existing and potential strategies 

for the effective application of ML in 3D/4D printing designs (Figure 4). 

 

 
Figure 4. Overview of ML strategies for designs in 3D/4D printing. 

 

In inverse design, accurate forward prediction is crucial and, depending on the specific 

problem, it may require varying amounts of data. As the design space is typically huge, 

using some data dimensionality reduction methods, such as PCA, DCT and AE, to pre-

compress the data often facilitates the learning and improves the performance. Additionally, 

observing the specific problem to select an appropriate network architecture is important. 
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With an efficient forward ML (F-ML) model in place, several strategies exist for the 

optimization. 

First, combine an F-ML with an optimization algorithm, either gradient-based or gradient-

free. Compared to conventional computational methods, the high speed of ML allows for 

accelerated design with any optimization algorithms, as they all involve the forward 

prediction steps. Additionally, the automatic differentiability of F-ML allows for efficient 

computation of gradients (or sensitivities) and thus can significantly accelerate gradient-

based optimizations. 

Second, utilize generative models like VAE or GAN to generate new designs and 

employ an F-ML for screening. Specifically, VAE can be used to create a 

continuous, structured latent space, and in this case, the F-ML can learn the 

mapping from the latent variables to the property. Note that EA may also be seen 

as a form of generative modeling. 

• Third, integrated F-ML and RL may be used for the inverse design. Previous studies 

have employed RL for the toughness maximization of 3D-printed composites [66] 

and the compliance minimization of structural topologies [119]. In these works, the 

FE was utilized for the reward evaluation during the RL training, which is 

computationally expensive. Integrating pretrained F-ML with RL could 

significantly improve the design efficiency, rendering RL more feasible for large-

scale problems. 

 

Furthermore, methods based on inverse ML (I-ML) can be used, which may or may not 

need F-ML depending on the specific training strategy for the I-ML. One strategy is to 

directly train the inverse model using labeled data, which can be effective at times [83, 115] 

but often fails for complex inverse problems [96, 120] due to the ill-definition (i.e., one-

to-many mapping). An alternative strategy leverages the F-ML to train the I-ML (i.e., F-
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ML supervised I-ML). In this case, the I-ML takes into the target property and yields a trial 

design, which is fed into the F-ML to predict the trial property. The training of the inverse 

ML model is done by minimizing the difference between the predicted and target properties. 

Moreover, the I-ML training may be supervised by other differentiable forward models 

such as ROMs, not necessarily F-ML. For all strategies above, once the training is complete, 

the I-ML can promptly generate the optimized designs. 

 

To delve even further into the perspectives and, more specifically, to leverage the benefits 

of ML while ensuring a complete understanding, there is a strategic need to integrate 

materials/design informatics and ML for scientists [123-130]. This trend of merging 

symbolic AI and ML is commonly referred to as neuro-symbolic integration. It entails 

constructing a comprehensive knowledge/database enhanced with computational 

procedures to discover innovative materials and structures. Symbolic logic representations 

can then be used in ML to incorporate background knowledge in learning models and 

algorithms. This approach ensures transparency to humans, deductive reasoning, the 

integration of expert knowledge, and structured generalization, particularly in scenarios 

with limited data where physics is essential [131,132].  This symbolic AI layer proves 

valuable for working with small datasets and/or providing rationale in quantitative 

investigations involving extensive data generated from high-throughput computational 

materials design.  

 

Beyond achieving material or structural designs with optimized responses, the reliable and 

accurate printing of intended designs is also crucial. This involves issues such as design 

optimizations considering manufacturability/printability, printing parameters refinement, 

quality monitoring and controls, and material design and discovery. Additionally, 

integrated design for the process-structure-property mapping may be important [121]. 
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Using DLP as an example, the desired voxel-level material distributions may deviate 

significantly from the actual printing, especially for small-sized objects, due to factors such 

as light penetration, uneven light distribution and species reaction-diffusion [22, 122]. In 

this case, refining printing parameters (e.g., light field distribution) for appropriate 

compensations poses a multiphysics inverse problem, which may also be addressed using 

ML strategies outlined above. 

 

In conclusion, this perspective paper highlights the rapidly growing role of ML in 

addressing the complex inverse design problems in 3D/4D printing. First, we provide an 

overview of common forward and inverse problems, relevant types of structures, and 

design space and responses in 3D/4D printing. Next, by reviewing recent works that 

employ a variety of ML approaches, we provide an in-depth discussion on how ML can be 

harnessed to design printed structures with specific mechanical responses, from structural 

properties to load-displacement responses, physical fields and active shape changes. 

Finally, after discussing the challenges, we highlight the existing ML approaches and 

discuss their potential extensions. Broader design problems in the field of 3D/4D printing 

are further discussed. Despite existing challenges, the integration of ML into 3D/4D 

printing design has immense potential to revolutionize the field. Our work aims to serve as 

a foundational guide, offering critical insights for researchers and practitioners looking to 

leverage ML for efficient and intelligent designs in additive manufacturing. 
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