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Abstract—In this paper, we will assess the relevance of applying
hierarchical agglomerative clustering algorithms on medium
voltage feeder descriptive parameters (average line impedance,
capacity, total length, etc.) in order to select representative feeders
for long term planning studies. To achieve this, we start by
creating a dataset of medium voltage feeders (bus and line
geometries and characteristics) by combining domain knowledge
with open datasets of distribution network layouts, district level
electricity consumptions and building footprints. We then use
this dataset to calculate descriptive attributes for each feeder as
well as their maximal load hosting capacity and the associated
type of constraint. Afterwards we perform a statistical analysis
of the descriptive attributes in order to select the most relevant
to use as inputs of the clustering algorithms. Finally, we apply
a hierarchical agglomerative clustering algorithm with varying
number of clusters, assess the quality of the results using internal
and external validation and evaluate the ability of the medoids
of each cluster to represent the behavior of the corresponding
feeders.

Index Terms—medium voltage feeders; hosting capacity; clus-
tering

I. INTRODUCTION

To achieve their long term goals of decarbonisation, many
countries are planning to replace their use of fossil fuels by
electric alternatives (e.g. EVs and heat pumps) along with the
development of low-carbon electricity generation, including
distributed renewable energies. From the standpoint of the
electricity distribution network, this will entail shifts in loading
conditions and power flows (including the possible appearance
of reverse power flows). The extent to which these shifts
will result in changes in operational and investment costs will
depend on the electrical and topological characteristics of each
medium and low voltage network as well as the geographical
distribution of the associated loads and generations and their
future evolution. As a consequence, evaluating the costs and
benefits of a decarbonisation strategy (including the deploy-
ment of Smart Grid technologies such as distributed storage
or VAR control) would, in theory, require the simulation
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of projected load flows for every medium and low voltage
network. As this would be impractical for large distribution
networks comprising thousands of medium voltage networks
and hundreds of thousand of low voltage networks, significant
research interest has been devoted to identifying ”representa-
tive” or ”typical” medium or low voltage feeders. The purpose
of this effort is to allow complex network studies to be
performed on a limited subset of feeders, from which results
for the complete set can be extrapolated. The first example of
such a study is [1], in which 12 representative medium voltage
feeders are selected using a K-Means clustering algorithm.
An external validation is performed by comparing the results
of network studies (voltage drop, total losses, power factor,
etc.) performed on the entire system with those extrapolated
from the representative feeders. The second example is [2]
which used an eigenvalue approach to clustering to select
representative feeders based on their impedance and active and
reactive power flows. After the authors of [3] (summarized in
[4]) produced a ”taxonomy of 24 prototypical feeder models”
for the U.S. Department of Energy, a renewed interest in the
subject led to the publication of several studies following a
similar pattern such as [5], [6] or [7] :

1) Computation of feeder parameters
2) Elimination of outliers or erroneous feeders
3) Statistical study of feeder parameters (e.g. analysis of

correlation and principal components)
4) Selection of parameters to use as inputs of the clustering

algorithm
5) Selection and design of the clustering algorithm, includ-

ing the selection of the number of clusters
6) Interpretation and/or validation of the results

The authors in [8] and [9] provide a complete review of
such studies, in particular by categorizing them according to
the type of clustering algorithm and the scales of both the
system studied and the representative networks selected. In
this article, we will adopt a similar approach and focus in
particular on examining to what extent the networks selected



can be used to extrapolate results on hosting capacity for the
complete system. To achieve this, we will introduce quality
measures of the clustering results related to the ability of the
representative feeders to predict both the type of constraint
and the hosting capacity of the feeders in their cluster.

II. DATASET CREATION

Obtaining a large enough, homogeneous and coherent net-
work dataset (including network topology, line characteristics
and load distributions) is the first step in the selection of
representative networks. In this article, we will achieve this
by relying on open datasets made available in France under
a 2016 law governing the release of data produced by public
entities. As these datasets do not contain all the information
we need, we will combine them with domain knowledge to fill
in the gaps. While the datasets are available for all of mainland
France, we will focus in this study on Auvergne-Rhône-Alpes,
a large region with a diverse mix of climate conditions and
population densities.

A. Data sources

We will make use of three open datasets to create the
network dataset :

1) Distribution network layout. This dataset contains the
geographic positions of HV/MV and MV/LV substa-
tions as well the geometries of the MV and LV lines.
Overhead and underground lines are differentiated but no
other characteristics are known. Currently the dataset is
available only for the parts of the network managed by
the french DSO ENEDIS (95% of the country size).

2) Local energy consumption. This dataset contains the
annual energy consumptions (electricity and utility gas)
as well as number of customer by sector (residential,
industry, service sector, agriculture) and by IRIS1.

3) BD TOPO®, produced by IGN. This dataset contains,
among other things, the footprints, sector (residential, in-
dustry, service sector, agriculture) and number of floors
of every building

B. Network topology creation and line characteristics alloca-
tion

To establish the topology (i.e. how the lines and buses
are connected), the first step is to create the set of feeders
supplied by a given HV/MV substation by selecting the lines
closest to the substation. Then the feeders are grown by
connecting subsequent lines according to the proximity of their
extremities. If a line can be connected to more than one feeder,
it is connected to the shortest one. Buses are created at the
points of connection between two lines. If a MV/LV substation
is close to a bus, it is merged with it.

To allocate the line characteristics, two different procedures
are applied for overhead and underground lines. For overhead
lines, the backbone of the feeder is identified by iteratively
adding to the backbone the line with the most downstream

1Sub-municipal territorial division created for the purpose of statistics
publication

MV/LV substations, starting from the HV/MV substations. The
procedure is stopped when there are no lines with more than
10 downstream MV/LV substations. Then the characteristics
of 148 mm² cables are allocated to lines that are part of the
backbone, while the other lines receive the characteristics of
54 mm² cables. For the underground lines, the feeders are
separated into two categories : ”dedicated” feeders supplying
less than 5 MV/LV substations, for which the characteristics
of 240 mm² cable are allocated, and other feeders for which
the characteristics of 150 mm² cable are allocated.

This algorithm has been designed and implemented by
Roseau Technologies.

C. Bus annual and peak load allocation

To allocate the annual and peak loads to each bus, we use
the local energy consumption and BD TOPO®datasets in the
following manner :

1) Determine the buildings inside each IRIS by performing
a spatial join between building footprints and IRIS
borders using the ”within” relationship. For the building
footprints that intersect several IRIS, assign them to the
IRIS for which the intersection has the largest area.

2) For each building, calculate the floor area by multiplying
the footprint area by the number of floors. If it is
unknown, assume that there is one floor.

3) For each IRIS and each sector, allocate the annual load
and number of customers to each building of the same
IRIS and sector proportionally to its floor area

4) Define the building connected directly to the MV net-
work as those for which the annual load by customer
is above a given threshold. The threshold is set to 70
MWh/customer so that the number of MV customers
fits publicly available country level statistics on MV
customers.

5) Define a bus as supplying a MV customer when a
MV/LV substation is present but no public LV network
is connected to it.

6) Perform a spatial join between LV-supplied building
footprints and LV buses using the ”closest” relationship
and aggregate the annual loads and number of customers
if a bus is the closest one to several buildings. If
there are multiples buses that are the closest ones for
a given building, divide the annual loads and number
of customers by the number of buses and allocate the
result to them. Do the same for MV-supplied buildings
and MV customer buses.

7) For each MV/LV substations with LV feeders connected
to it, aggregate the annual loads and numbers of cus-
tomers of the LV buses it supplies.

8) Compute the peak load by dividing the annual loads by
a factor of 3900 hours for LV customers and 5500 hours
for MV customers. These factors have been computed
using country level open data on 30-minute resolution
load data.



D. Medium to low voltage transformer nominal power allo-
cation

As we aim to compute the load hosting capacity of MV
feeders, it is necessary to estimate the nominal power of
MV/LV transformers as this can constitute a limit to the
electricity supplied by a given feeder. To achieve this, we rely
on domain knowledge of the nominal powers of standard trans-
formers (between 50 kVA and 1000 kVA) and the associated
share in the existing stock.

To assign a nominal power to each MV/LV substations
substations supplying LV customers, we sort them by increas-
ing order of peak load and associate them with increasing
transformer nominal power while respecting the share of
nominal powers in the existing stock. When the peak load is
above 1000 kW, the first multiple of 1000 kW above the peak
load is selected. The same procedure is applied to substations
supplying MV customers.

E. Descriptive attributes

Using the procedure described above, we obtain a set of
4551 MV feeders supplied by 391 HV/MV substations, for
which the topology, geometry, line characteristics and MV/LV
substation nominal powers are known. From this, we compute
a set of 24 descriptive parameters taken mainly from [3] and
[8], with particular care taken to include parameters relevant
to hosting capacity estimation.

F. Elimination of erroneous feeders

Due to the exhaustivity of the source datasets, special
purpose MV feeders (e.g. backup feeders) are present in the
resulting dataset. After analyzing a sample of feeders, we have
decided to remove the feeders with a total line length below 50
m or a total nominal power below 250 kVA. This corresponds
to 395 feeders, or 8.7 % of the sample, but only 0.53 % of
the total line length and 0.39 % of the total nominal power.

G. Load hosting capacity

The load hosting capacity of each feeder is computed by
performing a sequence of power flows2 with increasing appar-
ent power supplied to the MV/LV substations. At each step,
the apparent power supplied to every substation is increased by
0.5 % until it reaches 110 % of the nominal power. Then, the
compliance with voltage and thermal line rating constraints is
evaluated for each step. If a constraint is violated at step N , the
hosting capacity is set to the total active load supplied at step
N−1 and the type of constraint (”voltage” or ”line rating”) is
attributed to the feeder. If the constraints are violated in none
of the steps, the hosting capacity is set to the total active load
supplied at the last step and the type of constraint ”transformer
rating” is attributed to the feeder. The voltage compliance
check is performed for minimal voltages ranging from 0.95
p.u. to 1.02 p.u. in order to evaluate the sensitivity to voltage
quality requirements.

2BFS using a three-phase balanced, radial, line impedance model as
described in [10]. The source voltage is set to 1.03 p.u.

III. CLUSTERING

A. Variable selection

Using correlated variables as clustering inputs can lead
to bias, redundancy and create a false impression of cluster
separation. To prevent this, we will select a subset of ”poorly-
correlated” variables, using a methodology heavily inspired
by [8]. Concretely, we calculate the Spearman correlation
coefficient for each pair of variables and apply a hierarchical
clustering algorithm using the distance defined in Eq. 1.

Dist(x, y) = 1− |Corrspearman(x, y)| (1)

The rationale for such a procedure is to identify clusters of
variables among which the correlation (negative or positive)
is high. Fig. 1 displays the evolution of the distance between
merged clusters as a function of the number of clusters, with
an ”elbow” suggesting the presence of 6 clusters.

Fig. 1: Distance between merged clusters

For each of the 6 clusters, we choose the variable with the
highest relative standard deviation as its representative :

• Overhead line mean length (in km)
• Maximal line thermal capacity (in kVA)
• Total line length divided by total nominal power (in

km/kVA)
• Total nominal power of MV/LV substations (in kVA)
• kWΩ (see [8])
• Impedance closeness

B. Algorithm description

While K-means clustering has drawbacks in the context
of representative feeder identification 3, it has been the most
widely used for this purpose to date as it is more computation-
ally efficient than the alternatives on large datasets. For this
study, we have elected to use an agglomerative hierarchical
clustering (AHC) with a Ward linkage and euclidean distance
by taking advantage of the efficient implementation provided
by [11]. Input variables are standardized by removing the mean
and scaling to unit variance. The number of clusters considered
varies from 10 to 4150 by increment of 10. For each cluster,
the medoid (i.e. the feeder whose average distance with the
other cluster member is the smallest) is used as representative.

3Difficulty in identifying non-globular, unevenly sized clusters



C. Internal validation
Internal validation of the clustering results is often used to

assist in selecting a suitable number of clusters. It relies on
quality measurements that depend only on the input variables.
For AHC using Ward linkage, a straightforward option is to
use the distance between the two clusters merged at any given
step. In that case, the elbow method is applied to select the
number of clusters. Another widely used quality measurement
is the silhouette score, whose value should be maximised. Fig.
2 presents the two quality measurements for clusters counts
varying between 2 and 100. Using the distance between merge
clusters, the optimal number of clusters seems to lie between
20 and 30, while using the silhouette score it seems to lie
between 10 and 15.

Fig. 2: Clustering internal quality measurements

D. External validation
External validation consists in confronting the clustering

results to an external measurement of quality, i.e. one not
relying on the variables used in the clustering process. In
general, this is performed after the internal validation, in order
to verify that the number of clusters chosen is suitable for the
purpose of the study. In our case, we want to ensure that the
representative feeders are able to accurately estimate both the
hosting capacities and the types of constraint of the feeders
from their cluster. To illustrate this, Fig. 3 contains a scatter
plot of actual feeder hosting capacity (minimal voltage set
to 0.98) as a function of their representative feeder hosting
capacity in the case of 30 clusters.

While this number of clusters was deemed suitable ac-
cording to internal measurements, we can observe that the
correlation between actual and predicted values is poor and
that some clusters seem to contain feeders with different types
of constraints.

By building on the works in [8] and [12], we propose
two external quality measures that can be computed for each
number of clusters :

• The coefficient of determination of the predicted hosting
capacity relative to the actual one, which aims at mea-
suring the ability of the representative feeders to predict
the hosting capacity of their cluster members.

• The share of feeders with a type of constraint identical to
their representative feeder, which aims at measuring the

Fig. 3: Actual vs predicted hosting capacities (30 clusters)

ability of the representative feeders to predict the type of
constraint of their cluster members.

As an example, in the case presented in Fig. 3, the coef-
ficient of determination is 0.66, while the share of feeders
with a correct type of constraint is 81.4 %. While the specific
level of accuracy needed is purpose-dependent, it is safe to
say that such a low level would not be suitable for most of
the applications of representative that have been envisioned.
Fig. 4 and Fig. 5 show the evolution of the two external
quality measurements for numbers of clusters ranging from
10 to 1000, and for the range of minimal voltages considered.

Fig. 4: Quality measurement of hosting capacity prediction

E. Result interpretation

In a broad sense, we have managed to reproduce both the
results in [12], where large dispersions of hosting capacities
inside clusters were observed when using numbers of clusters
in the range of 10 to 30, and the results of [8], where relatively
low levels of constraint type purity were observed when using
numbers of clusters below 10. However, it should be noted that
the quality measurements used in those studies (boxplot-based



Fig. 5: Quality measurement of constraint type prediction

in [12] and cluster purity in [8]) only aim at measuring the
level of homogeneity inside clusters, while the measurements
introduced here aim at measuring the quality of the prediction
provided by the representative feeders. As a consequence,
these can be used to select a number of clusters (and thus
representative networks) to use in a particular study as a
function of the level of accuracy expected for the study.

We can also observe that both quality measurements in-
crease rapidly up to around 200 clusters, after which the
incremental gains accrued by increasing the number of clusters
become marginal. Thus we can consider that, absent specific
accuracy requirements, the choice of 200 clusters represents
a good compromise between number of clusters and quality
(see Fig. 6 for a scatter plot with 200 clusters). We can remark
that this is one to two orders of magnitude higher than what is
generally considered an optimal choice of number of clusters
(see Table 2 in [9], in which 10-25 is considered a ”large
number” of clusters).

Fig. 6: Actual vs predicted hosting capacities (200 clusters)

IV. DISCUSSION AND CONCLUSION

In this study, we have applied an agglomerative hierarchical
clustering algorithm to a set of more than 4000 MV feeders in
order to extract representative feeders. We have then employed
internal quality measurements that are generally used to de-
termine the optimal number of clusters and have shown that
this approach leads to a number of clusters that is too small
to adequately represent the diversity of feeder behaviour in
terms of load hosting capacity. This has led us to introduce
two new external quality measurements related to the hosting
capacity. These new measurements suggest that the appropriate
number of clusters is one to two orders of magnitude higher
than what is generally admitted. While this result is significant
in itself, several avenues of inquiry remain open, in particular
pertaining to its generalization to other clustering algorithms,
feeder datasets (especially larger datasets) and study objectives
(e.g. PV hosting capacity or Volt-Var control).
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