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Abstract
Due to the complex architectural diversity of biological networks, there is an increasing need to complement
statistical analyses with a qualitative and local description of their spatial properties. One such network is the
extracellular matrix (ECM), a biological scaffold for which changes in its spatial organization significantly impact
tissue functions in health and disease. Quantifying variations in the fibrillar architecture of major ECM pro-
teins should considerably advance our understanding of the link between tissue structure and function. Inspired
from the analysis of functional magnetic resonance imaging (fMRI) images, we propose a novel statistical anal-
ysis approach embedded into a machine learning paradigm, to measure and detect local variations of meaningful
ECM parameters. We show that parametric maps representing fiber length and pore directionality can be ana-
lyzed within the proposed framework to differentiate among various tissue states. The parametric maps are derived
from graph-based representations that reflect the network architecture of fibronectin (FN) fibers in a normal, or
disease-mimicking in vitro setting. Such tools can potentially lead to a better characterization of dynamic matrix
networks within fibrotic tumor microenvironments and contribute to the development of better imaging modalities
for monitoring their remodeling and normalization following therapeutic intervention.

Impact Statement
Quantification of phenotypic variation during tissue development and/or disease progression is essential for
the understanding of different pathologies. All organs and tissues contain a non-cellular core component
known as the ECM, composed of a network of macromolecules whose architecture depends on the pathophys-
iological state of the tissue. To derive a meaningful comparison of ECM between healthy and diseased tissues,
computational frameworks that account for the localization of areas of phenotypic variation are needed. Here
we introduce a novel framework for the statistical analysis of parametric maps calculated from graph-based
representations of fibers composed of FN, a provisional ECM component that guides ECM organization. Our
framework is inspired from the statistical analysis of fMRI parametric maps and is embedded in a machine-
learning model to compare distinct states of ECM fiber networks, both quantitatively and qualitatively. These
methods may be further developed and implemented in ECM profiling of tumor/fibrotic tissue to provide both
valuable insight into specific roles of ECM landscapes and their remodeling in disease, and more specific
diagnostic, prognostic, and predictive companion biomarkers in the clinic.

1 Present address: A-I.G., Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; G.E., Centre de Recherche en Cancérologie de Marseille, U1068, INSERM, Marseille, France.
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1. Introduction2

During normal development and disease progression, tissues undergo various remodeling processes,3

which can, in turn, affect their physical characteristics, yielding heterogeneous morphologies. Auto-4

mated detection and quantification of these phenotypic changes in the tissue landscape are essential for5

an accurate characterization of a given pathology. Statistical tests that are commonly used for the com-6

parison of two different conditions based on the distributions of morphological properties, are applied7

at a global scale, and do not account for any explicit spatial information. Here we were interested in8

exploiting a known spatial statistical approach (historically proposed for functional imaging (fMRI)9

analysis) and recasting it into a machine learning framework to facilitate the comparison of two tis-10

sue conditions. Within the proposed framework relying on statistical parametric mapping (SPM) (1,2),11

the comparison of various physical tissue characteristics is thus achieved both at a quantitative and12

qualitative level. It does so by enabling the localization and quantification of local variations of certain13

morphological properties in the sample that are significantly different and relevant to a given pathology.14

SPM is a long-established methodology, specifically developed in fMRI for the detection of signifi-15

cantly activated regions of the brain in a given image sample. Mapping of activated regions is achieved16

by assessing the probability of random occurrences of activated regions with pixel intensities higher17

than a given threshold or having a larger spatial extent at lower intensities.18

To address the need for taking spatial localization into account when designing frameworks that19

can discriminate between two different conditions of a given tissue, we recast the SPM paradigm into20

a data-driven machine learning framework for detection of significant parametric differences between21

the two classes. Thus, we train the model on a given population (for example the control case) and we22

detect local areas in the second population of samples that deviate from this model. In our work, we23

applied this approach to the characterization of two distinct states of the extracellular matrix (ECM), a24

non-cellular component of organs and tissues.25

The ECM is a biological scaffold with multiple forms and functions. It acts as a biomechanical26

and structural support ensuring tissue integrity, it relays chemical and physical signals to the residing27

cells through cell surface receptors and it sequesters growth factors and regulates their bioavailability.28

The composition and architecture of the ECM is tissue- and organ-specific, and depends on the patho-29

physiological state of the tissue (i.e. normal vs diseased) (3). For example, while a healthy connective30

tissue displays a loose meshwork-like ECM, a fibrotic or cancerous stroma is characterized by the pres-31

ence of dense, aligned ECM fibrils. Thus, the physical and structural traits of the tumor matrix have32

recently drawn much attention as cancer hallmarks and potential therapeutic targets (4,5). Collagen, the33

most abundant matrix component, has been extensively investigated in this context and several studies34

addressing its structural features and their association to cancer progression, metastasis and treatment35

have been published (6–8). Collagen deposition, however, depends on the presence of fibronectin (FN),36

a dimeric glycoprotein that forms a provisional matrix framework to which other ECM components37

integrate to generate a mature ECM (9,10).38

During inflammation, wound healing, or tumor development, the expression of FN is induced and39

assembled into an insoluble matrix. This FN produced primarily by fibroblasts, corresponds to cellular40

FN, as opposed to plasma FN. At the molecular level, cellular FN differs from plasma FN by the pres-41

ence of one or two 90-amino acid-long alternatively spliced sequences, termed Extra Domains (EDB42

and EDA). Extra Domain-containing FN displays enhanced assembly, making it the most prevalent FN43

isoform in diseased tissue. This enhanced FN deposition results in a highly modified ECM architec-44

ture with increased fiber density, directionality and stiffness, that together tune cellular responses and45

impact tissue homeostasis (11).46

Despite the pivotal role of FN in health and disease (12), comprehensive studies of FN fiber features47

are lacking. In our previous work (11), we set out to develop a robust pipeline of numerical analyses for48
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the extraction of biologically relevant metrics to discriminate among different isoforms of cellular FN49

from confocal microscopy images of FN matrices. The goal of the present work was to capture and50

analyze physiologically relevant ECM fibrillar features that discriminate between normal and diseased51

states. To that end, we generated FN-rich ECM using an in vitro model of cell derived matrices (CDMs)52

produced by normal fibroblasts, or fibroblasts activated with transforming growth factor beta 1 (TGF-53

𝛽1), a fibrosis-promoting cytokine known to induce a tumor-like state.54

Herein we show that the proposed SPM-based machine learning methodology can be used to dis-55

tinguish between normal and disease-mimicking FN fiber networks. To capture and localize significant56

differences of fiber properties, we built parametric maps, such as fiber length and pore directionality57

relying on a graph-based fiber representation that recapitulates the FN fiber networks from confocal58

microscopy images. In the following sections, we will provide an outline of the proposed methodol-59

ogy applied to SPMs and describe how our proposed machine-learning embedding can yield significant60

localized parametric variations between different tissue states.61

2. Statistical parametric maps (SPM) and Gaussian Random Fields62

2.1. SPM statistical framework63

Statistical parametric maps are used to evaluate the probability of change in every pixel by using deci-64

sion tests based on the magnitude of the SPM values (i.e. the peak intensity of a cluster in SPM) as65

well as the spatial extent of these clusters formed at certain intensity thresholds (1). The value of the66

pixel intensity reflects a parametric value of interest. Hence these (2D) maps are constructed to reflect67

the spatial variation of a measured parameter which is important for discriminating between two given68

classes with regards to its intensity and area. In this way, clusters of high intensity of a SPM can corre-69

spond to a high localized parametric variation, while a large region reflects a spatially extended area of70

variation.71

Our proposed spatial statistical learning framework relies on graph-derived parametric maps to72

quantify and simultaneously localize statistically significant differences across normal and disease-73

mimicking FN organization. Using the pixel intensity of the maps along with the extent of the region74

area, these differences can be assessed both quantitatively and qualitatively, and detected as anomalies75

with respect to a Gaussian Random Field (GRF), corresponding to regions within the maps that can-76

not be explained by the GRF model learnt from the reference population. Hereafter, we describe the77

theoretical framework of GRF (13) that enables the statistical analysis of tissue parametric maps.78

GRF, whose marginal distributions are Gaussian vectors 𝑋 = (𝑋(1) , · · · , 𝑋(𝑛) ), are characterized by79

the probability density function:80

𝑓𝑋 (𝑥) = (2𝜋)−𝑛/2 |𝑉 |− 1
2 𝑒𝑥𝑝 [−1

2
(𝑥 − 𝜇)𝑉−1 (𝑥 − 𝜇)𝑇 ] (1)

where 𝜇 = (𝐸 (𝑋(𝑖) ))𝑖∈{1,...,𝑛} is the expectation and 𝑉 = (𝐸 [(𝑋(𝑖) − 𝜇 (𝑖) ) (𝑋( 𝑗 ) −81

𝜇 ( 𝑗 ) )])𝑖∈{1,...,𝑛}, 𝑗∈{1,...,𝑛} is the covariance matrix.82

We consider clusters of pixels as connected components that are formed based on 8-pixel con-83

nectivity. Hence, upon image binarization according to a chosen threshold, the pixels (with intensity84

equal to 1) are grouped together in disjoint components (including single pixel components) based on85

similar values of the neighbouring 8 pixels. It was shown in (13), and later adopted in fMRI-specific86

studies (1,2,14), that for large thresholds 𝑡, the clusters are independent and the expectation of the num-87

ber of clusters at a threshold 𝑡, of an image modeled by a zero-mean, homogeneous Gaussian field of88

dimension 2, is estimated by the expected Euler characteristic of the excursion set of the GRF:89

𝐸 [mt] = 𝑆(2𝜋)−3/2 |Λ|1/2𝑡𝜎−3 exp− 𝑡2

2𝜎2 (2)
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where:90

• mt represents the number of clusters at a certain threshold 𝑡91

• S is the number of pixels of the image92

• Λ is the covariance matrix of partial derivatives of the GRF93

• 𝜎 is the standard deviation of the GRF94

Similarly, the mean value of the number of clusters at a threshold 𝑡 + 𝐻0 can be written as such:95

𝐸 [mt+𝐻0 ] = 𝑆(2𝜋)−3/2 |Λ|1/2 (𝑡 + 𝐻0)𝜎−3 exp− (𝑡 + 𝐻0)2

2𝜎2 (3)

Considering 𝑥0 = 𝑡+𝐻0 as the intensity peak of a cluster (at threshold 𝑡), one can estimate the probability96

that a cluster (at a threshold 𝑡, having an intensity peak higher or equal to 𝑥0, denoted 𝐶
𝐻0
𝑡 ) belongs to a97

realization of this GRF, 𝐺𝑟 . This probability, as shown in (1), termed 𝑃𝐻 , can be seen as the likelihood98

of a cluster (formed at threshold 𝑡) of having an intensity peak higher or equal to 𝑡 + 𝐻0
(1):99

𝑃(𝐶𝐻0
𝑡 ∈ 𝐺𝑟 ) =

𝐸 [mt+𝐻0 ]
𝐸 [mt]

=
𝑥0
𝑡

exp
𝑡2 − 𝑥2

0
2𝜎2 (4)

Next, we were interested in the estimation of the probability that a cluster (at a threshold 𝑡) belongs to a100

realization of GRF, depending on its surface (spatial extent - number of pixels). To estimate the number101

of pixels (𝑛𝑡 ) of a cluster at a threshold 𝑡, we use the following equation from (2):102

𝐸 [𝑛𝑡 ] =
𝐸 [𝑁𝑡 ]
𝐸 [𝑚𝑡 ]

(5)

where 𝑁𝑡 is the number of pixels at of higher intensity than 𝑡, and 𝑚𝑡 is the number of clusters at the103

threshold 𝑡. Since the intensity values follow a normal (zero mean value) distribution, the expectation104

of 𝑁𝑡 is the following (2):105

𝐸 [Nt] = 𝑆

∫ ∞

𝑡

(2𝜋𝜎2)−1/2 exp− 𝑥2

2𝜎2 dx = 𝑆Φ𝜎 (−𝑡) (6)

where Φ𝜎 (−𝑡) is the complementary cumulative distribution function. It follows, then, based on106

equations (2,5,6) that one can approximate the mean value of 𝑛𝑡 , accordingly:107

𝐸 [𝑛𝑡 ] =
𝐸 [Nt]
𝐸 [𝑚𝑡 ]

=
Φ𝜎 (−𝑡)

(2𝜋)−3/2 |Λ|1/2𝑡𝜎−3 exp− 𝑡2

2𝜎2

(7)

Furthermore, 𝑛𝑡 follows an exponential distribution law (15), which is commonly defined by a parameter108

𝜆𝑡 , (the inverse of the mean expected value of the random variable). Consequently:109

𝑃(𝑛𝑡 = 𝑥) = 𝜆𝑡𝑒𝑥𝑝(−𝜆𝑡𝑥) (8)

where 𝜆𝑡 =
(2𝜋 )−3/2 |Λ |1/2𝑡 𝜎−3 exp − 𝑡2

2𝜎2
Φ𝜎 (−𝑡 )110
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It follows then that the approximation for the probability 𝑃𝑆 of a given cluster 𝐶𝑆0
𝑡 having a spatial111

extent 𝑆 greater than 𝑆0, is given by the following formulation, as shown in (2):112

𝑃(𝐶𝑆0
𝑡 ∈ 𝐺𝑟 ) = 𝑃(𝑛𝑡 ≥ 𝑆0) = 𝑒𝑥𝑝(−𝜆𝑡𝑆0) = 𝑒𝑥𝑝

(2𝜋)−3/2 |Λ|1/2𝑆0𝑡𝜎
−3 exp− 𝑡2

2𝜎2

Φ𝜎 (−𝑡)
(9)

In the following section, we illustrate our proposed approach using a simple scenario of a simulated113

GRF, in which the model parameters are estimated from a ’normal’ sample, to detect significant changes114

in an ’abnormal’ example.115

2.2. Test for anomaly detection using synthetic data116

To better understand the concept of detecting statistical abnormalities in a GRF realization, we con-117

sidered a simple scenario which includes a synthetic example (normal), representing a simulation of a118

GRF of zero mean (Figure 1A). To this example we added 6 foreign objects representing ellipses with119

different surfaces, and intensity levels. The aim was to use our approach to detect these 6 objects within120

the abnormal sample, showcasing the potential to localize these anomalies at various thresholds, based121

on the maximum intensity of the different regions detected at each threshold, or their spatial extent122

(Figure 1B). The null hypothesis is that clusters of pixels computed at different thresholds in the abnor-123

mal example belong to a realization of the same GRF as the normal sample. The hypothesis is rejected124

if either 𝑃𝐻 or 𝑃𝑆 is less or equal than a p-value (pval) of 0.05.125

Our method learns the GRF model parameters from the reference example, and then uses these126

parameters to compute the two probabilities of belonging to GRF for each region at various thresholds127

in the abnormal example. As shown in Figure 1A and Figure 1B, the current method, compared to a128

naïve hard thresholding (threshold equal to 10), is better suited to localize the abnormal elements, i.e.129

ellipses, at thresholds equal to (10,15,20). One could opt to jointly consider intensity and surface-based130

criteria when selecting the detected objects, which in this scenario, would lead to selecting the 6 ellipses131

together with one false positive (Figure 1C). It is noteworthy that the same false positive is detected on132

the reference image, which is consistent with the definition of the pval.133

2.3. Machine-learning embedded in a GRF-based statistical parametric map framework134

Providing both a quantitative and a qualitative assessment of the parameter variations is imperative for135

the study of spatial heterogeneity of fibers in pathological conditions. We were interested in leverag-136

ing our proposed framework for the comparison of two distinct conditions, normal and pathological137

ECM, given parametric maps that reflect various fiber characteristics. To do so, we learnt the GRF138

model’s parameters from the normal samples and using these parameters, we subsequently determined139

the probabilities of regions within the pathological conditions belonging to the same GRF, casting the140

original framework into a machine-learning setting. More specifically, we applied our proposed frame-141

work to determine whether fiber length and pore directionality can discriminate between normal and142

disease-mimicking states. While topographical differences between ECM of healthy and tumor tissue143

have been described (6), mainly for collagen, no current computational study can, to our knowledge,144

simultaneously localize and quantify them.145

First, we describe the principle behind the proposed approach (Figure 2), which relies on model-146

ing the normal maps as realizations of a GRF and testing this hypothesis on tumor-like maps (2). We147

hypothesized that the tumor-like maps are realizations of the GRF learnt from the reference maps and148

determined a set of probabilities that characterize a degree of belonging to the GRF, for certain con-149

tiguous regions (clusters) at various intensity thresholds. In other words, the current statistical analysis150

identifies those foreign regions with respect to the reference GRF, within both types of maps, under the151

null hypothesis (i.e., at a given pval)).152
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Figure 1. (A) Realization of a GRF of zero-mean (normal case) and addition of 6 different sized
ellipses (abnormal case), along with intensity-based hard thresholding for each case respectively (at a

threshold 𝑡 = 10 pixels) (B). Intensity and surface-based detection at pval ≤ 0.05, and at thresholds
equal to (10,15,20, see colorbar). GRF sample detection will typically contain false-positive

detections while within the abnormal case (GRF+ellipses), all ‘foreign’ objects, i.e ellipses are
detected at pval ≤ 0.05, along with a few false-positives. (C). Clusters that are jointly detected based

on the surface and intensity criteria are selected for both normal and abnormal samples .

In this context, the parametric maps are described by the union of two classes of pixels: those rep-153

resenting a realization of a GRF modeling the normal case, and those that are foreign to the GRF. We154

expect these foreign elements to occur in regions with very high pixel intensity and/or in larger clusters155

taken at a specific threshold.156

Modeling the parametric maps with GRF is only possible upon gaussianization (i.e. conversion of157

the empirical distributions into normal distributions) of the GRF marginal distributions. In practice, we158

only performed the gaussianization of the first-order marginal distribution of the GRF, i.e. the image159

intensity histogram, considering that the parameter maps under study were smooth enough. Therefore,160

the image intensity histogram was the only distribution to be gaussianized using an approach based on161

optimal transport (16,17) (Supplementary Figure S1). Thereby, the resulting intensity histogram follows162

a normal distribution of zero mean with identical variance as the empirical native histogram.163

To estimate the likelihood of a certain cluster formed at an intensity threshold 𝑡 to belong to a GRF,164

depending on the maximal intensity of this cluster, we relied on the formulations taken from the theory165
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Figure 2. Methodology for statistical detection of foreign regions to a GRF, in an example of a sample
representing normal and tumor-like parametric maps. (A) Normal and tumor-like fiber length maps.

The normal sample is modeled as a realization of a GRF, and we assume that the tumor-like sample is
a realization of the same process. Clusters of regions with an intensity higher than a given threshold, 𝑡

= 50 (B), 𝑡 = 80 (C), 𝑡 = 100 (D) are found to be statistically different to the GRF, with respect to a
pval, depending on the cluster maximum intensity value or their surface .

of random fields (13), as previously described. Considering 𝑥0 = 𝑡 + 𝐻0 as the intensity peak of a cluster166

(at intensity threshold 𝑡), one can estimate the probability that a cluster having an intensity peak higher167

or equal to 𝑥0, belongs to a realization of GRF. This probability can be seen as the likelihood of a cluster168

(taken at threshold 𝑡) of having an intensity peak higher or equal to 𝑡 + 𝐻0 (Equation 4). Furthermore,169

as previously shown, the approximation for the probability of a given cluster having a spatial extent S170

greater than 𝑆0 is given by Equation 9. At pval ≤ 0.05, the clusters of pixels identified at 𝑡 are considered171

significantly different from the normal GRF model.172

In our experiments, we focused on two different FN parametric maps that could potentially dis-173

criminate between normal and pathological conditions, fiber length and pore directionality maps, in174

both reference and disease-mimicking states. We embedded the SPM framework, initially developed to175

analyze single datasets independently, into a machine learning paradigm. To evaluate the differences176
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between two given groups of maps (e.g., FN in normal state vs disease-like state), we considered one177

of the groups as the normal realization of the GRF which we divided into a learning set and a smaller178

test set. The second group was tested for anomalous regions, therefore all the images belonging to this179

group were considered part of the test set. The proposed method learns the normal GRF model spe-180

cific parameters, i.e. the average value of 𝜆 𝑗 , 𝜎𝑗 , from the training set. These learnt parameters during181

the learning phase were subsequently used to compute the two relevant probabilities, 𝑃𝐻 and 𝑃𝑆 , as182

described hereafter:183

For all the images I 𝑗 (previously Gaussianized) in the learning set:184

• Computation of Λ 𝑗 (Equation 2, empirical estimator of the covariance of partial derivatives of185

𝐼 𝑗 ). If for an image function 𝑓 ∈ R2, we consider its gradient vector ∇ 𝑓 = ( 𝑓𝑥 , 𝑓𝑦) = ( 𝜕 𝑓

𝜕𝑥
,
𝜕 𝑓

𝜕𝑦
),186

then Λ 𝑗 = cov[ 𝑓𝑥 , 𝑓𝑦] = 𝐸 [( 𝑓𝑥 − 𝐸 [ 𝑓𝑥]) ( 𝑓𝑦 − 𝐸 [ 𝑓𝑦])].187

• Computation of 𝜎𝑗 , as the 𝐼 𝑗 ’s sample standard deviation.188

The last step involves storing the average Λ𝑚, 𝜎𝑚 of the learning dataset.189

During the test phase, for all the clusters identified at a threshold 𝑡 within the test set, 𝑃𝐻 and 𝑃𝑆190

are evaluated using the model’s previously learnt parameters. At pval ≤ 0.05, the clusters are sig-191

nificantly different from the normal GRF model, and can be considered for subsequent analysis (e.g.192

quantification).193

For all the images I 𝑗 in the test set:194

• Gaussianization of each sample image 𝐼 𝑗 . The result is a new image 𝐼𝑔, whose histogram is195

Gaussian with identical variance to that of 𝐼 𝑗 .196

• For a given list of thresholds 𝑇 = (𝑡1, 𝑡2, · · · , 𝑡𝑛) :197

– Binarization of the image I𝑔 according to the threshold 𝑡𝑖198

– Once the list of connected components in the binary image resulted from thresholding is199

achieved, then for every (labeled) connected-component (𝑙1, 𝑙2, · · · , 𝑙𝑝) :200

* Evaluation of 𝑃𝐻 using the learnt model parameter 𝜎𝑚.201

* Evaluation of 𝑃𝑆 using the learnt model parameters Λ𝑚, 𝜎𝑚.202

3. Generation of FN variant-specific fibroblast-derived matrices and induction of a tumor-like203

state204

To test our method, we utilized a previously established in vitro system to generate normal and disease-205

mimicking ECMs by normal mouse fibroblasts. Fibroblasts are the major ECM-producing cells of206

tissues. In pathological conditions (e.g. tumors), quiescent fibroblasts become activated by environ-207

mental cues that induce their phenotypic conversion to ’myofibroblasts’ with a pro-tumoral phenotype208

(Figure 3A, top). This process is characterized by the upregulation of cellular FN expression, actin209

reorganization and increased cell contractility that result in their elongation and the deposition of a210

highly anisotropic FN-rich ECM (11). In vitro, these changes can be mimicked by treating normal resting211

fibroblasts with TGF-𝛽1, a potent cytokine involved in fibroblast activation in the tumor microenvi-212

ronment (11). For our analyses, FN-rich normal or tumor-like matrices were generated by presenting213

FN-null mouse embryo fibroblasts with recombinant cFN (prepared as previously described (11)), as214

schematized in Figure 3B. For the induction of a tumor-like phenotype, fibroblasts were incubated with215

TGF-𝛽1 (Figure 3C). Cultures were decellularized after 7 days, and the resulting cell-derived matrices216
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Figure 3. (A) Schematic representation of a simple cuboidal epithelium displaying the different
architectures of the underlining ECM in normal (left) and pathological conditions (right). (B)

Workflow diagram featuring the linear structure of the purified recombinant FN (rFN) variants and
the relative positions of the alternatively spliced Extra Domains, the generation of fibroblast-derived
matrices, and image acquisition and analysis. (C) Phase contrast images (top row) of FN-null mouse

fibroblasts presented with FN B+A+ variant (15 𝜇g/ml) in the presence or absence of TGF-𝛽1 (5
ng/ml) to mimic the changes that take place in the tumor/fibrotic microenvironment. After removal of

the cells, matrices were stained with a rabbit-anti-FN polyclonal antibody and visualized with
confocal microscopy. Scale bars: phase, 100 𝜇m; IF, 50 𝜇m .

were visualized by immunofluorescence staining and confocal microscopy. Organization of variant-217

specific FN matrices in normal and activated states was then quantitatively analyzed, as described218

below.219
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4. Generation of parametric maps from confocal images of ECM220

4.1. Fiber detection using Gabor filters and graph extraction221

To detect and quantify fiber-specific properties of FN networks (Figure 4A), we developed a pipeline222

that was primarily utilized for the extraction of local topological fiber properties from 2D confocal223

microscopy images, as described previously (11). Existing ECM analysis methods focusing on colla-224

gen exploit alternative fiber detection techniques, such as Fast Fourier Transform bandpass filters (18),225

ridge detection (19), or fast discrete curvelet transform (20), which is arguably the best suited method to226

detect curvilinear anisotropic objects, among the previous options. The latter option was used in con-227

junction with a fiber extraction algorithm. Our method relies on a more flexible detection scheme using228

Gabor filters, thereby avoiding translation/rotation errors, and unlike other methods, associates graph229

networks to fiber morphological skeletons, enabling diverse fiber analyses. The current study builds on230

our previously described fiber enhancement approach (11), for which the key steps are summarized as231

follows. Fibers in confocal images (Figure 4A) were detected and enhanced using Gabor filters (Sup-232

plementary S1) tailored to capture a range of different fiber elements that occur at multiple frequencies233

and orientations (Figure 4B). Subsequently, we opted for a graph-based framework to construct mor-234

phological fiber skeletons (Figure 4C) that would ultimately provide a geometrical characterization235

of fiber patterns. Further steps for improving fiber representation (e.g. fiber pruning, post-processing236

fiber reconnection) were implemented as described in previous work (21). Graphs (i.e. collections of237

nodes connected by edges) are powerful tools for the structural and pattern analysis of objects, which238

can be utilized for the mathematical study of relations between entities, including fiber-like object239

detection (22,23).240

Within our current analysis, we employ two different graph types to measure fiber-specific proper-241

ties. First, graphs are used to depict a morphological skeleton representation (Figure 4D - left). Here,242

the nodes represent either fiber crosslinks (actual fiber junctions or junctions due to the 2D projection243

of the network onto the image plane) or fiber ends, and the edges capture the fiber length between two244

given nodes. We previously showed how such a representation can provide a description of distinct245

local features among four FN variant networks, in a normal state (11).246

The second type of graph-based representation introduced in this work (Figure 4D - right) is meant247

to simplify fiber delineation, as described hereafter. Starting from the skeleton graph, we kept all nodes248

corresponding to fiber extremities, and connected all pairs of nodes with a straight line, if a fiber had249

previously been identified. For the sake of simplicity, we refer to fiber length as the length of any250

straight line connecting a pair of graph nodes.251

We note that both representations are useful to extract different local or global fiber properties. The252

graph-based skeleton fiber delineation faithfully represents (according to a visual assessment performed253

by a trained biologist) the geometrical and topological properties of the fibers from the 2D confocal254

images, while the Gabor-specific (e.g. fiber local orientation, thickness) and graph-derived parameters255

(e.g. fiber length, number of nodes, etc.) are linked to meaningful physical fiber attributes. This biolog-256

ically relevant representation enabled us to develop here a statistical analysis of the variation of certain257

fiber parameters for both the normal and a tumor-like state of the FN networks.258

4.2. Generation of fiber parametric maps from graph-derived fiber representations259

We next sought to develop a statistical framework for differentiating between parametric maps of acti-260

vated and non-activated FN network configurations, computed from graph-based fiber representations.261

To create tissue variation maps (Figure 5), we considered different fiber attributes computed from262

graphs, representing either morphological skeletons (Figure 5A) or simplified graph depictions (Figure263

5C). This framework is exemplified on two different types of parametric maps (Figure 5B,D) reflect-264

ing discriminative features, namely the individual fiber lengths (i.e. the length of the connecting line265

between two graph nodes), and the fiber pore (’gap’) directionality (i.e. the inverse value of the absolute266

difference between the median and individual pore orientation).267
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Figure 4. Fiber enhancement and graph-based representation starting from confocal 2D images. (A)
Representative region (512x512 pixels) of a sample image (FN B-A+) at a resolution of 0.27 𝜇m/pixel.

(B) Fiber enhancement with Gabor filters (C) Morphological fiber skeleton extraction (D) Skeleton-
based graph (left) and simplified graph representation (right) which is derived from the latter .

To build a fiber length map (Figure 5D), the starting point was the simplified graph-based represen-268

tation, where nodes depict fiber ends or crosslinks, and fibers are represented by the straight connecting269

line between these nodes. During the next step, we identified the 2D pixels coordinates that approximate270

the straight line between the nodes (24) and assigned the length value of the connecting line to each one271

of the corresponding pixels. The last step for generating dense fiber length maps consists of including272

the extrapolation of the fiber length values (25) and smoothing of this result with a Gaussian kernel. Con-273

cerning the pore directionality parametric maps (Figure 5B), the starting point was the skeleton graph.274
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Figure 5. Computation of fiber parametric maps: (A) Starting from the skeleton graph (FN B-A+
disease-like sample, 1024x1024 pixels, 0.27 𝜇m/pixel), a pore directionality map is derived (B), as the

inverse value of the difference between the median pore angle and each individual one. (C) Starting
from the fiber skeleton associated graph, a parametric map (fiber length, (D)) associates the fiber

length, in pixels, to each corresponding connecting line .

Pore orientation was computed by first fitting ellipses to each pore and was subsequently obtained by275

measuring the angle i between the horizontal axis and the major ellipse axis. Pore median value was276

then subtracted from each i to remove image rotations from the analysis. Finally, the inverse absolute277

value of the resulting individual score per pore (indicative of the directionality) was assigned to all pix-278

els filling its corresponding surface, and subsequently smoothed out with a Gaussian kernel. High values279

within the pore directionality maps correspond to those regions in which pores are oriented similarly to280

the median pore angle, ultimately indicating regions characterized by a predominant pore orientation.281

To complement these analyses, we developed a graphical user interface (GUI) for the analysis of a282

single image/batch displaying fiber networks. Fibers are enhanced using Gabor filters and represented283

by graphs. Parametric maps, such as fiber length and pore directionality maps can subsequently be284

derived. The output results can be written into .png image files, while the fiber specific graph/Gabor-285

derived features are collected in .csv files. The MATLAB source code and sample images for testing286

can be found on the GitHub platform, at github.com/aigrapa/ECM-fiber-graph.287

4.3. Test for anomaly detection using fiber network simulations288

To simulate fiber networks, we considered a set of scattered point patterns 𝑃𝑑 , where 𝑃𝑑 is the set289

of points (𝑥 + 𝑛𝑥 ∗ 𝑑, 𝑦 + 𝑛𝑦 ∗ 𝑑), for 𝑛𝑦 odd, and (𝑥 + 𝑛𝑥 ∗ 𝑑, 𝑦 + (𝑛𝑦 + 0.5) ∗ 𝑑) for 𝑛𝑦 even,290

𝑛𝑥 , 𝑛𝑦 , 𝑑 ∈ N. Random noise was added at the points’ location : ∀𝑝 = (𝑋,𝑌 ) ∈ 𝑃𝑑 , 𝑝
′
= (𝑋+𝜂𝑥 , 𝑌+𝜂𝑦),291

where 𝜂𝑥 and 𝜂𝑦 follow a uniform law between 0 and 𝑁 , 𝑁 ∈ N. In this way, we generated two292

patterns 𝑃1 and 𝑃2 using different values for d, as well as a mask M (for the second scenario),293

https://doi.org/10.1017/S2633903X23000247 Published online by Cambridge University Press

github.com/aigrapa/ECM-fiber-graph
https://doi.org/10.1017/S2633903X23000247


13

which is an image equal to zero except for specific areas (e.g. ellipses Figure 6A). We consider P as:294

{(𝑥, 𝑦) ∈ 𝑃1 : 𝑀 (𝑥, 𝑦) = 0}⋃{(𝑥, 𝑦) ∈ 𝑃2 : 𝑀 (𝑥, 𝑦) ≠ 0}. The fibers were subsequently defined by295

the edges of the Delaunay graph of P.296

The first isotropic fiber network corresponds to a ’normal’ example (𝑑 = 30, 𝑁 = 20), while the fiber297

network with local defects (i.e. fibers are more elongated in the regions containing ’defects’, corre-298

sponding to the three regions within the mask) is considered here an ’abnormal’ example (𝑑 ∈ {40, 50},299

𝑁 = 20) (Figure 6A). Fibers were detected as explained in 4.1, and fiber graphs were correspondingly300

derived for both images (Figure 6B). Starting from the graph-based fiber representation, fiber length301

parametric maps were generated accordingly, as described in 4.2 (Figure 6B), and subsequently ’gaus-302

sianised’, as explained in 2.3. We were interested in applying the same principle described in 2.2, in303

order to detect the three regions of fiber length variation corresponding to the proposed ground-truth304

mask (Figure 6A). According to this principle, the null hypothesis is that clusters of pixels in the para-305

metric map, computed at different thresholds in the abnormal example, belong to a realization of the306

same GRF as the normal sample. The method learns the GRF model parameters from the parametric307

map corresponding to the reference-normal example, and then uses these parameters to compute the308

two probabilities of belonging to GRF, for each region at various thresholds, in the abnormal sample’s309

parametric map, using an intensity or surface-based criterion. Different regions were identified at var-310

ious thresholds, for both intensity and surface-based detection (Figure 6C), at a pval ≤ 0.05. By only311

keeping the regions which were detected at a certain threshold (surface-based detection) having a non-312

null intersection with the clusters detected according to the intensity-based criterion, we were able to313

accurately detect the three regions of fiber length variation, as well as two additional false positive314

smaller regions within the parametric map of the fiber network with local defects.315

5. Results - statistical analysis of fiber parametric maps316

The graph-based representation of FN networks enabled the subsequent design of a novel framework317

to perform a spatial statistical analysis of ECM patterns, using graph-derived statistical parametric318

maps. This methodology was applied for a quantitative and qualitative analysis of fiber length and pore319

directionality differences, across all FN variant networks in normal and tumor-like states. We were320

thus interested in determining whether the proposed SPM analysis of the selected spatial fiber features321

could reveal significant variant-specific differences between the FN variant networks in normal (N) and322

tumor-like (T) states.323

To apply our framework to the available data, we first divided the available sets of confocal images324

(1024 x 1024 pixels, 0.27 𝜇m/pixel; 70 images/variant for normal FN (N) and 65 images/variant for325

tumor-mimicking FN networks) as follows. For comparison of (N) vs (T) FN networks, we considered326

50 (N) samples as the learning dataset, 20 (N) as a test set for normal, and 65 (T) as a test set for327

disease-like networks. In all scenarios, a cluster is considered significantly different from the normal328

GRF model at pval ≤ 0.05. Anomalies in fiber length (Figure 7A) detected using either intensity or329

surface-based criteria (Figure 7B,C) and pore directionality maps (Figure 8A, B,C) were detected at a330

few intensity thresholds (e.g. 70,80,90) and (10,12,14), respectively (Figure 7, Figure 8). Thus, using331

our approach, differences in fiber length and pore directionality could be localized in regions formed332

at different intensity thresholds. This property is very useful for obtaining a qualitative analysis of333

parametric maps, where clusters of pixels that are statistically different from a normal model can be334

localized.335

For the quantitative analysis of tissue parametric variations, we set out to determine significant dif-336

ferences between FN variant networks through the average number of identified foreign clusters, as337

well as the average cluster area per image. It is noteworthy that the group for which anomalous clusters338

were found at superior thresholds, had higher parametric values than in the normal model. For example,339

if significantly different regions occur in the tumor-mimicking matrices compared to the normal ones,340
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Figure 6. Anomaly detection within parametric maps of simulated fiber networks (A) Simulations of
fiber networks (1024x1024 pixels), isotropic (left) and with local defects (center), ground-truth mask

(right). (B) Graph-based representations of fiber networks, and corresponding fiber length parametric
maps for both samples. (C) Detection of anomalous clusters with respect to the normal GRF model (at

pval ≤ 0.05), at various thresholds, on the parametric map containing defects, for intensity-based
(left) and surface-based criteria (center). The regions detected at a threshold of 20, based on a
surface-based criterion having a non-null intersection with those detected at a threshold of 35,

according to an intensity-based criterion (right) .

with respect to fiber length, then fibers are statistically more elongated within former networks than341

normal counterparts. As shown in Figure 7,8, we found both fiber length and pore directionality to be342

significantly different for pairwise comparisons of normal and tumor-like FN variant networks. Essen-343

tially, the latter type of FN architecture relative to normal ECM, is represented by statistically longer344

fibers (Table 1) with a more pronounced pore directionality (Table 2). The increased length of FN fibers345

is consistent with the elongated phenotype of the TGF-𝛽1-treated fibroblasts that assemble them. The346

statistically significant increase in pore directionality of tumor-like matrices compared to normal FN347

matrices is in agreement with published reports (26) of higher FN alignment in cell-derived matrices348

from cancer-associated fibroblasts and in tumor tissue. Detailed results, including the average area and349

number of identified anomalous clusters, at multiple thresholds, for four FN variants, are presented in350

Supplementary TableS1-TableS8.351
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Figure 7. Qualitative analysis - Anomalous cluster detection (with respect to the normal statistical
model), applied to two samples of fiber length map (FN B-A+ tumor-like), 1024x1024 pixels, 0.27
𝜇m/pixel (A), (B) and (C) depict the anomalous clusters (pval ≤ 0.05) at various intensity thresholds

(70,80,90) .

Table 1. Quantitative analysis for detection of differences in fiber length - Anomalous cluster
quantification (with respect to the normal statistical model, at pval ≤ 0.05), for the comparison of
normal (N) and tumor-like (T) FN (1024x1024 pixels, or 276.48 𝜇𝑚 x 276.48 𝜇𝑚). The average

number of significant clusters per test database for each variant is shown here, for either surface or
intensity criteria, if higher than for the normal model, at any selected threshold). Average number of

clusters detected in fiber length maps, for normal vs tumor-mimicking FN, for one of the test
thresholds (70,80,90).

FN variant Average number of clusters for (N) vs (T) FN
B-A- 0.43 (surface)
B+A- 0.88 (intensity); 0.92 (surface)
B-A+ 0.72 (intensity); 0.78 (surface)
B+A+ 0.94 (intensity); 0.94 (surface)
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Figure 8. Qualitative analysis - Anomalous cluster detection (with respect to the normal statistical
model), applied to two samples of pore directionality map (FN B-A+ tumor-like), 1024x1024 pixels,

0.27 𝜇m/pixel (A), (B) and (C) depict the detected clusters (pval ≤ 0.05) at various intensity
thresholds (10,12,14) .

Table 2. Quantitative analysis for detection of differences in pore directionality - Anomalous cluster
quantification (with respect to the normal statistical model, at pval ≤ 0.05), for the comparison of
normal (N) and tumor-like (T) FN ( 1024x 1024 pixels, or 276.48 𝜇𝑚 x 276.48 𝜇𝑚). The average

number of significant clusters per test database for each variant is shown here, for either surface or
intensity criteria, if higher than for the normal model, at any selected threshold). Average number of
clusters detected in pore directionality maps, for normal vs tumor-mimicking FN, for one of the test

thresholds (10,12,14). ‘-‘ is recorded if no significant detection was present.
FN variant Average number of clusters for (N) vs (T) FN

B-A- 0.12 (intensity)
B+A- 0.22 (surface)
B-A+ 0.14 (intensity); 0.34 (surface)
B+A+ -

6. Discussion and conclusion352

The proposed methodology was designed to quantify the differences in terms of spatial organization353

between normal and disease-like architectures of variant-specific FN matrices generated in vitro. We354
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have previously been able to discriminate the matrix patterns of four alternatively spliced FN variants355

deposited by cultured fibroblasts using different learning approaches and relying on graph-based feature356

analysis. The pipeline which includes steps for fiber detection and representation (11), and generation357

of parametric fiber maps is available with a MATLAB GUI: both graph and Gabor filter-based fiber358

features can be extracted from different images representing fiber networks (e.g. ECM-specific proteins)359

for downstream analysis. In principle, the steps required for the characterization of ECM (i.e. fiber360

detection and representation using graphs) in cell-derived matrices generated by cells of different origin361

remain the same. However, in the case of tissue samples, the ECM is more complex and heterogeneous,362

and further pre-processing steps may be needed to filter structures that are normally found in tissues363

(e.g. blood vessels). The number and type of additional steps, however, is dependent on the type of364

organ/tissue, the pathology under evaluation, and the staining procedure.365

Here, we developed a statistical parametric map framework for the quantitative and qualitative anal-366

ysis of fibers, capable of simultaneously detecting and measuring variations of specific ECM features367

within two different tissue conditions. Importantly, our approach can be evaluated on parametric maps368

at different thresholds, producing results that are more reliable and statistically relevant (by providing369

a pval) than a simple hard thresholding of the parametric maps. Our framework was tested using two370

relevant fiber features, fiber length and pore directionality, whose parametric maps revealed significant371

differences between normal and disease-mimicking states. However, parametric maps can be extended372

to include other fiber or pore-specific parameters (e.g. fiber density, width, length, orientation, wavi-373

ness, and straightness), which could be useful for differentiating among various biological networks in374

normal and pathological states.375

Computational analyses of ECM structures can provide essential information about their role in376

shaping the cellular microenvironment topology in health and during disease progression. Prognostic377

ECM-specific signatures have already been inferred in cancer-related studies, and in diseases with378

prominent fibrosis (27–29). There is also a growing interest in the integration of cell and ECM analyses379

in a spatially resolved manner to further understand the interactions between cells and their matrix380

microenvironment (30). Indeed, the present work proposing a versatile pipeline for the analysis of ECM381

produced by cultured fibroblasts, is being extended to studies of ECM organization in human tumor382

tissue and aims to integrate the phenotypes of cellular components. Hence, a combined local analysis383

of parametric maps and metrics describing the organization/morphology of adjacent cells (e.g. tumor,384

immune, vascular cells) will potentially help elucidate the complex interplay between cellular and non-385

cellular components of the tumor microenvironment.386

7. Materials and methods387

7.1. Materials and FN preparations388

Recombinant human TGF-𝛽1 was from R&D Systems Inc. (Minneapolis, MN, USA). All other chem-389

icals and reagents were purchased from Sigma Aldrich (St Louis, MO, USA) unless otherwise stated.390

Purified recombinant FN variants were produced as previously described (11).391

7.2. Cells and culture conditions392

Fn1 -/- mouse kidney fibroblasts were generated and cultured as previously described (11). For exper-393

iments, FN was depleted from fetal calf serum using gelatin sepharose-4B columns (GE Healthcare,394

Uppsala, Sweden), and the culture medium was supplemented with Penicillin-Streptomycin 100 U/ml395

and, where indicated, TGF-𝛽1 (5 ng/ml). Absence of Mycoplasma sp. contamination was routinely396

verified by PCR as described elsewhere (31).397
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7.3. Generation of fibroblast-derived matrices, immunofluorescence staining and microscopy398

Fibroblast-derived matrices were generated as described previously. For FN immunostaining, primary399

antibody (rabbit polyclonal anti-FN) was from Merck-Millipore (Darmstadt, Germany). Fluorescently-400

labeled (Alexa Fluor 488-conjugated) secondary antibody was from Thermo Fisher Scientific401

(Waltham, Massachusetts). After staining, the coverslips were mounted in ProLong® Gold antifade402

reagent (Thermo Fischer Scientific). Confocal imaging was performed on a Zeiss LSM710 confo-403

cal system equipped with a 10X/0.45 NA objective. For visual representation, image treatment was404

performed using Fiji (32).405
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